pypsa-eur/scripts/solve_network.py
Fabian Neumann 013b705ee4
Clustering: build renewable profiles and add all assets after clustering (#1201)
* Cluster first: build renewable profiles and add all assets after clustering

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* correction: pass landfall_lengths through functions

* assign landfall_lenghts correctly

* remove parameter add_land_use_constraint

* fix network_dict

* calculate distance to shoreline, remove underwater_fraction

* adjust simplification parameter to exclude Crete from offshore wind connections

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove unused geth2015 hydro capacities

* removing remaining traces of {simpl} wildcard

* add release notes and update workflow graphics

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lisazeyen <lisa.zeyen@web.de>
2024-09-13 15:37:01 +02:00

1107 lines
38 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Solves optimal operation and capacity for a network with the option to
iteratively optimize while updating line reactances.
This script is used for optimizing the electrical network as well as the
sector coupled network.
Description
-----------
Total annual system costs are minimised with PyPSA. The full formulation of the
linear optimal power flow (plus investment planning
is provided in the
`documentation of PyPSA <https://pypsa.readthedocs.io/en/latest/optimal_power_flow.html#linear-optimal-power-flow>`_.
The optimization is based on the :func:`network.optimize` function.
Additionally, some extra constraints specified in :mod:`solve_network` are added.
.. note::
The rules ``solve_elec_networks`` and ``solve_sector_networks`` run
the workflow for all scenarios in the configuration file (``scenario:``)
based on the rule :mod:`solve_network`.
"""
import importlib
import logging
import os
import re
import sys
import numpy as np
import pandas as pd
import pypsa
import xarray as xr
import yaml
from _benchmark import memory_logger
from _helpers import (
configure_logging,
set_scenario_config,
update_config_from_wildcards,
)
from prepare_sector_network import get
from pypsa.descriptors import get_activity_mask
from pypsa.descriptors import get_switchable_as_dense as get_as_dense
logger = logging.getLogger(__name__)
pypsa.pf.logger.setLevel(logging.WARNING)
def add_land_use_constraint_perfect(n):
"""
Add global constraints for tech capacity limit.
"""
logger.info("Add land-use constraint for perfect foresight")
def compress_series(s):
def process_group(group):
if group.nunique() == 1:
return pd.Series(group.iloc[0], index=[None])
else:
return group
return s.groupby(level=[0, 1]).apply(process_group)
def new_index_name(t):
# Convert all elements to string and filter out None values
parts = [str(x) for x in t if x is not None]
# Join with space, but use a dash for the last item if not None
return " ".join(parts[:2]) + (f"-{parts[-1]}" if len(parts) > 2 else "")
def check_p_min_p_max(p_nom_max):
p_nom_min = n.generators[ext_i].groupby(grouper).sum().p_nom_min
p_nom_min = p_nom_min.reindex(p_nom_max.index)
check = (
p_nom_min.groupby(level=[0, 1]).sum()
> p_nom_max.groupby(level=[0, 1]).min()
)
if check.sum():
logger.warning(
f"summed p_min_pu values at node larger than technical potential {check[check].index}"
)
grouper = [n.generators.carrier, n.generators.bus, n.generators.build_year]
ext_i = n.generators.p_nom_extendable
# get technical limit per node and investment period
p_nom_max = n.generators[ext_i].groupby(grouper).min().p_nom_max
# drop carriers without tech limit
p_nom_max = p_nom_max[~p_nom_max.isin([np.inf, np.nan])]
# carrier
carriers = p_nom_max.index.get_level_values(0).unique()
gen_i = n.generators[(n.generators.carrier.isin(carriers)) & (ext_i)].index
n.generators.loc[gen_i, "p_nom_min"] = 0
# check minimum capacities
check_p_min_p_max(p_nom_max)
# drop multi entries in case p_nom_max stays constant in different periods
# p_nom_max = compress_series(p_nom_max)
# adjust name to fit syntax of nominal constraint per bus
df = p_nom_max.reset_index()
df["name"] = df.apply(
lambda row: f"nom_max_{row['carrier']}"
+ (f"_{row['build_year']}" if row["build_year"] is not None else ""),
axis=1,
)
for name in df.name.unique():
df_carrier = df[df.name == name]
bus = df_carrier.bus
n.buses.loc[bus, name] = df_carrier.p_nom_max.values
return n
def add_land_use_constraint(n):
# warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
for carrier in [
"solar",
"solar rooftop",
"solar-hsat",
"onwind",
"offwind-ac",
"offwind-dc",
"offwind-float",
]:
ext_i = (n.generators.carrier == carrier) & ~n.generators.p_nom_extendable
existing = (
n.generators.loc[ext_i, "p_nom"]
.groupby(n.generators.bus.map(n.buses.location))
.sum()
)
existing.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons
n.generators.loc[existing.index, "p_nom_max"] -= existing
# check if existing capacities are larger than technical potential
existing_large = n.generators[
n.generators["p_nom_min"] > n.generators["p_nom_max"]
].index
if len(existing_large):
logger.warning(
f"Existing capacities larger than technical potential for {existing_large},\
adjust technical potential to existing capacities"
)
n.generators.loc[existing_large, "p_nom_max"] = n.generators.loc[
existing_large, "p_nom_min"
]
n.generators["p_nom_max"] = n.generators["p_nom_max"].clip(lower=0)
def add_solar_potential_constraints(n, config):
"""
Add constraint to make sure the sum capacity of all solar technologies (fixed, tracking, ets. ) is below the region potential.
