pypsa-eur/scripts/base_network.py

518 lines
20 KiB
Python

# coding: utf-8
import yaml
import pandas as pd
import geopandas as gpd
import numpy as np
import scipy as sp, scipy.spatial
from scipy.sparse import csgraph
from six import iteritems
from itertools import product
from shapely.geometry import Point, LineString
import shapely, shapely.prepared, shapely.wkt
import networkx as nx
import logging
logger = logging.getLogger(__name__)
import pypsa
def _get_oid(df):
if "tags" in df.columns:
return df.tags.str.extract('"oid"=>"(\d+)"', expand=False)
else:
return pd.Series(np.nan, df.index)
def _get_country(df):
if "tags" in df.columns:
return df.tags.str.extract('"country"=>"([A-Z]{2})"', expand=False)
else:
return pd.Series(np.nan, df.index)
def _find_closest_links(links, new_links, distance_upper_bound=1.5):
tree = sp.spatial.KDTree(np.vstack([
new_links[['x1', 'y1', 'x2', 'y2']],
new_links[['x2', 'y2', 'x1', 'y1']]
]))
dist, ind = tree.query(
np.asarray([np.asarray(shapely.wkt.loads(s))[[0, -1]].flatten()
for s in links.geometry]),
distance_upper_bound=distance_upper_bound
)
found_b = ind < 2 * len(new_links)
return (
pd.DataFrame(dict(D=dist[found_b],
i=new_links.index[ind[found_b] % len(new_links)]),
index=links.index[found_b])
.groupby('i').D.idxmin()
)
def _load_buses_from_eg():
buses = (pd.read_csv(snakemake.input.eg_buses, quotechar="'",
true_values='t', false_values='f',
dtype=dict(bus_id="str"))
.set_index("bus_id")
.drop(['station_id'], axis=1)
.rename(columns=dict(voltage='v_nom')))
buses['carrier'] = buses.pop('dc').map({True: 'DC', False: 'AC'})
buses['under_construction'] = buses['under_construction'].fillna(False).astype(bool)
# remove all buses outside of all countries including exclusive economic zones (offshore)
europe_shape = gpd.read_file(snakemake.input.europe_shape).loc[0, 'geometry']
europe_shape_prepped = shapely.prepared.prep(europe_shape)
buses_in_europe_b = buses[['x', 'y']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1)
buses_with_v_nom_to_keep_b = buses.v_nom.isin(snakemake.config['electricity']['voltages']) | buses.v_nom.isnull()
logger.info("Removing buses with voltages {}".format(pd.Index(buses.v_nom.unique()).dropna().difference(snakemake.config['electricity']['voltages'])))
return pd.DataFrame(buses.loc[buses_in_europe_b & buses_with_v_nom_to_keep_b])
def _load_transformers_from_eg(buses):
transformers = (pd.read_csv(snakemake.input.eg_transformers, quotechar="'",
true_values='t', false_values='f',
dtype=dict(transformer_id='str', bus0='str', bus1='str'))
.set_index('transformer_id'))
transformers = _remove_dangling_branches(transformers, buses)
return transformers
def _load_converters_from_eg(buses):
converters = (pd.read_csv(snakemake.input.eg_converters, quotechar="'",
true_values='t', false_values='f',
dtype=dict(converter_id='str', bus0='str', bus1='str'))
.set_index('converter_id'))
converters = _remove_dangling_branches(converters, buses)
converters['carrier'] = 'B2B'
return converters
def _load_links_from_eg(buses):
links = (pd.read_csv(snakemake.input.eg_links, quotechar="'", true_values='t', false_values='f',
dtype=dict(link_id='str', bus0='str', bus1='str', under_construction="bool"))
.set_index('link_id'))
links['length'] /= 1e3
links = _remove_dangling_branches(links, buses)
# Add DC line parameters
links['carrier'] = 'DC'
return links
def _add_links_from_tyndp(buses, links):
links_tyndp = pd.read_csv(snakemake.input.links_tyndp)
# remove all links from list which lie outside all of the desired countries
europe_shape = gpd.read_file(snakemake.input.europe_shape).loc[0, 'geometry']
europe_shape_prepped = shapely.prepared.prep(europe_shape)
x1y1_in_europe_b = links_tyndp[['x1', 'y1']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1)
x2y2_in_europe_b = links_tyndp[['x2', 'y2']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1)
is_within_covered_countries_b = x1y1_in_europe_b & x2y2_in_europe_b
if not is_within_covered_countries_b.all():
logger.info("TYNDP links outside of the covered area (skipping): " +
", ".join(links_tyndp.loc[~ is_within_covered_countries_b, "Name"]))
links_tyndp = links_tyndp.loc[is_within_covered_countries_b]
if links_tyndp.empty:
return buses, links
has_replaces_b = links_tyndp.replaces.notnull()
oids = dict(Bus=_get_oid(buses), Link=_get_oid(links))
keep_b = dict(Bus=pd.Series(True, index=buses.index),
Link=pd.Series(True, index=links.index))
for reps in links_tyndp.loc[has_replaces_b, 'replaces']:
for comps in reps.split(':'):
oids_to_remove = comps.split('.')
