pypsa-eur/scripts/prepare_network.py
Fabian Neumann 013b705ee4
Clustering: build renewable profiles and add all assets after clustering (#1201)
* Cluster first: build renewable profiles and add all assets after clustering

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* correction: pass landfall_lengths through functions

* assign landfall_lenghts correctly

* remove parameter add_land_use_constraint

* fix network_dict

* calculate distance to shoreline, remove underwater_fraction

* adjust simplification parameter to exclude Crete from offshore wind connections

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove unused geth2015 hydro capacities

* removing remaining traces of {simpl} wildcard

* add release notes and update workflow graphics

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lisazeyen <lisa.zeyen@web.de>
2024-09-13 15:37:01 +02:00

395 lines
13 KiB
Python
Executable File

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
# coding: utf-8
"""
Prepare PyPSA network for solving according to :ref:`opts` and :ref:`ll`, such
as.
- adding an annual **limit** of carbon-dioxide emissions,
- adding an exogenous **price** per tonne emissions of carbon-dioxide (or other kinds),
- setting an **N-1 security margin** factor for transmission line capacities,
- specifying an expansion limit on the **cost** of transmission expansion,
- specifying an expansion limit on the **volume** of transmission expansion, and
- reducing the **temporal** resolution by averaging over multiple hours
or segmenting time series into chunks of varying lengths using ``tsam``.
Relevant Settings
-----------------
.. code:: yaml
costs:
year:
version:
fill_values:
emission_prices:
marginal_cost:
capital_cost:
electricity:
co2limit:
max_hours:
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at
:ref:`costs_cf`, :ref:`electricity_cf`
Inputs
------
- ``resources/costs.csv``: The database of cost assumptions for all included technologies for specific years from various sources; e.g. discount rate, lifetime, investment (CAPEX), fixed operation and maintenance (FOM), variable operation and maintenance (VOM), fuel costs, efficiency, carbon-dioxide intensity.
- ``networks/base_s_{clusters}.nc``: confer :ref:`cluster`
Outputs
-------
- ``networks/base_s_{clusters}_elec_l{ll}_{opts}.nc``: Complete PyPSA network that will be handed to the ``solve_network`` rule.
Description
-----------
.. tip::
The rule :mod:`prepare_elec_networks` runs
for all ``scenario`` s in the configuration file
the rule :mod:`prepare_network`.
"""
import logging
import numpy as np
import pandas as pd
import pypsa
from _helpers import (
configure_logging,
get,
set_scenario_config,
update_config_from_wildcards,
)
from add_electricity import load_costs, set_transmission_costs
from pypsa.descriptors import expand_series
idx = pd.IndexSlice
logger = logging.getLogger(__name__)
def modify_attribute(n, adjustments, investment_year, modification="factor"):
if not adjustments[modification]:
return
change_dict = adjustments[modification]
for c in change_dict.keys():
if c not in n.components.keys():
logger.warning(f"{c} needs to be a PyPSA Component")
continue
for carrier in change_dict[c].keys():
ind_i = n.df(c)[n.df(c).carrier == carrier].index
if ind_i.empty:
continue
for parameter in change_dict[c][carrier].keys():
if parameter not in n.df(c).columns:
logger.warning(f"Attribute {parameter} needs to be in {c} columns.")
continue
if investment_year:
factor = get(change_dict[c][carrier][parameter], investment_year)
else:
factor = change_dict[c][carrier][parameter]
if modification == "factor":
logger.info(f"Modify {parameter} of {carrier} by factor {factor} ")
n.df(c).loc[ind_i, parameter] *= factor
elif modification == "absolute":
logger.info(f"Set {parameter} of {carrier} to {factor} ")
n.df(c).loc[ind_i, parameter] = factor
else:
logger.warning(
f"{modification} needs to be either 'absolute' or 'factor'."
)
def maybe_adjust_costs_and_potentials(n, adjustments, investment_year=None):
if not adjustments:
return
for modification in adjustments.keys():