Example:
ES1 0: total solar potential is 10 GW, meaning:
solar potential : 10 GW
solar-hsat potential : 8 GW (solar with single axis tracking is assumed to have higher land use)
The constraint ensures that:
solar_p_nom + solar_hsat_p_nom * 1.13 <= 10 GW
"""
land_use_factors = {
"solar-hsat": config["renewable"]["solar"]["capacity_per_sqkm"]
/ config["renewable"]["solar-hsat"]["capacity_per_sqkm"],
}
rename = {"Generator-ext": "Generator"}
solar_carriers = ["solar", "solar-hsat"]
solar = n.generators[
n.generators.carrier.isin(solar_carriers) & n.generators.p_nom_extendable
].index
solar_today = n.generators[
(n.generators.carrier == "solar") & (n.generators.p_nom_extendable)
].index
solar_hsat = n.generators[(n.generators.carrier == "solar-hsat")].index
if solar.empty:
return
land_use = pd.DataFrame(1, index=solar, columns=["land_use_factor"])
for carrier, factor in land_use_factors.items():
land_use = land_use.apply(
lambda x: (x * factor) if carrier in x.name else x, axis=1
)
location = pd.Series(n.buses.index, index=n.buses.index)
ggrouper = n.generators.loc[solar].bus
rhs = (
n.generators.loc[solar_today, "p_nom_max"]
.groupby(n.generators.loc[solar_today].bus.map(location))
.sum()
- n.generators.loc[solar_hsat, "p_nom_opt"]
.groupby(n.generators.loc[solar_hsat].bus.map(location))
.sum()
* land_use_factors["solar-hsat"]
).clip(lower=0)
lhs = (
(n.model["Generator-p_nom"].rename(rename).loc[solar] * land_use.squeeze())
.groupby(ggrouper)
.sum()
)
logger.info("Adding solar potential constraint.")
n.model.add_constraints(lhs <= rhs, name="solar_potential")
def add_co2_sequestration_limit(n, limit_dict):
"""
Add a global constraint on the amount of Mt CO2 that can be sequestered.
"""
if not n.investment_periods.empty:
periods = n.investment_periods
limit = pd.Series(
{
f"co2_sequestration_limit-{period}": limit_dict.get(period, 200)
for period in periods
}
)
names = limit.index
else:
limit = get(limit_dict, int(snakemake.wildcards.planning_horizons))
periods = [np.nan]
names = pd.Index(["co2_sequestration_limit"])
n.madd(
"GlobalConstraint",
names,
sense=">=",
constant=-limit * 1e6,
type="operational_limit",
carrier_attribute="co2 sequestered",
investment_period=periods,
)
def add_carbon_constraint(n, snapshots):
glcs = n.global_constraints.query('type == "co2_atmosphere"')
if glcs.empty:
return
for name, glc in glcs.iterrows():
carattr = glc.carrier_attribute
emissions = n.carriers.query(f"{carattr} != 0")[carattr]
if emissions.empty:
continue
# stores
bus_carrier = n.stores.bus.map(n.buses.carrier)
stores = n.stores[bus_carrier.isin(emissions.index) & ~n.stores.e_cyclic]
if not stores.empty:
last = n.snapshot_weightings.reset_index().groupby("period").last()
last_i = last.set_index([last.index, last.timestep]).index
final_e = n.model["Store-e"].loc[last_i, stores.index]
time_valid = int(glc.loc["investment_period"])
time_i = pd.IndexSlice[time_valid, :]
lhs = final_e.loc[time_i, :] - final_e.shift(snapshot=1).loc[time_i, :]
rhs = glc.constant
n.model.add_constraints(lhs <= rhs, name=f"GlobalConstraint-{name}")
def add_carbon_budget_constraint(n, snapshots):
glcs = n.global_constraints.query('type == "Co2Budget"')
if glcs.empty:
return
for name, glc in glcs.iterrows():
carattr = glc.carrier_attribute
emissions = n.carriers.query(f"{carattr} != 0")[carattr]
if emissions.empty:
continue
# stores
bus_carrier = n.stores.bus.map(n.buses.carrier)
stores = n.stores[bus_carrier.isin(emissions.index) & ~n.stores.e_cyclic]
if not stores.empty:
last = n.snapshot_weightings.reset_index().groupby("period").last()
last_i = last.set_index([last.index, last.timestep]).index
final_e = n.model["Store-e"].loc[last_i, stores.index]
time_valid = int(glc.loc["investment_period"])
time_i = pd.IndexSlice[time_valid, :]
weighting = n.investment_period_weightings.loc[time_valid, "years"]
lhs = final_e.loc[time_i, :] * weighting
rhs = glc.constant
n.model.add_constraints(lhs <= rhs, name=f"GlobalConstraint-{name}")
def add_max_growth(n):
"""
Add maximum growth rates for different carriers.
