pypsa-eur/scripts/build_renewable_profiles.py
2019-10-03 12:32:49 +02:00

353 lines
15 KiB
Python

#!/usr/bin/env python
"""Calculates for each network node the
(i) installable capacity (based on land-use), (ii) the available generation time
series (based on weather data), and (iii) the average distance from the node for
onshore wind, AC-connected offshore wind, DC-connected offshore wind and solar
PV generators. In addition for offshore wind it calculates the fraction of the
grid connection which is under water.
.. note:: Hydroelectric profiles are built in script :mod:`build_hydro_profiles`.
Relevant settings
-----------------
.. code:: yaml
snapshots:
atlite:
nprocesses:
renewable:
{technology}:
cutout:
corine:
grid_codes:
distance:
natura:
max_depth:
max_shore_distance:
min_shore_distance:
capacity_per_sqkm:
correction_factor:
potential:
min_p_max_pu:
clip_p_max_pu:
resource:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`snapshots_cf`, :ref:`atlite_cf`, :ref:`renewable_cf`
Inputs
------
- ``data/bundle/corine/g250_clc06_V18_5.tif``: `CORINE Land Cover (CLC) <https://land.copernicus.eu/pan-european/corine-land-cover>`_ inventory on `44 classes <https://wiki.openstreetmap.org/wiki/Corine_Land_Cover#Tagging>`_ of land use (e.g. forests, arable land, industrial, urban areas).
.. image:: ../img/corine.png
:scale: 33 %
- ``data/bundle/GEBCO_2014_2D.nc``: A `bathymetric <https://en.wikipedia.org/wiki/Bathymetry>`_ data set with a global terrain model for ocean and land at 15 arc-second intervals by the `General Bathymetric Chart of the Oceans (GEBCO) <https://www.gebco.net/data_and_products/gridded_bathymetry_data/>`_.
.. image:: ../img/gebco_2019_grid_image.jpg
:scale: 50 %
**Source:** `GEBCO <https://www.gebco.net/data_and_products/images/gebco_2019_grid_image.jpg>`_
- ``resources/natura.tiff``: confer :ref:`natura`
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
- ``resources/regions_onshore.geojson``: (if not offshore wind), confer :ref:`busregions`
- ``resources/regions_offshore.geojson``: (if offshore wind), :ref:`busregions`
- ``"cutouts/" + config["renewable"][{technology}]['cutout']``: :ref:`cutout`
- ``networks/base.nc``: :ref:`base`
Outputs
-------
- ``resources/profile_{technology}.nc`` with the following structure
=================== ========== =========================================================
Field Dimensions Description
=================== ========== =========================================================
profile bus, time the per unit hourly availability factors for each node
------------------- ---------- ---------------------------------------------------------
weight bus sum of the layout weighting for each node
------------------- ---------- ---------------------------------------------------------
p_nom_max bus maximal installable capacity at the node (in MW)
------------------- ---------- ---------------------------------------------------------
potential y, x layout of generator units at cutout grid cells inside the
Voronoi cell (maximal installable capacity at each grid
cell multiplied by capacity factor)
------------------- ---------- ---------------------------------------------------------
average_distance bus average distance of units in the Voronoi cell to the
grid node (in km)
------------------- ---------- ---------------------------------------------------------
underwater_fraction bus fraction of the average connection distance which is
under water (only for offshore)
=================== ========== =========================================================
- **profile**
.. image:: ../img/profile_ts.png
:scale: 33 %
- **p_nom_max**
.. image:: ../img/p_nom_max_hist.png
:scale: 33 %
- **potential**
.. image:: ../img/potential_heatmap.png
:scale: 33 %
- **average_distance**
.. image:: ../img/distance_hist.png
:scale: 33 %
- **underwater_fraction**
.. image:: ../img/underwater_hist.png
:scale: 33 %
Description
-----------
This script functions at two main spatial resolutions: the resolution of the
network nodes and their `Voronoi cells
<https://en.wikipedia.org/wiki/Voronoi_diagram>`_, and the resolution of the
cutout grid cells for the weather data. Typically the weather data grid is
finer than the network nodes, so we have to work out the distribution of
generators across the grid cells within each Voronoi cell. This is done by
taking account of a combination of the available land at each grid cell and the
capacity factor there.
First the script computes how much of the technology can be installed at each
cutout grid cell and each node using the `GLAES
<https://github.com/FZJ-IEK3-VSA/glaes>`_ library. This uses the CORINE land use data,
Natura2000 nature reserves and GEBCO bathymetry data.
To compute the layout of generators in each node's Voronoi cell, the
installable potential in each grid cell is multiplied with the capacity factor
at each grid cell. This is done since we assume more generators are installed
at cells with a higher capacity factor.