c = oids_to_remove.pop(0)
keep_b[c] &= ~oids[c].isin(oids_to_remove)
buses = buses.loc[keep_b['Bus']]
links = links.loc[keep_b['Link']]
links_tyndp["j"] = _find_closest_links(links, links_tyndp, distance_upper_bound=0.8)
# Corresponds approximately to 60km tolerances
if links_tyndp["j"].notnull().any():
logger.info("TYNDP links already in the dataset (skipping): " + ", ".join(links_tyndp.loc[links_tyndp["j"].notnull(), "Name"]))
links_tyndp = links_tyndp.loc[links_tyndp["j"].isnull()]
tree = sp.spatial.KDTree(buses[['x', 'y']])
_, ind0 = tree.query(links_tyndp[["x1", "y1"]])
ind0_b = ind0 < len(buses)
links_tyndp.loc[ind0_b, "bus0"] = buses.index[ind0[ind0_b]]
_, ind1 = tree.query(links_tyndp[["x2", "y2"]])
ind1_b = ind1 < len(buses)
links_tyndp.loc[ind1_b, "bus1"] = buses.index[ind1[ind1_b]]
links_tyndp_located_b = links_tyndp["bus0"].notnull() & links_tyndp["bus1"].notnull()
if not links_tyndp_located_b.all():
logger.warn("Did not find connected buses for TYNDP links (skipping): " + ", ".join(links_tyndp.loc[~links_tyndp_located_b, "Name"]))
links_tyndp = links_tyndp.loc[links_tyndp_located_b]
logger.info("Adding the following TYNDP links: " + ", ".join(links_tyndp["Name"]))
links_tyndp = links_tyndp[["bus0", "bus1"]].assign(
carrier='DC',
p_nom=links_tyndp["Power (MW)"],
length=links_tyndp["Length (given) (km)"].fillna(links_tyndp["Length (distance*1.2) (km)"]),
under_construction=True,
underground=False,
geometry=(links_tyndp[["x1", "y1", "x2", "y2"]]
.apply(lambda s: str(LineString([[s.x1, s.y1], [s.x2, s.y2]])), axis=1)),
tags=('"name"=>"' + links_tyndp["Name"] + '", ' +
'"ref"=>"' + links_tyndp["Ref"] + '", ' +
'"status"=>"' + links_tyndp["status"] + '"')
)
links_tyndp.index = "T" + links_tyndp.index.astype(str)
return buses, links.append(links_tyndp)
def _load_lines_from_eg(buses):
lines = (pd.read_csv(snakemake.input.eg_lines, quotechar="'", true_values='t', false_values='f',
dtype=dict(line_id='str', bus0='str', bus1='str',
underground="bool", under_construction="bool"))
.set_index('line_id')
.rename(columns=dict(voltage='v_nom', circuits='num_parallel')))
lines['length'] /= 1e3
lines = _remove_dangling_branches(lines, buses)
return lines
def _apply_parameter_corrections(n):
with open(snakemake.input.parameter_corrections) as f:
corrections = yaml.safe_load(f)
if corrections is None: return
for component, attrs in iteritems(corrections):
df = n.df(component)
oid = _get_oid(df)
if attrs is None: continue