"""
opts = snakemake.params["sector"]["limit_max_growth"]
# take maximum yearly difference between investment periods since historic growth is per year
factor = n.investment_period_weightings.years.max() * opts["factor"]
for carrier in opts["max_growth"].keys():
max_per_period = opts["max_growth"][carrier] * factor
logger.info(
f"set maximum growth rate per investment period of {carrier} to {max_per_period} GW."
)
n.carriers.loc[carrier, "max_growth"] = max_per_period * 1e3
for carrier in opts["max_relative_growth"].keys():
max_r_per_period = opts["max_relative_growth"][carrier]
logger.info(
f"set maximum relative growth per investment period of {carrier} to {max_r_per_period}."
)
n.carriers.loc[carrier, "max_relative_growth"] = max_r_per_period
return n
def add_retrofit_gas_boiler_constraint(n, snapshots):
"""
Allow retrofitting of existing gas boilers to H2 boilers.
"""
c = "Link"
logger.info("Add constraint for retrofitting gas boilers to H2 boilers.")
# existing gas boilers
mask = n.links.carrier.str.contains("gas boiler") & ~n.links.p_nom_extendable
gas_i = n.links[mask].index
mask = n.links.carrier.str.contains("retrofitted H2 boiler")
h2_i = n.links[mask].index
n.links.loc[gas_i, "p_nom_extendable"] = True
p_nom = n.links.loc[gas_i, "p_nom"]
n.links.loc[gas_i, "p_nom"] = 0
# heat profile
cols = n.loads_t.p_set.columns[
n.loads_t.p_set.columns.str.contains("heat")
& ~n.loads_t.p_set.columns.str.contains("industry")
& ~n.loads_t.p_set.columns.str.contains("agriculture")
]
profile = n.loads_t.p_set[cols].div(
n.loads_t.p_set[cols].groupby(level=0).max(), level=0
)
# to deal if max value is zero
profile.fillna(0, inplace=True)
profile.rename(columns=n.loads.bus.to_dict(), inplace=True)
profile = profile.reindex(columns=n.links.loc[gas_i, "bus1"])
profile.columns = gas_i
rhs = profile.mul(p_nom)
dispatch = n.model["Link-p"]
active = get_activity_mask(n, c, snapshots, gas_i)
rhs = rhs[active]
p_gas = dispatch.sel(Link=gas_i)
p_h2 = dispatch.sel(Link=h2_i)
lhs = p_gas + p_h2
n.model.add_constraints(lhs == rhs, name="gas_retrofit")
def prepare_network(
n,
solve_opts=None,
config=None,
foresight=None,
planning_horizons=None,
co2_sequestration_potential=None,
):
if "clip_p_max_pu" in solve_opts:
for df in (
n.generators_t.p_max_pu,
n.generators_t.p_min_pu,
n.links_t.p_max_pu,
n.links_t.p_min_pu,
n.storage_units_t.inflow,
):
df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True)
if load_shedding := solve_opts.get("load_shedding"):
# intersect between macroeconomic and surveybased willingness to pay
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
# TODO: retrieve color and nice name from config
n.add("Carrier", "load", color="#dd2e23", nice_name="Load shedding")
buses_i = n.buses.index
if not np.isscalar(load_shedding):
# TODO: do not scale via sign attribute (use Eur/MWh instead of Eur/kWh)
load_shedding = 1e2 # Eur/kWh
n.madd(
"Generator",
buses_i,
" load",
bus=buses_i,
carrier="load",
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
marginal_cost=load_shedding, # Eur/kWh
p_nom=1e9, # kW
)
if solve_opts.get("curtailment_mode"):
n.add("Carrier", "curtailment", color="#fedfed", nice_name="Curtailment")
n.generators_t.p_min_pu = n.generators_t.p_max_pu
buses_i = n.buses.query("carrier == 'AC'").index
n.madd(
"Generator",
buses_i,
suffix=" curtailment",
bus=buses_i,
p_min_pu=-1,
p_max_pu=0,
marginal_cost=-0.1,
carrier="curtailment",
p_nom=1e6,
)
if solve_opts.get("noisy_costs"):
for t in n.iterate_components():
# if 'capital_cost' in t.df:
# t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5)
if "marginal_cost" in t.df:
t.df["marginal_cost"] += 1e-2 + 2e-3 * (
np.random.random(len(t.df)) - 0.5
)
for t in n.iterate_components(["Line", "Link"]):
t.df["capital_cost"] += (
1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5)
) * t.df["length"]
if solve_opts.get("nhours"):
nhours = solve_opts["nhours"]
n.set_snapshots(n.snapshots[:nhours])
n.snapshot_weightings[:] = 8760.0 / nhours
if foresight == "myopic":
add_land_use_constraint(n)
if foresight == "perfect":
n = add_land_use_constraint_perfect(n)
if snakemake.params["sector"]["limit_max_growth"]["enable"]:
n = add_max_growth(n)
if n.stores.carrier.eq("co2 sequestered").any():
limit_dict = co2_sequestration_potential
add_co2_sequestration_limit(n, limit_dict=limit_dict)
return n
def add_CCL_constraints(n, config):
"""
Add CCL (country & carrier limit) constraint to the network.