modify_attribute(n, adjustments, investment_year, modification)
def add_co2limit(n, co2limit, Nyears=1.0):
n.add(
"GlobalConstraint",
"CO2Limit",
carrier_attribute="co2_emissions",
sense="<=",
constant=co2limit * Nyears,
)
def add_gaslimit(n, gaslimit, Nyears=1.0):
sel = n.carriers.index.intersection(["OCGT", "CCGT", "CHP"])
n.carriers.loc[sel, "gas_usage"] = 1.0
n.add(
"GlobalConstraint",
"GasLimit",
carrier_attribute="gas_usage",
sense="<=",
constant=gaslimit * Nyears,
)
def add_emission_prices(n, emission_prices={"co2": 0.0}, exclude_co2=False):
if exclude_co2:
emission_prices.pop("co2")
ep = (
pd.Series(emission_prices).rename(lambda x: x + "_emissions")
* n.carriers.filter(like="_emissions")
).sum(axis=1)
gen_ep = n.generators.carrier.map(ep) / n.generators.efficiency
n.generators["marginal_cost"] += gen_ep
n.generators_t["marginal_cost"] += gen_ep[n.generators_t["marginal_cost"].columns]
su_ep = n.storage_units.carrier.map(ep) / n.storage_units.efficiency_dispatch
n.storage_units["marginal_cost"] += su_ep
def add_dynamic_emission_prices(n):
co2_price = pd.read_csv(snakemake.input.co2_price, index_col=0, parse_dates=True)
co2_price = co2_price[~co2_price.index.duplicated()]
co2_price = co2_price.reindex(n.snapshots).ffill().bfill()
emissions = (
n.generators.carrier.map(n.carriers.co2_emissions) / n.generators.efficiency
)
co2_cost = expand_series(emissions, n.snapshots).T.mul(co2_price.iloc[:, 0], axis=0)
static = n.generators.marginal_cost
dynamic = n.get_switchable_as_dense("Generator", "marginal_cost")
marginal_cost = dynamic + co2_cost.reindex(columns=dynamic.columns, fill_value=0)
n.generators_t.marginal_cost = marginal_cost.loc[:, marginal_cost.ne(static).any()]
def set_line_s_max_pu(n, s_max_pu=0.7):
n.lines["s_max_pu"] = s_max_pu
logger.info(f"N-1 security margin of lines set to {s_max_pu}")
def set_transmission_limit(n, ll_type, factor, costs, Nyears=1):
links_dc_b = n.links.carrier == "DC" if not n.links.empty else pd.Series()
_lines_s_nom = (
np.sqrt(3)
* n.lines.type.map(n.line_types.i_nom)
* n.lines.num_parallel
* n.lines.bus0.map(n.buses.v_nom)
)
lines_s_nom = n.lines.s_nom.where(n.lines.type == "", _lines_s_nom)
col = "capital_cost" if ll_type == "c" else "length"
ref = (
lines_s_nom @ n.lines[col]
+ n.links.loc[links_dc_b, "p_nom"] @ n.links.loc[links_dc_b, col]
)
set_transmission_costs(n, costs)
if factor == "opt" or float(factor) > 1.0:
n.lines["s_nom_min"] = lines_s_nom
n.lines["s_nom_extendable"] = True
n.links.loc[links_dc_b, "p_nom_min"] = n.links.loc[links_dc_b, "p_nom"]
n.links.loc[links_dc_b, "p_nom_extendable"] = True
if factor != "opt":
con_type = "expansion_cost" if ll_type == "c" else "volume_expansion"
rhs = float(factor) * ref
n.add(
"GlobalConstraint",
f"l{ll_type}_limit",
type=f"transmission_{con_type}_limit",
sense="<=",
constant=rhs,
carrier_attribute="AC, DC",
)
return n
def average_every_nhours(n, offset):
logger.info(f"Resampling the network to {offset}")
m = n.copy(with_time=False)
snapshot_weightings = n.snapshot_weightings.resample(offset).sum()
sns = snapshot_weightings.index
if snakemake.params.drop_leap_day:
sns = sns[~((sns.month == 2) & (sns.day == 29))]
m.set_snapshots(snapshot_weightings.index)
m.snapshot_weightings = snapshot_weightings
for c in n.iterate_components():
pnl = getattr(m, c.list_name + "_t")
for k, df in c.pnl.items():
if not df.empty:
pnl[k] = df.resample(offset).mean()
return m
def apply_time_segmentation(n, segments, solver_name="cbc"):
logger.info(f"Aggregating time series to {segments} segments.")
try:
import tsam.timeseriesaggregation as tsam
except ImportError:
raise ModuleNotFoundError(
"Optional dependency 'tsam' not found." "Install via 'pip install tsam'"
)
p_max_pu_norm = n.generators_t.p_max_pu.max()
p_max_pu = n.generators_t.p_max_pu / p_max_pu_norm
load_norm = n.loads_t.p_set.max()
load = n.loads_t.p_set / load_norm
inflow_norm = n.storage_units_t.inflow.max()
inflow = n.storage_units_t.inflow / inflow_norm
raw = pd.concat([p_max_pu, load, inflow], axis=1, sort=False)
agg = tsam.TimeSeriesAggregation(
raw,
