pypsa-eur/scripts/make_summary_perfect.py
Fabian Neumann 013b705ee4
Clustering: build renewable profiles and add all assets after clustering (#1201)
* Cluster first: build renewable profiles and add all assets after clustering

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* correction: pass landfall_lengths through functions

* assign landfall_lenghts correctly

* remove parameter add_land_use_constraint

* fix network_dict

* calculate distance to shoreline, remove underwater_fraction

* adjust simplification parameter to exclude Crete from offshore wind connections

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove unused geth2015 hydro capacities

* removing remaining traces of {simpl} wildcard

* add release notes and update workflow graphics

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lisazeyen <lisa.zeyen@web.de>
2024-09-13 15:37:01 +02:00

756 lines
24 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Create summary CSV files for all scenario runs with perfect foresight including
costs, capacities, capacity factors, curtailment, energy balances, prices and
other metrics.
"""
import numpy as np
import pandas as pd
import pypsa
from _helpers import set_scenario_config
from make_summary import calculate_cfs # noqa: F401
from make_summary import calculate_nodal_cfs # noqa: F401
from make_summary import calculate_nodal_costs # noqa: F401
from make_summary import assign_carriers, assign_locations
from prepare_sector_network import prepare_costs
from pypsa.descriptors import get_active_assets
from six import iteritems
idx = pd.IndexSlice
opt_name = {"Store": "e", "Line": "s", "Transformer": "s"}
def reindex_columns(df, cols):
investments = cols.levels[3]
if len(cols.names) != len(df.columns.levels):
df = pd.concat([df] * len(investments), axis=1)
df.columns = cols
df = df.reindex(cols, axis=1)
return df
def calculate_costs(n, label, costs):
investments = n.investment_periods
cols = pd.MultiIndex.from_product(
[
costs.columns.unique(0),
costs.columns.unique(1),
costs.columns.unique(2),
investments,
],
names=costs.columns.names[:3] + ["year"],
)
costs = reindex_columns(costs, cols)
for c in n.iterate_components(
n.branch_components | n.controllable_one_port_components ^ {"Load"}
):
capital_costs = c.df.capital_cost * c.df[opt_name.get(c.name, "p") + "_nom_opt"]
active = pd.concat(
[
get_active_assets(n, c.name, inv_p).rename(inv_p)
for inv_p in investments
],
axis=1,
).astype(int)
capital_costs = active.mul(capital_costs, axis=0)
discount = (
n.investment_period_weightings["objective"]
/ n.investment_period_weightings["years"]
)
capital_costs_grouped = capital_costs.groupby(c.df.carrier).sum().mul(discount)
capital_costs_grouped = pd.concat([capital_costs_grouped], keys=["capital"])
capital_costs_grouped = pd.concat([capital_costs_grouped], keys=[c.list_name])
costs = costs.reindex(capital_costs_grouped.index.union(costs.index))
costs.loc[capital_costs_grouped.index, label] = capital_costs_grouped.values
if c.name == "Link":
p = (
c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0)
.groupby(level=0)
.sum()
)
elif c.name == "Line":
continue
elif c.name == "StorageUnit":
p_all = c.pnl.p.multiply(n.snapshot_weightings.stores, axis=0)
p_all[p_all < 0.0] = 0.0
p = p_all.groupby(level=0).sum()
else:
p = (
round(c.pnl.p, ndigits=2)
.multiply(n.snapshot_weightings.generators, axis=0)
.groupby(level=0)
.sum()
)
# correct sequestration cost
if c.name == "Store":
items = c.df.index[
(c.df.carrier == "co2 stored") & (c.df.marginal_cost <= -100.0)
]
c.df.loc[items, "marginal_cost"] = -20.0
marginal_costs = p.mul(c.df.marginal_cost).T
# marginal_costs = active.mul(marginal_costs, axis=0)
marginal_costs_grouped = (
marginal_costs.groupby(c.df.carrier).sum().mul(discount)
)
marginal_costs_grouped = pd.concat([marginal_costs_grouped], keys=["marginal"])
marginal_costs_grouped = pd.concat([marginal_costs_grouped], keys=[c.list_name])