Add minimum and maximum levels of generator nominal capacity per carrier
for individual countries. Opts and path for agg_p_nom_minmax.csv must be defined
in config.yaml. Default file is available at data/agg_p_nom_minmax.csv.
Parameters
----------
n : pypsa.Network
config : dict
Example
-------
scenario:
opts: [Co2L-CCL-24h]
electricity:
agg_p_nom_limits: data/agg_p_nom_minmax.csv
"""
agg_p_nom_minmax = pd.read_csv(
config["solving"]["agg_p_nom_limits"]["file"], index_col=[0, 1], header=[0, 1]
)[snakemake.wildcards.planning_horizons]
logger.info("Adding generation capacity constraints per carrier and country")
p_nom = n.model["Generator-p_nom"]
gens = n.generators.query("p_nom_extendable").rename_axis(index="Generator-ext")
if config["solving"]["agg_p_nom_limits"]["agg_offwind"]:
rename_offwind = {
"offwind-ac": "offwind-all",
"offwind-dc": "offwind-all",
"offwind": "offwind-all",
}
gens = gens.replace(rename_offwind)
grouper = pd.concat([gens.bus.map(n.buses.country), gens.carrier], axis=1)
lhs = p_nom.groupby(grouper).sum().rename(bus="country")
if config["solving"]["agg_p_nom_limits"]["include_existing"]:
gens_cst = n.generators.query("~p_nom_extendable").rename_axis(
index="Generator-cst"
)
gens_cst = gens_cst[
(gens_cst["build_year"] + gens_cst["lifetime"])
>= int(snakemake.wildcards.planning_horizons)
]
if config["solving"]["agg_p_nom_limits"]["agg_offwind"]:
gens_cst = gens_cst.replace(rename_offwind)
rhs_cst = (
pd.concat(
[gens_cst.bus.map(n.buses.country), gens_cst[["carrier", "p_nom"]]],
axis=1,
)
.groupby(["bus", "carrier"])
.sum()
)
rhs_cst.index = rhs_cst.index.rename({"bus": "country"})
rhs_min = agg_p_nom_minmax["min"].dropna()
idx_min = rhs_min.index.join(rhs_cst.index, how="left")
rhs_min = rhs_min.reindex(idx_min).fillna(0)
rhs = (rhs_min - rhs_cst.reindex(idx_min).fillna(0).p_nom).dropna()
rhs[rhs < 0] = 0
minimum = xr.DataArray(rhs).rename(dim_0="group")
else:
minimum = xr.DataArray(agg_p_nom_minmax["min"].dropna()).rename(dim_0="group")
index = minimum.indexes["group"].intersection(lhs.indexes["group"])
if not index.empty:
n.model.add_constraints(
lhs.sel(group=index) >= minimum.loc[index], name="agg_p_nom_min"
)
if config["solving"]["agg_p_nom_limits"]["include_existing"]:
rhs_max = agg_p_nom_minmax["max"].dropna()
idx_max = rhs_max.index.join(rhs_cst.index, how="left")
rhs_max = rhs_max.reindex(idx_max).fillna(0)
rhs = (rhs_max - rhs_cst.reindex(idx_max).fillna(0).p_nom).dropna()
rhs[rhs < 0] = 0
maximum = xr.DataArray(rhs).rename(dim_0="group")
else:
maximum = xr.DataArray(agg_p_nom_minmax["max"].dropna()).rename(dim_0="group")
index = maximum.indexes["group"].intersection(lhs.indexes["group"])
if not index.empty:
n.model.add_constraints(
lhs.sel(group=index) <= maximum.loc[index], name="agg_p_nom_max"
)
def add_EQ_constraints(n, o, scaling=1e-1):
"""
Add equity constraints to the network.