This layout is then used to compute the generation availability time series
from the weather data cutout from ``atlite``.
Two methods are available to compute the maximal installable potential for the
node (`p_nom_max`): ``simple`` and ``conservative``:
- ``simple`` adds up the installable potentials of the individual grid cells.
If the model comes close to this limit, then the time series may slightly
overestimate production since it is assumed the geographical distribution is
proportional to capacity factor.
- ``conservative`` assertains the nodal limit by increasing capacities
proportional to the layout until the limit of an individual grid cell is
reached.
"""
import matplotlib.pyplot as plt
import os
import atlite
import numpy as np
import xarray as xr
import pandas as pd
import multiprocessing as mp
import glaes as gl
import geokit as gk
from osgeo import gdal
from scipy.sparse import csr_matrix, vstack
from pypsa.geo import haversine
from vresutils import landuse as vlanduse
from vresutils.array import spdiag
import progressbar as pgb
import logging
logger = logging.getLogger(__name__)
bounds = dx = dy = config = paths = gebco = clc = natura = None
def init_globals(bounds_xXyY, n_dx, n_dy, n_config, n_paths):
# global in each process of the multiprocessing.Pool
global bounds, dx, dy, config, paths, gebco, clc, natura
bounds = gk.Extent.from_xXyY(bounds_xXyY)
dx = n_dx
dy = n_dy
config = n_config
paths = n_paths
if "max_depth" in config:
gebco = gk.raster.loadRaster(paths["gebco"])
gebco.SetProjection(gk.srs.loadSRS(4326).ExportToWkt())
clc = gk.raster.loadRaster(paths["corine"])
clc.SetProjection(gk.srs.loadSRS(3035).ExportToWkt())
natura = gk.raster.loadRaster(paths["natura"])
def downsample_to_coarse_grid(bounds, dx, dy, mask, data):
# The GDAL warp function with the 'average' resample algorithm needs a band of zero values of at least
# the size of one coarse cell around the original raster or it produces erroneous results
orig = mask.createRaster(data=data)
padded_extent = mask.extent.castTo(bounds.srs).pad(max(dx, dy)).castTo(mask.srs)
padded = padded_extent.fit((mask.pixelWidth, mask.pixelHeight)).warp(orig, mask.pixelWidth, mask.pixelHeight)
orig = None # free original raster
average = bounds.createRaster(dx, dy, dtype=gdal.GDT_Float32)
assert gdal.Warp(average, padded, resampleAlg='average') == 1, "gdal warp failed: %s" % gdal.GetLastErrorMsg()
return average
def calculate_potential(gid, save_map=None):
feature = gk.vector.extractFeature(paths["regions"], where=gid)
ec = gl.ExclusionCalculator(feature.geom)
corine = config.get("corine", {})
if isinstance(corine, list):
corine = {'grid_codes': corine}
if "grid_codes" in corine:
ec.excludeRasterType(clc, value=corine["grid_codes"], invert=True)
if corine.get("distance", 0.) > 0.:
ec.excludeRasterType(clc, value=corine["distance_grid_codes"], buffer=corine["distance"])
if config.get("natura", False):
ec.excludeRasterType(natura, value=1)
if "max_depth" in config:
ec.excludeRasterType(gebco, (None, -config["max_depth"]))
# TODO compute a distance field as a raster beforehand
if 'max_shore_distance' in config:
ec.excludeVectorType(paths["country_shapes"], buffer=config['max_shore_distance'], invert=True)
if 'min_shore_distance' in config:
ec.excludeVectorType(paths["country_shapes"], buffer=config['min_shore_distance'])
if save_map is not None:
ec.draw()
plt.savefig(save_map, transparent=True)
plt.close()
availability = downsample_to_coarse_grid(bounds, dx, dy, ec.region, np.where(ec.region.mask, ec._availability, 0))
return csr_matrix(gk.raster.extractMatrix(availability).flatten() / 100.)
if __name__ == '__main__':
pgb.streams.wrap_stderr()
logging.basicConfig(level=snakemake.config['logging_level'])
config = snakemake.config['renewable'][snakemake.wildcards.technology]
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
cutout = atlite.Cutout(config['cutout'],
cutout_dir=os.path.dirname(snakemake.input.cutout),
**params)
minx, maxx, miny, maxy = cutout.extent
dx = (maxx - minx) / (cutout.shape[1] - 1)
dy = (maxy - miny) / (cutout.shape[0] - 1)
bounds_xXyY = (minx - dx/2., maxx + dx/2., miny - dy/2., maxy + dy/2.)