costs = costs.reindex(marginal_costs_grouped.index.union(costs.index))
costs.loc[marginal_costs_grouped.index, label] = marginal_costs_grouped.values
# add back in all hydro
# costs.loc[("storage_units","capital","hydro"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="hydro","p_nom"].sum()
# costs.loc[("storage_units","capital","PHS"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="PHS","p_nom"].sum()
# costs.loc[("generators","capital","ror"),label] = (0.02)*3e6*n.generators.loc[n.generators.group=="ror","p_nom"].sum()
return costs
def calculate_cumulative_cost():
planning_horizons = snakemake.config["scenario"]["planning_horizons"]
cumulative_cost = pd.DataFrame(
index=df["costs"].sum().index,
columns=pd.Series(data=np.arange(0, 0.1, 0.01), name="social discount rate"),
)
# discount cost and express them in money value of planning_horizons[0]
for r in cumulative_cost.columns:
cumulative_cost[r] = [
df["costs"].sum()[index] / ((1 + r) ** (index[-1] - planning_horizons[0]))
for index in cumulative_cost.index
]
# integrate cost throughout the transition path
for r in cumulative_cost.columns:
for cluster in cumulative_cost.index.get_level_values(level=0).unique():
for lv in cumulative_cost.index.get_level_values(level=1).unique():
for sector_opts in cumulative_cost.index.get_level_values(
level=2
).unique():
cumulative_cost.loc[
(cluster, lv, sector_opts, "cumulative cost"), r
] = np.trapz(
cumulative_cost.loc[
idx[cluster, lv, sector_opts, planning_horizons], r
].values,
x=planning_horizons,
)
return cumulative_cost
def calculate_nodal_capacities(n, label, nodal_capacities):
# Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff
for c in n.iterate_components(
n.branch_components | n.controllable_one_port_components ^ {"Load"}
):
nodal_capacities_c = c.df.groupby(["location", "carrier"])[
opt_name.get(c.name, "p") + "_nom_opt"
].sum()
index = pd.MultiIndex.from_tuples(
[(c.list_name,) + t for t in nodal_capacities_c.index.to_list()]
)
nodal_capacities = nodal_capacities.reindex(index.union(nodal_capacities.index))
nodal_capacities.loc[index, label] = nodal_capacities_c.values
return nodal_capacities
def calculate_capacities(n, label, capacities):
investments = n.investment_periods
cols = pd.MultiIndex.from_product(
[
capacities.columns.levels[0],
capacities.columns.levels[1],
capacities.columns.levels[2],
investments,
],
names=capacities.columns.names[:3] + ["year"],
)
capacities = reindex_columns(capacities, cols)
for c in n.iterate_components(
n.branch_components | n.controllable_one_port_components ^ {"Load"}
):
active = pd.concat(
[
get_active_assets(n, c.name, inv_p).rename(inv_p)
for inv_p in investments
],
axis=1,
).astype(int)
caps = c.df[opt_name.get(c.name, "p") + "_nom_opt"]
caps = active.mul(caps, axis=0)
capacities_grouped = (
caps.groupby(c.df.carrier).sum().drop("load", errors="ignore")
)
capacities_grouped = pd.concat([capacities_grouped], keys=[c.list_name])
capacities = capacities.reindex(
capacities_grouped.index.union(capacities.index)
)
capacities.loc[capacities_grouped.index, label] = capacities_grouped.values
return capacities
def calculate_curtailment(n, label, curtailment):
avail = (
n.generators_t.p_max_pu.multiply(n.generators.p_nom_opt)
.sum()
.groupby(n.generators.carrier)
.sum()
)
used = n.generators_t.p.sum().groupby(n.generators.carrier).sum()
curtailment[label] = (((avail - used) / avail) * 100).round(3)
return curtailment
def calculate_energy(n, label, energy):
investments = n.investment_periods
cols = pd.MultiIndex.from_product(
[
energy.columns.levels[0],
energy.columns.levels[1],
energy.columns.levels[2],
investments,
],
names=energy.columns.names[:3] + ["year"],
)
energy = reindex_columns(energy, cols)
for c in n.iterate_components(n.one_port_components | n.branch_components):
if c.name in n.one_port_components:
c_energies = (
c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
.groupby(level=0)
.sum()