Currently this is only implemented for the electricity sector only.
Opts must be specified in the config.yaml.
Parameters
----------
n : pypsa.Network
o : str
Example
-------
scenario:
opts: [Co2L-EQ0.7-24h]
Require each country or node to on average produce a minimal share
of its total electricity consumption itself. Example: EQ0.7c demands each country
to produce on average at least 70% of its consumption; EQ0.7 demands
each node to produce on average at least 70% of its consumption.
"""
# TODO: Generalize to cover myopic and other sectors?
float_regex = "[0-9]*\.?[0-9]+"
level = float(re.findall(float_regex, o)[0])
if o[-1] == "c":
ggrouper = n.generators.bus.map(n.buses.country)
lgrouper = n.loads.bus.map(n.buses.country)
sgrouper = n.storage_units.bus.map(n.buses.country)
else:
ggrouper = n.generators.bus
lgrouper = n.loads.bus
sgrouper = n.storage_units.bus
load = (
n.snapshot_weightings.generators
@ n.loads_t.p_set.groupby(lgrouper, axis=1).sum()
)
inflow = (
n.snapshot_weightings.stores
@ n.storage_units_t.inflow.groupby(sgrouper, axis=1).sum()
)
inflow = inflow.reindex(load.index).fillna(0.0)
rhs = scaling * (level * load - inflow)
p = n.model["Generator-p"]
lhs_gen = (
(p * (n.snapshot_weightings.generators * scaling))
.groupby(ggrouper.to_xarray())
.sum()
.sum("snapshot")
)
# TODO: double check that this is really needed, why do have to subtract the spillage
if not n.storage_units_t.inflow.empty:
spillage = n.model["StorageUnit-spill"]
lhs_spill = (
(spillage * (-n.snapshot_weightings.stores * scaling))
.groupby(sgrouper.to_xarray())
.sum()
.sum("snapshot")
)
lhs = lhs_gen + lhs_spill
else:
lhs = lhs_gen
n.model.add_constraints(lhs >= rhs, name="equity_min")
def add_BAU_constraints(n, config):
"""
Add a per-carrier minimal overall capacity.
BAU_mincapacities and opts must be adjusted in the config.yaml.
Parameters
----------
n : pypsa.Network
config : dict
Example
-------
scenario:
opts: [Co2L-BAU-24h]
electricity:
BAU_mincapacities:
solar: 0
onwind: 0
OCGT: 100000
offwind-ac: 0
offwind-dc: 0
Which sets minimum expansion across all nodes e.g. in Europe to 100GW.
OCGT bus 1 + OCGT bus 2 + ... > 100000
"""
mincaps = pd.Series(config["electricity"]["BAU_mincapacities"])
p_nom = n.model["Generator-p_nom"]
ext_i = n.generators.query("p_nom_extendable")
ext_carrier_i = xr.DataArray(ext_i.carrier.rename_axis("Generator-ext"))
lhs = p_nom.groupby(ext_carrier_i).sum()
rhs = mincaps[lhs.indexes["carrier"]].rename_axis("carrier")
n.model.add_constraints(lhs >= rhs, name="bau_mincaps")
# TODO: think about removing or make per country
def add_SAFE_constraints(n, config):
"""
Add a capacity reserve margin of a certain fraction above the peak demand.
Renewable generators and storage do not contribute. Ignores network.
Parameters
----------
n : pypsa.Network
config : dict
Example
-------
config.yaml requires to specify opts:
scenario:
opts: [Co2L-SAFE-24h]
electricity:
SAFE_reservemargin: 0.1
Which sets a reserve margin of 10% above the peak demand.
"""
peakdemand = n.loads_t.p_set.sum(axis=1).max()
margin = 1.0 + config["electricity"]["SAFE_reservemargin"]
reserve_margin = peakdemand * margin
conventional_carriers = config["electricity"]["conventional_carriers"] # noqa: F841
ext_gens_i = n.generators.query(
"carrier in @conventional_carriers & p_nom_extendable"
).index
p_nom = n.model["Generator-p_nom"].loc[ext_gens_i]
lhs = p_nom.sum()
exist_conv_caps = n.generators.query(
"~p_nom_extendable & carrier in @conventional_carriers"
).p_nom.sum()
rhs = reserve_margin - exist_conv_caps
n.model.add_constraints(lhs >= rhs, name="safe_mintotalcap")
def add_operational_reserve_margin(n, sns, config):
"""
Build reserve margin constraints based on the formulation given in
https://genxproject.github.io/GenX/dev/core/#Reserves.