for attr, repls in iteritems(attrs):
for i, r in iteritems(repls):
if i == 'oid':
r = oid.map(repls["oid"]).dropna()
elif i == 'index':
r = pd.Series(repls["index"])
else:
raise NotImplementedError()
inds = r.index.intersection(df.index)
df.loc[inds, attr] = r[inds].astype(df[attr].dtype)
def _set_electrical_parameters_lines(lines):
v_noms = snakemake.config['electricity']['voltages']
linetypes = snakemake.config['lines']['types']
for v_nom in v_noms:
lines.loc[lines["v_nom"] == v_nom, 'type'] = linetypes[v_nom]
lines['s_max_pu'] = snakemake.config['lines']['s_max_pu']
return lines
def _set_lines_s_nom_from_linetypes(n):
n.lines['s_nom'] = (
np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) *
n.lines['v_nom'] * n.lines.num_parallel
)
def _set_electrical_parameters_links(links):
if links.empty: return links
p_max_pu = snakemake.config['links'].get('p_max_pu', 1.)
links['p_max_pu'] = p_max_pu
links['p_min_pu'] = -p_max_pu
links_p_nom = pd.read_csv(snakemake.input.links_p_nom)
links_p_nom["j"] = _find_closest_links(links, links_p_nom)
p_nom = links_p_nom.dropna(subset=["j"]).set_index("j")["Power (MW)"]
# Don't update p_nom if it's already set
p_nom_unset = p_nom.drop(links.index[links.p_nom.notnull()], errors='ignore') if "p_nom" in links else p_nom
links.loc[p_nom_unset.index, "p_nom"] = p_nom_unset
return links
def _set_electrical_parameters_converters(converters):
p_max_pu = snakemake.config['links'].get('p_max_pu', 1.)
converters['p_max_pu'] = p_max_pu
converters['p_min_pu'] = -p_max_pu
converters['p_nom'] = 2000
# Converters are combined with links
converters['under_construction'] = False
converters['underground'] = False
return converters
def _set_electrical_parameters_transformers(transformers):
config = snakemake.config['transformers']
## Add transformer parameters
transformers["x"] = config.get('x', 0.1)
transformers["s_nom"] = config.get('s_nom', 2000)
transformers['type'] = config.get('type', '')
return transformers
def _remove_dangling_branches(branches, buses):
return pd.DataFrame(branches.loc[branches.bus0.isin(buses.index) & branches.bus1.isin(buses.index)])
def _remove_unconnected_components(network):
_, labels = csgraph.connected_components(network.adjacency_matrix(), directed=False)
component = pd.Series(labels, index=network.buses.index)
component_sizes = component.value_counts()
components_to_remove = component_sizes.iloc[1:]
logger.info("Removing {} unconnected network components with less than {} buses. In total {} buses."