.multiply(c.df.sign)
.T.groupby(c.df.carrier)
.sum()
.T
)
else:
c_energies = pd.DataFrame(
0.0, columns=c.df.carrier.unique(), index=n.investment_periods
)
for port in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
totals = (
c.pnl["p" + port]
.multiply(n.snapshot_weightings.generators, axis=0)
.groupby(level=0)
.sum()
)
# remove values where bus is missing (bug in nomopyomo)
no_bus = c.df.index[c.df["bus" + port] == ""]
totals[no_bus] = float(
n.component_attrs[c.name].loc["p" + port, "default"]
)
c_energies -= totals.T.groupby(c.df.carrier).sum().T
c_energies = pd.concat([c_energies.T], keys=[c.list_name])
energy = energy.reindex(c_energies.index.union(energy.index))
energy.loc[c_energies.index, label] = c_energies.values
return energy
def calculate_supply(n, label, supply):
"""
Calculate the max dispatch of each component at the buses aggregated by
carrier.
"""
bus_carriers = n.buses.carrier.unique()
for i in bus_carriers:
bus_map = n.buses.carrier == i
bus_map.at[""] = False
for c in n.iterate_components(n.one_port_components):
items = c.df.index[c.df.bus.map(bus_map).fillna(False)]
if len(items) == 0:
continue
s = (
c.pnl.p[items]
.max()
.multiply(c.df.loc[items, "sign"])
.groupby(c.df.loc[items, "carrier"])
.sum()
)
s = pd.concat([s], keys=[c.list_name])
s = pd.concat([s], keys=[i])
supply = supply.reindex(s.index.union(supply.index))
supply.loc[s.index, label] = s
for c in n.iterate_components(n.branch_components):
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
items = c.df.index[c.df["bus" + end].map(bus_map).fillna(False)]
if len(items) == 0:
continue
# lots of sign compensation for direction and to do maximums
s = (-1) ** (1 - int(end)) * (
(-1) ** int(end) * c.pnl["p" + end][items]
).max().groupby(c.df.loc[items, "carrier"]).sum()
s.index = s.index + end
s = pd.concat([s], keys=[c.list_name])
s = pd.concat([s], keys=[i])
supply = supply.reindex(s.index.union(supply.index))
supply.loc[s.index, label] = s
return supply
def calculate_supply_energy(n, label, supply_energy):
"""
Calculate the total energy supply/consuption of each component at the buses
aggregated by carrier.
"""
investments = n.investment_periods
cols = pd.MultiIndex.from_product(
[
supply_energy.columns.unique(0),
supply_energy.columns.unique(1),
supply_energy.columns.unique(2),
investments,
],
names=supply_energy.columns.names[:3] + ["year"],
)
supply_energy = reindex_columns(supply_energy, cols)
bus_carriers = n.buses.carrier.unique()
for i in bus_carriers:
bus_map = n.buses.carrier == i
bus_map.at[""] = False
for c in n.iterate_components(n.one_port_components):
items = c.df.index[c.df.bus.map(bus_map).fillna(False)]
if len(items) == 0:
continue
if c.name == "Generator":
weightings = n.snapshot_weightings.generators
else:
weightings = n.snapshot_weightings.stores
if i in ["oil", "co2", "H2"]:
if c.name == "Load":
c.df.loc[items, "carrier"] = [
load.split("-202")[0] for load in items
]
if i == "oil" and c.name == "Generator":
c.df.loc[items, "carrier"] = "imported oil"
s = (
c.pnl.p[items]
.multiply(weightings, axis=0)
.groupby(level=0)
.sum()
.multiply(c.df.loc[items, "sign"])
.T.groupby(c.df.loc[items, "carrier"])
.sum()
)
s = pd.concat([s], keys=[c.list_name])
s = pd.concat([s], keys=[i])
supply_energy = supply_energy.reindex(
s.index.union(supply_energy.index, sort=False)
)
supply_energy.loc[s.index, label] = s.values
for c in n.iterate_components(n.branch_components):
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
items = c.df.index[c.df[f"bus{str(end)}"].map(bus_map).fillna(False)]
if len(items) == 0:
continue
s = (-1) * c.pnl["p" + end].reindex(items, axis=1).multiply(
n.snapshot_weightings.objective, axis=0
).groupby(level=0).sum().T.groupby(c.df.loc[items, "carrier"]).sum()
s.index = s.index + end
s = pd.concat([s], keys=[c.list_name])
s = pd.concat([s], keys=[i])
supply_energy = supply_energy.reindex(
s.index.union(supply_energy.index, sort=False)
)