Parameters
----------
n : pypsa.Network
sns: pd.DatetimeIndex
config : dict
Example:
--------
config.yaml requires to specify operational_reserve:
operational_reserve: # like https://genxproject.github.io/GenX/dev/core/#Reserves
activate: true
epsilon_load: 0.02 # percentage of load at each snapshot
epsilon_vres: 0.02 # percentage of VRES at each snapshot
contingency: 400000 # MW
"""
reserve_config = config["electricity"]["operational_reserve"]
EPSILON_LOAD = reserve_config["epsilon_load"]
EPSILON_VRES = reserve_config["epsilon_vres"]
CONTINGENCY = reserve_config["contingency"]
# Reserve Variables
n.model.add_variables(
0, np.inf, coords=[sns, n.generators.index], name="Generator-r"
)
reserve = n.model["Generator-r"]
summed_reserve = reserve.sum("Generator")
# Share of extendable renewable capacities
ext_i = n.generators.query("p_nom_extendable").index
vres_i = n.generators_t.p_max_pu.columns
if not ext_i.empty and not vres_i.empty:
capacity_factor = n.generators_t.p_max_pu[vres_i.intersection(ext_i)]
p_nom_vres = (
n.model["Generator-p_nom"]
.loc[vres_i.intersection(ext_i)]
.rename({"Generator-ext": "Generator"})
)
lhs = summed_reserve + (
p_nom_vres * (-EPSILON_VRES * xr.DataArray(capacity_factor))
).sum("Generator")
# Total demand per t
demand = get_as_dense(n, "Load", "p_set").sum(axis=1)
# VRES potential of non extendable generators
capacity_factor = n.generators_t.p_max_pu[vres_i.difference(ext_i)]
renewable_capacity = n.generators.p_nom[vres_i.difference(ext_i)]
potential = (capacity_factor * renewable_capacity).sum(axis=1)
# Right-hand-side
rhs = EPSILON_LOAD * demand + EPSILON_VRES * potential + CONTINGENCY
n.model.add_constraints(lhs >= rhs, name="reserve_margin")
# additional constraint that capacity is not exceeded
gen_i = n.generators.index
ext_i = n.generators.query("p_nom_extendable").index
fix_i = n.generators.query("not p_nom_extendable").index
dispatch = n.model["Generator-p"]
reserve = n.model["Generator-r"]
capacity_variable = n.model["Generator-p_nom"].rename(
{"Generator-ext": "Generator"}
)
capacity_fixed = n.generators.p_nom[fix_i]
p_max_pu = get_as_dense(n, "Generator", "p_max_pu")
lhs = dispatch + reserve - capacity_variable * xr.DataArray(p_max_pu[ext_i])
rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i, fill_value=0)
n.model.add_constraints(lhs <= rhs, name="Generator-p-reserve-upper")
def add_battery_constraints(n):
"""
Add constraint ensuring that charger = discharger, i.e.
1 * charger_size - efficiency * discharger_size = 0
"""
if not n.links.p_nom_extendable.any():
return
discharger_bool = n.links.index.str.contains("battery discharger")
charger_bool = n.links.index.str.contains("battery charger")
dischargers_ext = n.links[discharger_bool].query("p_nom_extendable").index
chargers_ext = n.links[charger_bool].query("p_nom_extendable").index
eff = n.links.efficiency[dischargers_ext].values
lhs = (
n.model["Link-p_nom"].loc[chargers_ext]
- n.model["Link-p_nom"].loc[dischargers_ext] * eff
)
n.model.add_constraints(lhs == 0, name="Link-charger_ratio")
def add_lossy_bidirectional_link_constraints(n):
if not n.links.p_nom_extendable.any() or "reversed" not in n.links.columns:
return
n.links["reversed"] = n.links.reversed.fillna(0).astype(bool)
carriers = n.links.loc[n.links.reversed, "carrier"].unique() # noqa: F841
forward_i = n.links.query(
"carrier in @carriers and ~reversed and p_nom_extendable"
).index
def get_backward_i(forward_i):
return pd.Index(
[
(
re.sub(r"-(\d{4})$", r"-reversed-\1", s)
if re.search(r"-\d{4}$", s)
else s + "-reversed"
)
for s in forward_i
]
)
backward_i = get_backward_i(forward_i)
lhs = n.model["Link-p_nom"].loc[backward_i]
rhs = n.model["Link-p_nom"].loc[forward_i]
n.model.add_constraints(lhs == rhs, name="Link-bidirectional_sync")
def add_chp_constraints(n):