# Use GLAES to compute available potentials and the transition matrix
paths = dict(snakemake.input)
# Use the following for testing the default windows method on linux
# mp.set_start_method('spawn')
with mp.Pool(initializer=init_globals, initargs=(bounds_xXyY, dx, dy, config, paths),
maxtasksperchild=20, processes=snakemake.config['atlite'].get('nprocesses', 2)) as pool:
regions = gk.vector.extractFeatures(paths["regions"], onlyAttr=True)
buses = pd.Index(regions['name'], name="bus")
widgets = [
pgb.widgets.Percentage(),
' ', pgb.widgets.SimpleProgress(format='(%s)' % pgb.widgets.SimpleProgress.DEFAULT_FORMAT),
' ', pgb.widgets.Bar(),
' ', pgb.widgets.Timer(),
' ', pgb.widgets.ETA()
]
progressbar = pgb.ProgressBar(prefix='Compute GIS potentials: ', widgets=widgets, max_value=len(regions))
matrix = vstack(list(progressbar(pool.imap(calculate_potential, regions.index))))
potentials = config['capacity_per_sqkm'] * vlanduse._cutout_cell_areas(cutout)
potmatrix = matrix * spdiag(potentials.ravel())
potmatrix.data[potmatrix.data < 1.] = 0 # ignore weather cells where only less than 1 MW can be installed
potmatrix.eliminate_zeros()
resource = config['resource']
func = getattr(cutout, resource.pop('method'))
correction_factor = config.get('correction_factor', 1.)
if correction_factor != 1.:
logger.warning('correction_factor is set as {}'.format(correction_factor))
capacity_factor = correction_factor * func(capacity_factor=True, show_progress='Compute capacity factors: ', **resource).stack(spatial=('y', 'x')).values
layoutmatrix = potmatrix * spdiag(capacity_factor)
profile, capacities = func(matrix=layoutmatrix, index=buses, per_unit=True,
return_capacity=True, show_progress='Compute profiles: ',
**resource)
p_nom_max_meth = config.get('potential', 'conservative')
if p_nom_max_meth == 'simple':
p_nom_max = xr.DataArray(np.asarray(potmatrix.sum(axis=1)).squeeze(), [buses])
elif p_nom_max_meth == 'conservative':
# p_nom_max has to be calculated for each bus and is the minimal ratio
# (min over all weather grid cells of the bus region) between the available
# potential (potmatrix) and the used normalised layout (layoutmatrix /
# capacities), so we would like to calculate i.e. potmatrix / (layoutmatrix /
# capacities). Since layoutmatrix = potmatrix * capacity_factor, this
# corresponds to capacities/max(capacity factor in the voronoi cell)
p_nom_max = xr.DataArray([1./np.max(capacity_factor[inds]) if len(inds) else 0.
for inds in np.split(potmatrix.indices, potmatrix.indptr[1:-1])], [buses]) * capacities
else:
raise AssertionError('Config key `potential` should be one of "simple" (default) or "conservative",'
' not "{}"'.format(p_nom_max_meth))
layout = xr.DataArray(np.asarray(potmatrix.sum(axis=0)).reshape(cutout.shape),
[cutout.meta.indexes[ax] for ax in ['y', 'x']])
# Determine weighted average distance from substation
cell_coords = cutout.grid_coordinates()
average_distance = []
for i in regions.index:
row = layoutmatrix[i]
distances = haversine(regions.loc[i, ['x', 'y']], cell_coords[row.indices])[0]
average_distance.append((distances * (row.data / row.data.sum())).sum())
average_distance = xr.DataArray(average_distance, [buses])
ds = xr.merge([(correction_factor * profile).rename('profile'),
capacities.rename('weight'),
p_nom_max.rename('p_nom_max'),
layout.rename('potential'),
average_distance.rename('average_distance')])
if snakemake.wildcards.technology.startswith("offwind"):
import geopandas as gpd
from shapely.geometry import LineString
offshore_shape = gpd.read_file(snakemake.input.offshore_shapes).unary_union
underwater_fraction = []
for i in regions.index:
row = layoutmatrix[i]
centre_of_mass = (cell_coords[row.indices] * (row.data / row.data.sum())[:,np.newaxis]).sum(axis=0)
line = LineString([centre_of_mass, regions.loc[i, ['x', 'y']]])
underwater_fraction.append(line.intersection(offshore_shape).length / line.length)
ds['underwater_fraction'] = xr.DataArray(underwater_fraction, [buses])
# select only buses with some capacity and minimal capacity factor
ds = ds.sel(bus=((ds['profile'].mean('time') > config.get('min_p_max_pu', 0.)) &
(ds['p_nom_max'] > config.get('min_p_nom_max', 0.))))
if 'clip_p_max_pu' in config:
ds['profile'].values[ds['profile'].values < config['clip_p_max_pu']] = 0.
ds.to_netcdf(snakemake.output.profile)