pypsa-eur/scripts/build_gas_input_locations.py

98 lines
3.1 KiB
Python

"""
Build import locations for fossil gas from entry-points, LNG terminals and production sites.
"""
import logging
logger = logging.getLogger(__name__)
import pandas as pd
import geopandas as gpd
from shapely import wkt
def read_scigrid_gas(fn):
df = gpd.read_file(fn)
df = pd.concat([df, df.param.apply(pd.Series)], axis=1)
df.drop(["param", "uncertainty", "method"], axis=1, inplace=True)
return df
def build_gas_input_locations(lng_fn, planned_lng_fn, entry_fn, prod_fn, countries):
# LNG terminals
lng = read_scigrid_gas(lng_fn)
planned_lng = pd.read_csv(planned_lng_fn)
planned_lng.geometry = planned_lng.geometry.apply(wkt.loads)
planned_lng = gpd.GeoDataFrame(planned_lng, crs=4326)
lng = lng.append(planned_lng, ignore_index=True)
# Entry points from outside the model scope
entry = read_scigrid_gas(entry_fn)
entry["from_country"] = entry.from_country.str.rstrip()
entry = entry.loc[
~(entry.from_country.isin(countries) & entry.to_country.isin(countries)) & # only take non-EU entries
~entry.name.str.contains("Tegelen") | # malformed datapoint
(entry.from_country == "NO") # entries from NO to GB
]
# production sites inside the model scope
prod = read_scigrid_gas(prod_fn)
prod = prod.loc[
(prod.geometry.y > 35) &
(prod.geometry.x < 30) &
(prod.country_code != "DE")
]
conversion_factor = 437.5 # MCM/day to MWh/h
lng["p_nom"] = lng["max_cap_store2pipe_M_m3_per_d"] * conversion_factor
entry["p_nom"] = entry["max_cap_from_to_M_m3_per_d"] * conversion_factor
prod["p_nom"] = prod["max_supply_M_m3_per_d"] * conversion_factor
lng["type"] = "lng"
entry["type"] = "pipeline"
prod["type"] = "production"
sel = ["geometry", "p_nom", "type"]
return pd.concat([prod[sel], entry[sel], lng[sel]], ignore_index=True)
if __name__ == "__main__":
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake(
'build_gas_import_locations',
simpl='',
clusters='37',
)
logging.basicConfig(level=snakemake.config['logging_level'])
onshore_regions = gpd.read_file(snakemake.input.regions_onshore).set_index('name')
countries = onshore_regions.index.str[:2].unique().str.replace("GB", "UK")
gas_input_locations = build_gas_input_locations(
snakemake.input.lng,
snakemake.input.planned_lng,
snakemake.input.entry,
snakemake.input.production,
countries
)
# recommended to use projected CRS rather than geographic CRS
gas_input_nodes = gpd.sjoin_nearest(
gas_input_locations.to_crs(3035),
onshore_regions.to_crs(3035),
how='left'
)
gas_input_nodes.rename(columns={"index_right": "bus"}, inplace=True)
gas_input_nodes.to_file(snakemake.output.gas_input_nodes, driver='GeoJSON')
gas_input_nodes_s = gas_input_nodes.groupby(["bus", "type"])["p_nom"].sum().unstack()
gas_input_nodes_s.columns.name = "p_nom"
gas_input_nodes_s.to_csv(snakemake.output.gas_input_nodes_simplified)