electric = (
n.links.index.str.contains("urban central")
& n.links.index.str.contains("CHP")
& n.links.index.str.contains("electric")
)
heat = (
n.links.index.str.contains("urban central")
& n.links.index.str.contains("CHP")
& n.links.index.str.contains("heat")
)
electric_ext = n.links[electric].query("p_nom_extendable").index
heat_ext = n.links[heat].query("p_nom_extendable").index
electric_fix = n.links[electric].query("~p_nom_extendable").index
heat_fix = n.links[heat].query("~p_nom_extendable").index
p = n.model["Link-p"] # dimension: [time, link]
# output ratio between heat and electricity and top_iso_fuel_line for extendable
if not electric_ext.empty:
p_nom = n.model["Link-p_nom"]
lhs = (
p_nom.loc[electric_ext]
* (n.links.p_nom_ratio * n.links.efficiency)[electric_ext].values
- p_nom.loc[heat_ext] * n.links.efficiency[heat_ext].values
)
n.model.add_constraints(lhs == 0, name="chplink-fix_p_nom_ratio")
rename = {"Link-ext": "Link"}
lhs = (
p.loc[:, electric_ext]
+ p.loc[:, heat_ext]
- p_nom.rename(rename).loc[electric_ext]
)
n.model.add_constraints(lhs <= 0, name="chplink-top_iso_fuel_line_ext")
# top_iso_fuel_line for fixed
if not electric_fix.empty:
lhs = p.loc[:, electric_fix] + p.loc[:, heat_fix]
rhs = n.links.p_nom[electric_fix]
n.model.add_constraints(lhs <= rhs, name="chplink-top_iso_fuel_line_fix")
# back-pressure
if not electric.empty:
lhs = (
p.loc[:, heat] * (n.links.efficiency[heat] * n.links.c_b[electric].values)
- p.loc[:, electric] * n.links.efficiency[electric]
)
n.model.add_constraints(lhs <= rhs, name="chplink-backpressure")
def add_pipe_retrofit_constraint(n):
"""
Add constraint for retrofitting existing CH4 pipelines to H2 pipelines.
"""
if "reversed" not in n.links.columns:
n.links["reversed"] = False
gas_pipes_i = n.links.query(
"carrier == 'gas pipeline' and p_nom_extendable and ~reversed"
).index
h2_retrofitted_i = n.links.query(
"carrier == 'H2 pipeline retrofitted' and p_nom_extendable and ~reversed"
).index
if h2_retrofitted_i.empty or gas_pipes_i.empty:
return
p_nom = n.model["Link-p_nom"]
CH4_per_H2 = 1 / n.config["sector"]["H2_retrofit_capacity_per_CH4"]
lhs = p_nom.loc[gas_pipes_i] + CH4_per_H2 * p_nom.loc[h2_retrofitted_i]
rhs = n.links.p_nom[gas_pipes_i].rename_axis("Link-ext")
n.model.add_constraints(lhs == rhs, name="Link-pipe_retrofit")
def add_flexible_egs_constraint(n):
"""
Upper bounds the charging capacity of the geothermal reservoir according to
the well capacity.
"""
well_index = n.links.loc[n.links.carrier == "geothermal heat"].index
storage_index = n.storage_units.loc[
n.storage_units.carrier == "geothermal heat"
].index
p_nom_rhs = n.model["Link-p_nom"].loc[well_index]
p_nom_lhs = n.model["StorageUnit-p_nom"].loc[storage_index]
n.model.add_constraints(
p_nom_lhs <= p_nom_rhs,
name="upper_bound_charging_capacity_of_geothermal_reservoir",
)
def add_co2_atmosphere_constraint(n, snapshots):
glcs = n.global_constraints[n.global_constraints.type == "co2_atmosphere"]
if glcs.empty:
return
for name, glc in glcs.iterrows():
carattr = glc.carrier_attribute
emissions = n.carriers.query(f"{carattr} != 0")[carattr]
if emissions.empty:
continue
# stores
bus_carrier = n.stores.bus.map(n.buses.carrier)
stores = n.stores[bus_carrier.isin(emissions.index) & ~n.stores.e_cyclic]
if not stores.empty:
last_i = snapshots[-1]
lhs = n.model["Store-e"].loc[last_i, stores.index]
rhs = glc.constant
n.model.add_constraints(lhs <= rhs, name=f"GlobalConstraint-{name}")
def extra_functionality(n, snapshots):
"""
Collects supplementary constraints which will be passed to
``pypsa.optimization.optimize``.
If you want to enforce additional custom constraints, this is a good
location to add them. The arguments ``opts`` and
``snakemake.config`` are expected to be attached to the network.
