pypsa-eur/scripts/build_egs_potentials.py
2023-09-26 00:06:44 +01:00

144 lines
4.5 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2023 @LukasFranken, The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
This rule extracts potential and cost for electricity generation through
enhanced geothermal systems.
For this, we use data from "From hot rock to useful energy..." by Aghahosseini, Breyer (2020)
'https://www.sciencedirect.com/science/article/pii/S0306261920312551'
Note that we input data used here is not the same as in the paper, but was passed on by the authors.
The data provides a lon-lat gridded map of Europe (1° x 1°), with each grid cell assigned
a heat potential (in GWh) and a cost (in EUR/MW).
This scripts overlays that map with the network's regions, and builds a csv with CAPEX, OPEX and p_nom_max
"""
import logging
logger = logging.getLogger(__name__)
import json
import geopandas as gpd
import pandas as pd
from shapely.geometry import Polygon
def prepare_egs_data(egs_file):
with open(egs_file) as f:
jsondata = json.load(f)
def point_to_square(p, lon_extent=1.0, lat_extent=1.0):
try:
x, y = p.coords.xy[0][0], p.coords.xy[1][0]
except IndexError:
return p
return Polygon(
[
[x - lon_extent / 2, y - lat_extent / 2],
[x - lon_extent / 2, y + lat_extent / 2],
[x + lon_extent / 2, y + lat_extent / 2],
[x + lon_extent / 2, y - lat_extent / 2],
]
)
years = [2015, 2020, 2025, 2030, 2035, 2040, 2045, 2050]
lcoes = ["LCOE50", "LCOE100", "LCOE150"]
egs_data = dict()
for year in years:
df = pd.DataFrame(columns=["Lon", "Lat", "CAPEX", "HeatSust", "PowerSust"])
for lcoe in lcoes:
for country_data in jsondata[lcoe]:
try:
country_df = pd.DataFrame(
columns=df.columns,
index=range(len(country_data[0][years.index(year)]["Lon"])),
)
except TypeError:
country_df = pd.DataFrame(columns=df.columns, index=range(0))
for col in df.columns:
country_df[col] = country_data[0][years.index(year)][col]
if country_df.dropna().empty:
continue
elif df.empty:
df = country_df.dropna()
else:
df = pd.concat((df, country_df.dropna()), ignore_index=True)
gdf = gpd.GeoDataFrame(
df.drop(columns=["Lon", "Lat"]), geometry=gpd.points_from_xy(df.Lon, df.Lat)
).reset_index(drop=True)
gdf["geometry"] = gdf.geometry.apply(lambda geom: point_to_square(geom))
egs_data[year] = gdf
return egs_data
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_egs_potentials",
simpl="",
clusters=37,
)
sustainability_factor = 0.0025
# the share of heat that is replenished from the earth's core.
# we are not constraining ourselves to the sustainable share, but
# inversely apply it to our underlying data, which refers to the
# sustainable heat.
config = snakemake.config
egs_data = prepare_egs_data(snakemake.input.egs_cost)
if config["sector"]["enhanced_geothermal_optimism"]:
egs_data = egs_data[(year := config["costs"]["year"])]
logger.info(
f"EGS optimism! Building EGS potentials with costs estimated for {year}."
)
else:
egs_data = egs_data[(default_year := 2020)]
logger.info(
f"No EGS optimism! Building EGS potentials with {default_year} costs."
)
egs_data = egs_data.loc[egs_data["PowerSust"] > 0].reset_index(drop=True)
egs_shapes = egs_data.geometry
network_shapes = (
gpd.read_file(snakemake.input.shapes)
.set_index("name", drop=True)
.set_crs(epsg=4326)
)
overlap_matrix = pd.DataFrame(
index=network_shapes.index,
columns=egs_data.index,
)
for name, polygon in network_shapes.geometry.items():
overlap_matrix.loc[name] = (
egs_shapes.intersection(polygon).area
) / egs_shapes.area
overlap_matrix.to_csv(snakemake.output["egs_overlap"])
# consider not only replenished heat
egs_data["p_nom_max"] = egs_data["PowerSust"] / sustainability_factor
egs_data[["p_nom_max", "CAPEX"]].to_csv(snakemake.output["egs_potentials"])