.format(len(components_to_remove), components_to_remove.max(), components_to_remove.sum()))
return network[component == component_sizes.index[0]]
def _set_countries_and_substations(n):
buses = n.buses
def buses_in_shape(shape):
shape = shapely.prepared.prep(shape)
return pd.Series(
np.fromiter((shape.contains(Point(x, y))
for x, y in buses.loc[:,["x", "y"]].values),
dtype=bool, count=len(buses)),
index=buses.index
)
countries = snakemake.config['countries']
country_shapes = gpd.read_file(snakemake.input.country_shapes).set_index('name')['geometry']
offshore_shapes = gpd.read_file(snakemake.input.offshore_shapes).set_index('name')['geometry']
substation_b = buses['symbol'].str.contains('substation|converter station', case=False)
def prefer_voltage(x, which):
index = x.index
if len(index) == 1:
return pd.Series(index, index)
key = (x.index[0]
if x['v_nom'].isnull().all()
else getattr(x['v_nom'], 'idx' + which)())
return pd.Series(key, index)
gb = buses.loc[substation_b].groupby(['x', 'y'], as_index=False,
group_keys=False, sort=False)
bus_map_low = gb.apply(prefer_voltage, 'min')
lv_b = (bus_map_low == bus_map_low.index).reindex(buses.index, fill_value=False)
bus_map_high = gb.apply(prefer_voltage, 'max')
hv_b = (bus_map_high == bus_map_high.index).reindex(buses.index, fill_value=False)
onshore_b = pd.Series(False, buses.index)
offshore_b = pd.Series(False, buses.index)
for country in countries:
onshore_shape = country_shapes[country]
onshore_country_b = buses_in_shape(onshore_shape)
onshore_b |= onshore_country_b
buses.loc[onshore_country_b, 'country'] = country
if country not in offshore_shapes.index: continue
offshore_country_b = buses_in_shape(offshore_shapes[country])
offshore_b |= offshore_country_b
buses.loc[offshore_country_b, 'country'] = country
# Only accept buses as low-voltage substations (where load is attached), if
# they have at least one connection which is not under_construction
has_connections_b = pd.Series(False, index=buses.index)
for b, df in product(('bus0', 'bus1'), (n.lines, n.links)):
has_connections_b |= ~ df.groupby(b).under_construction.min()
buses['substation_lv'] = lv_b & onshore_b & (~ buses['under_construction']) & has_connections_b
buses['substation_off'] = (offshore_b | (hv_b & onshore_b)) & (~ buses['under_construction'])
c_nan_b = buses.country.isnull()
if c_nan_b.sum() > 0:
c_tag = _get_country(buses.loc[c_nan_b])
c_tag.loc[~c_tag.isin(countries)] = np.nan
n.buses.loc[c_nan_b, 'country'] = c_tag
c_tag_nan_b = n.buses.country.isnull()
# Nearest country in path length defines country of still homeless buses
# Work-around until commit 705119 lands in pypsa release
n.transformers['length'] = 0.
graph = n.graph(weight='length')
n.transformers.drop('length', axis=1, inplace=True)
for b in n.buses.index[c_tag_nan_b]:
df = (pd.DataFrame(dict(pathlength=nx.single_source_dijkstra_path_length(graph, b, cutoff=200)))
.join(n.buses.country).dropna())
assert not df.empty, "No buses with defined country within 200km of bus `{}`".format(b)
n.buses.at[b, 'country'] = df.loc[df.pathlength.idxmin(), 'country']
logger.warning("{} buses are not in any country or offshore shape,"
" {} have been assigned from the tag of the entsoe map,"
" the rest from the next bus in terms of pathlength."
.format(c_nan_b.sum(), c_nan_b.sum() - c_tag_nan_b.sum()))
return buses
def _replace_b2b_converter_at_country_border_by_link(n):
# Affects only the B2B converter in Lithuania at the Polish border at the moment
buscntry = n.buses.country
linkcntry = n.links.bus0.map(buscntry)
converters_i = n.links.index[(n.links.carrier == 'B2B') & (linkcntry == n.links.bus1.map(buscntry))]
def findforeignbus(G, i):
cntry = linkcntry.at[i]
for busattr in ('bus0', 'bus1'):
b0 = n.links.at[i, busattr]
for b1 in G[b0]:
if buscntry[b1] != cntry:
return busattr, b0, b1
return None, None, None
for i in converters_i:
G = n.graph()
busattr, b0, b1 = findforeignbus(G, i)
if busattr is not None:
comp, line = next(iter(G[b0][b1]))
if comp != "Line":
logger.warn("Unable to replace B2B `{}` expected a Line, but found a {}"
.format(i, comp))
continue
n.links.at[i, busattr] = b1
n.links.at[i, 'p_nom'] = min(n.links.at[i, 'p_nom'], n.lines.at[line, 's_nom'])
n.links.at[i, 'carrier'] = 'DC'
n.links.at[i, 'underwater_fraction'] = 0.