"""
config = n.config
constraints = config["solving"].get("constraints", {})
if constraints["BAU"] and n.generators.p_nom_extendable.any():
add_BAU_constraints(n, config)
if constraints["SAFE"] and n.generators.p_nom_extendable.any():
add_SAFE_constraints(n, config)
if constraints["CCL"] and n.generators.p_nom_extendable.any():
add_CCL_constraints(n, config)
reserve = config["electricity"].get("operational_reserve", {})
if reserve.get("activate"):
add_operational_reserve_margin(n, snapshots, config)
if EQ_o := constraints["EQ"]:
add_EQ_constraints(n, EQ_o.replace("EQ", ""))
if {"solar-hsat", "solar"}.issubset(
config["electricity"]["renewable_carriers"]
) and {"solar-hsat", "solar"}.issubset(
config["electricity"]["extendable_carriers"]["Generator"]
):
add_solar_potential_constraints(n, config)
add_battery_constraints(n)
add_lossy_bidirectional_link_constraints(n)
add_pipe_retrofit_constraint(n)
if n._multi_invest:
add_carbon_constraint(n, snapshots)
add_carbon_budget_constraint(n, snapshots)
add_retrofit_gas_boiler_constraint(n, snapshots)
else:
add_co2_atmosphere_constraint(n, snapshots)
if config["sector"]["enhanced_geothermal"]["enable"]:
add_flexible_egs_constraint(n)
if n.params.custom_extra_functionality:
source_path = n.params.custom_extra_functionality
assert os.path.exists(source_path), f"{source_path} does not exist"
sys.path.append(os.path.dirname(source_path))
module_name = os.path.splitext(os.path.basename(source_path))[0]
module = importlib.import_module(module_name)
custom_extra_functionality = getattr(module, module_name)
custom_extra_functionality(n, snapshots, snakemake)
def solve_network(n, config, params, solving, **kwargs):
set_of_options = solving["solver"]["options"]
cf_solving = solving["options"]
kwargs["multi_investment_periods"] = config["foresight"] == "perfect"
kwargs["solver_options"] = (
solving["solver_options"][set_of_options] if set_of_options else {}
)
kwargs["solver_name"] = solving["solver"]["name"]
kwargs["extra_functionality"] = extra_functionality
kwargs["transmission_losses"] = cf_solving.get("transmission_losses", False)
kwargs["linearized_unit_commitment"] = cf_solving.get(
"linearized_unit_commitment", False
)
kwargs["assign_all_duals"] = cf_solving.get("assign_all_duals", False)
kwargs["io_api"] = cf_solving.get("io_api", None)
if kwargs["solver_name"] == "gurobi":
logging.getLogger("gurobipy").setLevel(logging.CRITICAL)
rolling_horizon = cf_solving.pop("rolling_horizon", False)
skip_iterations = cf_solving.pop("skip_iterations", False)
if not n.lines.s_nom_extendable.any():
skip_iterations = True
logger.info("No expandable lines found. Skipping iterative solving.")
# add to network for extra_functionality
n.config = config
n.params = params
if rolling_horizon and snakemake.rule == "solve_operations_network":
kwargs["horizon"] = cf_solving.get("horizon", 365)
kwargs["overlap"] = cf_solving.get("overlap", 0)
n.optimize.optimize_with_rolling_horizon(**kwargs)
status, condition = "", ""
elif skip_iterations:
status, condition = n.optimize(**kwargs)
else:
kwargs["track_iterations"] = cf_solving["track_iterations"]
kwargs["min_iterations"] = cf_solving["min_iterations"]
kwargs["max_iterations"] = cf_solving["max_iterations"]
if cf_solving["post_discretization"].pop("enable"):
logger.info("Add post-discretization parameters.")
kwargs.update(cf_solving["post_discretization"])
status, condition = n.optimize.optimize_transmission_expansion_iteratively(
**kwargs
)
if status != "ok" and not rolling_horizon:
logger.warning(
f"Solving status '{status}' with termination condition '{condition}'"
)
if "infeasible" in condition:
labels = n.model.compute_infeasibilities()
logger.info(f"Labels:\n{labels}")
n.model.print_infeasibilities()
raise RuntimeError("Solving status 'infeasible'")
return n
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"solve_sector_network_perfect",
configfiles="../config/test/config.perfect.yaml",
opts="",
clusters="5",
ll="v1.0",
sector_opts="",
# planning_horizons="2030",
)
configure_logging(snakemake)
set_scenario_config(snakemake)
update_config_from_wildcards(snakemake.config, snakemake.wildcards)
solve_opts = snakemake.params.solving["options"]
np.random.seed(solve_opts.get("seed", 123))
n = pypsa.Network(snakemake.input.network)
n = prepare_network(
n,
solve_opts,
config=snakemake.config,
foresight=snakemake.params.foresight,
planning_horizons=snakemake.params.planning_horizons,
co2_sequestration_potential=snakemake.params["co2_sequestration_potential"],
)
with memory_logger(
filename=getattr(snakemake.log, "memory", None), interval=30.0
) as mem:
n = solve_network(
n,
config=snakemake.config,
params=snakemake.params,
solving=snakemake.params.solving,
log_fn=snakemake.log.solver,
)
logger.info(f"Maximum memory usage: {mem.mem_usage}")
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
n.export_to_netcdf(snakemake.output.network)
with open(snakemake.output.config, "w") as file:
yaml.dump(
n.meta,
file,
default_flow_style=False,
allow_unicode=True,
sort_keys=False,
)