supply_energy.loc[s.index, label] = s.values
return supply_energy
def calculate_metrics(n, label, metrics):
metrics = metrics.reindex(
pd.Index(
[
"line_volume",
"line_volume_limit",
"line_volume_AC",
"line_volume_DC",
"line_volume_shadow",
"co2_shadow",
]
).union(metrics.index)
)
metrics.at["line_volume_DC", label] = (n.links.length * n.links.p_nom_opt)[
n.links.carrier == "DC"
].sum()
metrics.at["line_volume_AC", label] = (n.lines.length * n.lines.s_nom_opt).sum()
metrics.at["line_volume", label] = metrics.loc[
["line_volume_AC", "line_volume_DC"], label
].sum()
if hasattr(n, "line_volume_limit"):
metrics.at["line_volume_limit", label] = n.line_volume_limit
metrics.at["line_volume_shadow", label] = n.line_volume_limit_dual
if "CO2Limit" in n.global_constraints.index:
metrics.at["co2_shadow", label] = n.global_constraints.at["CO2Limit", "mu"]
return metrics
def calculate_prices(n, label, prices):
prices = prices.reindex(prices.index.union(n.buses.carrier.unique()))
# WARNING: this is time-averaged, see weighted_prices for load-weighted average
prices[label] = n.buses_t.marginal_price.mean().groupby(n.buses.carrier).mean()
return prices
def calculate_weighted_prices(n, label, weighted_prices):
# Warning: doesn't include storage units as loads
weighted_prices = weighted_prices.reindex(
pd.Index(
[
"electricity",
"heat",
"space heat",
"urban heat",
"space urban heat",
"gas",
"H2",
]
)
)
link_loads = {
"electricity": [
"heat pump",
"resistive heater",
"battery charger",
"H2 Electrolysis",
],
"heat": ["water tanks charger"],
"urban heat": ["water tanks charger"],
"space heat": [],
"space urban heat": [],
"gas": ["OCGT", "gas boiler", "CHP electric", "CHP heat"],
"H2": ["Sabatier", "H2 Fuel Cell"],
}
for carrier, value in link_loads.items():
if carrier == "electricity":
suffix = ""
elif carrier[:5] == "space":
suffix = carrier[5:]
else:
suffix = " " + carrier
buses = n.buses.index[n.buses.index.str[5:] == suffix]
if buses.empty:
continue
load = (
pd.DataFrame(index=n.snapshots, columns=buses, data=0.0)
if carrier in ["H2", "gas"]
else n.loads_t.p_set.reindex(buses, axis=1)
)
for tech in value:
names = n.links.index[
n.links.index.to_series().str[-len(tech) - 5 : -5] == tech
]
if names.empty:
continue
load += n.links_t.p0[names].T.groupby(n.links.loc[names, "bus0"]).sum().T
# Add H2 Store when charging
# if carrier == "H2":
# stores = n.stores_t.p[buses+ " Store"].groupby(n.stores.loc[buses+ " Store","bus"],axis=1).sum(axis=1)
# stores[stores > 0.] = 0.
# load += -stores
if total_load := load.sum().sum():
weighted_prices.loc[carrier, label] = (
load * n.buses_t.marginal_price[buses]
).sum().sum() / total_load
else:
weighted_prices.loc[carrier, label] = np.nan
if carrier[:5] == "space":
print(load * n.buses_t.marginal_price[buses])
return weighted_prices
def calculate_market_values(n, label, market_values):
# Warning: doesn't include storage units
carrier = "AC"
buses = n.buses.index[n.buses.carrier == carrier]
## First do market value of generators ##
generators = n.generators.index[n.buses.loc[n.generators.bus, "carrier"] == carrier]
techs = n.generators.loc[generators, "carrier"].value_counts().index
market_values = market_values.reindex(market_values.index.union(techs))
for tech in techs:
gens = generators[n.generators.loc[generators, "carrier"] == tech]
dispatch = (
n.generators_t.p[gens]
.T.groupby(n.generators.loc[gens, "bus"])
.sum()
.T.reindex(columns=buses, fill_value=0.0)
)
revenue = dispatch * n.buses_t.marginal_price[buses]
if total_dispatch := dispatch.sum().sum():
market_values.at[tech, label] = revenue.sum().sum() / total_dispatch
else:
market_values.at[tech, label] = np.nan
## Now do market value of links ##
for i in ["0", "1"]:
all_links = n.links.index[n.buses.loc[n.links["bus" + i], "carrier"] == carrier]
techs = n.links.loc[all_links, "carrier"].value_counts().index
market_values = market_values.reindex(market_values.index.union(techs))