n.links.at[i, 'length'] = n.lines.at[line, 'length']
n.remove("Line", line)
n.remove("Bus", b0)
logger.info("Replacing B2B converter `{}` together with bus `{}` and line `{}` by an HVDC tie-line {}-{}"
.format(i, b0, line, linkcntry.at[i], buscntry.at[b1]))
def _set_links_underwater_fraction(n):
if n.links.empty: return
if not hasattr(n.links, 'geometry'):
n.links['underwater_fraction'] = 0.
else:
offshore_shape = gpd.read_file(snakemake.input.offshore_shapes).unary_union
links = gpd.GeoSeries(n.links.geometry.dropna().map(shapely.wkt.loads))
n.links['underwater_fraction'] = links.intersection(offshore_shape).length / links.length
def _adjust_capacities_of_under_construction_branches(n):
lines_mode = snakemake.config['lines'].get('under_construction', 'undef')
if lines_mode == 'zero':
n.lines.loc[n.lines.under_construction, 'num_parallel'] = 0.
n.lines.loc[n.lines.under_construction, 's_nom'] = 0.
elif lines_mode == 'remove':
n.mremove("Line", n.lines.index[n.lines.under_construction])
elif lines_mode != 'keep':
logger.warn("Unrecognized configuration for `lines: under_construction` = `{}`. Keeping under construction lines.")
links_mode = snakemake.config['links'].get('under_construction', 'undef')
if links_mode == 'zero':
n.links.loc[n.links.under_construction, "p_nom"] = 0.
elif links_mode == 'remove':
n.mremove("Link", n.links.index[n.links.under_construction])
elif links_mode != 'keep':
logger.warn("Unrecognized configuration for `links: under_construction` = `{}`. Keeping under construction links.")
if lines_mode == 'remove' or links_mode == 'remove':
# We might need to remove further unconnected components
n = _remove_unconnected_components(n)
return n
def base_network():
buses = _load_buses_from_eg()
links = _load_links_from_eg(buses)
if snakemake.config['links'].get('include_tyndp'):
buses, links = _add_links_from_tyndp(buses, links)
converters = _load_converters_from_eg(buses)
lines = _load_lines_from_eg(buses)
transformers = _load_transformers_from_eg(buses)
lines = _set_electrical_parameters_lines(lines)
transformers = _set_electrical_parameters_transformers(transformers)
links = _set_electrical_parameters_links(links)
converters = _set_electrical_parameters_converters(converters)
n = pypsa.Network()
n.name = 'PyPSA-Eur'
n.set_snapshots(pd.date_range(freq='h', **snakemake.config['snapshots']))
n.snapshot_weightings[:] *= 8760./n.snapshot_weightings.sum()
n.import_components_from_dataframe(buses, "Bus")
n.import_components_from_dataframe(lines, "Line")
n.import_components_from_dataframe(transformers, "Transformer")
n.import_components_from_dataframe(links, "Link")
n.import_components_from_dataframe(converters, "Link")
n = _remove_unconnected_components(n)
_set_lines_s_nom_from_linetypes(n)
_apply_parameter_corrections(n)
_set_countries_and_substations(n)
_set_links_underwater_fraction(n)
_replace_b2b_converter_at_country_border_by_link(n)
n = _adjust_capacities_of_under_construction_branches(n)
return n
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake, Dict
snakemake = MockSnakemake(
path='..',
wildcards={},
input=Dict(
eg_buses='data/entsoegridkit/buses.csv',
eg_lines='data/entsoegridkit/lines.csv',
eg_links='data/entsoegridkit/links.csv',
eg_converters='data/entsoegridkit/converters.csv',
eg_transformers='data/entsoegridkit/transformers.csv',
parameter_corrections='data/parameter_corrections.yaml',
links_p_nom='data/links_p_nom.csv',
links_tyndp='data/links_tyndp.csv',
country_shapes='resources/country_shapes.geojson',
offshore_shapes='resources/offshore_shapes.geojson',
europe_shape='resources/europe_shape.geojson'
),
output = ['networks/base.nc']
)
logging.basicConfig(level=snakemake.config['logging_level'])
n = base_network()
n.export_to_netcdf(snakemake.output[0])