hoursPerPeriod=len(raw),
noTypicalPeriods=1,
noSegments=int(segments),
segmentation=True,
solver=solver_name,
)
segmented = agg.createTypicalPeriods()
weightings = segmented.index.get_level_values("Segment Duration")
offsets = np.insert(np.cumsum(weightings[:-1]), 0, 0)
snapshots = [n.snapshots[0] + pd.Timedelta(f"{offset}h") for offset in offsets]
n.set_snapshots(pd.DatetimeIndex(snapshots, name="name"))
n.snapshot_weightings = pd.Series(
weightings, index=snapshots, name="weightings", dtype="float64"
)
segmented.index = snapshots
n.generators_t.p_max_pu = segmented[n.generators_t.p_max_pu.columns] * p_max_pu_norm
n.loads_t.p_set = segmented[n.loads_t.p_set.columns] * load_norm
n.storage_units_t.inflow = segmented[n.storage_units_t.inflow.columns] * inflow_norm
return n
def enforce_autarky(n, only_crossborder=False):
if only_crossborder:
lines_rm = n.lines.loc[
n.lines.bus0.map(n.buses.country) != n.lines.bus1.map(n.buses.country)
].index
links_rm = n.links.loc[
n.links.bus0.map(n.buses.country) != n.links.bus1.map(n.buses.country)
].index
else:
lines_rm = n.lines.index
links_rm = n.links.loc[n.links.carrier == "DC"].index
n.mremove("Line", lines_rm)
n.mremove("Link", links_rm)
def set_line_nom_max(
n,
s_nom_max_set=np.inf,
p_nom_max_set=np.inf,
s_nom_max_ext=np.inf,
p_nom_max_ext=np.inf,
):
if np.isfinite(s_nom_max_ext) and s_nom_max_ext > 0:
logger.info(f"Limiting line extensions to {s_nom_max_ext} MW")
n.lines["s_nom_max"] = n.lines["s_nom"] + s_nom_max_ext
if np.isfinite(p_nom_max_ext) and p_nom_max_ext > 0:
logger.info(f"Limiting link extensions to {p_nom_max_ext} MW")
hvdc = n.links.index[n.links.carrier == "DC"]
n.links.loc[hvdc, "p_nom_max"] = n.links.loc[hvdc, "p_nom"] + p_nom_max_ext
n.lines["s_nom_max"] = n.lines.s_nom_max.clip(upper=s_nom_max_set)
n.links["p_nom_max"] = n.links.p_nom_max.clip(upper=p_nom_max_set)
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"prepare_network",
clusters="37",
ll="v1.0",
opts="Co2L-4H",
)
configure_logging(snakemake)
set_scenario_config(snakemake)
update_config_from_wildcards(snakemake.config, snakemake.wildcards)
n = pypsa.Network(snakemake.input[0])
Nyears = n.snapshot_weightings.objective.sum() / 8760.0
costs = load_costs(
snakemake.input.tech_costs,
snakemake.params.costs,
snakemake.params.max_hours,
Nyears,
)
set_line_s_max_pu(n, snakemake.params.lines["s_max_pu"])
# temporal averaging
time_resolution = snakemake.params.time_resolution
is_string = isinstance(time_resolution, str)
if is_string and time_resolution.lower().endswith("h"):
n = average_every_nhours(n, time_resolution)
# segments with package tsam
if is_string and time_resolution.lower().endswith("seg"):
solver_name = snakemake.config["solving"]["solver"]["name"]
segments = int(time_resolution.replace("seg", ""))
n = apply_time_segmentation(n, segments, solver_name)
if snakemake.params.co2limit_enable:
add_co2limit(n, snakemake.params.co2limit, Nyears)
if snakemake.params.gaslimit_enable:
add_gaslimit(n, snakemake.params.gaslimit, Nyears)
maybe_adjust_costs_and_potentials(n, snakemake.params["adjustments"])
emission_prices = snakemake.params.costs["emission_prices"]
if emission_prices["co2_monthly_prices"]:
logger.info(
"Setting time dependent emission prices according spot market price"
)
add_dynamic_emission_prices(n)
elif emission_prices["enable"]:
add_emission_prices(
n, dict(co2=snakemake.params.costs["emission_prices"]["co2"])
)
ll_type, factor = snakemake.wildcards.ll[0], snakemake.wildcards.ll[1:]
set_transmission_limit(n, ll_type, factor, costs, Nyears)
set_line_nom_max(
n,
s_nom_max_set=snakemake.params.lines.get("s_nom_max", np.inf),
p_nom_max_set=snakemake.params.links.get("p_nom_max", np.inf),
s_nom_max_ext=snakemake.params.lines.get("max_extension", np.inf),
p_nom_max_ext=snakemake.params.links.get("max_extension", np.inf),
)
if snakemake.params.autarky["enable"]:
only_crossborder = snakemake.params.autarky["by_country"]
enforce_autarky(n, only_crossborder=only_crossborder)
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
n.export_to_netcdf(snakemake.output[0])