for tech in techs:
links = all_links[n.links.loc[all_links, "carrier"] == tech]
dispatch = (
n.links_t["p" + i][links]
.T.groupby(n.links.loc[links, "bus" + i])
.sum()
.T.reindex(columns=buses, fill_value=0.0)
)
revenue = dispatch * n.buses_t.marginal_price[buses]
if total_dispatch := dispatch.sum().sum():
market_values.at[tech, label] = revenue.sum().sum() / total_dispatch
else:
market_values.at[tech, label] = np.nan
return market_values
def calculate_price_statistics(n, label, price_statistics):
price_statistics = price_statistics.reindex(
price_statistics.index.union(
pd.Index(["zero_hours", "mean", "standard_deviation"])
)
)
buses = n.buses.index[n.buses.carrier == "AC"]
threshold = 0.1 # higher than phoney marginal_cost of wind/solar
df = pd.DataFrame(data=0.0, columns=buses, index=n.snapshots)
df[n.buses_t.marginal_price[buses] < threshold] = 1.0
price_statistics.at["zero_hours", label] = df.sum().sum() / (
df.shape[0] * df.shape[1]
)
price_statistics.at["mean", label] = n.buses_t.marginal_price[buses].mean().mean()
price_statistics.at["standard_deviation", label] = (
n.buses_t.marginal_price[buses].std().std()
)
return price_statistics
def calculate_co2_emissions(n, label, df):
carattr = "co2_emissions"
emissions = n.carriers.query(f"{carattr} != 0")[carattr]
if emissions.empty:
return
weightings = n.snapshot_weightings.generators.mul(
n.investment_period_weightings["years"]
.reindex(n.snapshots)
.bfill()
.fillna(1.0),
axis=0,
)
# generators
gens = n.generators.query("carrier in @emissions.index")
if not gens.empty:
em_pu = gens.carrier.map(emissions) / gens.efficiency
em_pu = (
weightings["generators"].to_frame("weightings")
@ em_pu.to_frame("weightings").T
)
emitted = n.generators_t.p[gens.index].mul(em_pu)
emitted_grouped = (
emitted.groupby(level=0).sum().T.groupby(n.generators.carrier).sum()
)
df = df.reindex(emitted_grouped.index.union(df.index))
df.loc[emitted_grouped.index, label] = emitted_grouped.values
if any(n.stores.carrier == "co2"):
co2_i = n.stores[n.stores.carrier == "co2"].index
df[label] = n.stores_t.e.groupby(level=0).last()[co2_i].iloc[:, 0]
return df
outputs = [
"nodal_costs",
"nodal_capacities",
"nodal_cfs",
"cfs",
"costs",
"capacities",
"curtailment",
"energy",
"supply",
"supply_energy",
"prices",
"weighted_prices",
"price_statistics",
"market_values",
"metrics",
"co2_emissions",
]
def make_summaries(networks_dict):
columns = pd.MultiIndex.from_tuples(
networks_dict.keys(), names=["cluster", "lv", "opt"]
)
df = {}
for output in outputs:
df[output] = pd.DataFrame(columns=columns, dtype=float)
for label, filename in iteritems(networks_dict):
print(label, filename)
try:
n = pypsa.Network(filename)
except OSError:
print(label, " not solved yet.")
continue
# del networks_dict[label]
if not hasattr(n, "objective"):
print(label, " not solved correctly. Check log if infeasible or unbounded.")
continue
assign_carriers(n)
assign_locations(n)
for output in outputs:
df[output] = globals()["calculate_" + output](n, label, df[output])
return df
def to_csv(df):
for key in df:
df[key] = df[key].apply(lambda x: pd.to_numeric(x))
df[key].to_csv(snakemake.output[key])
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("make_summary_perfect")
set_scenario_config(snakemake)
run = snakemake.config["run"]["name"]
if run != "":
run += "/"
networks_dict = {
(clusters, lv, opts + sector_opts): "results/"
+ run
+ f"postnetworks/base_s_{clusters}_l{lv}_{opts}_{sector_opts}_brownfield_all_years.nc"
for clusters in snakemake.config["scenario"]["clusters"]
for opts in snakemake.config["scenario"]["opts"]
for sector_opts in snakemake.config["scenario"]["sector_opts"]
for lv in snakemake.config["scenario"]["ll"]
}
print(networks_dict)
nyears = 1
costs_db = prepare_costs(
snakemake.input.costs,
snakemake.config["costs"],
nyears,
)
df = make_summaries(networks_dict)
df["metrics"].loc["total costs"] = df["costs"].sum().groupby(level=[0, 1, 2]).sum()
to_csv(df)