pypsa-eur/scripts/build_industrial_distribution_key.py
Fabian Neumann 013b705ee4
Clustering: build renewable profiles and add all assets after clustering (#1201)
* Cluster first: build renewable profiles and add all assets after clustering

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* correction: pass landfall_lengths through functions

* assign landfall_lenghts correctly

* remove parameter add_land_use_constraint

* fix network_dict

* calculate distance to shoreline, remove underwater_fraction

* adjust simplification parameter to exclude Crete from offshore wind connections

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove unused geth2015 hydro capacities

* removing remaining traces of {simpl} wildcard

* add release notes and update workflow graphics

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lisazeyen <lisa.zeyen@web.de>
2024-09-13 15:37:01 +02:00

415 lines
14 KiB
Python

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Build spatial distribution of industries from Hotmaps database.
Inputs
-------
- ``resources/regions_onshore_base_s_{clusters}.geojson``
- ``resources/pop_layout_base_s_{clusters}.csv``
Outputs
-------
- ``resources/industrial_distribution_key_base_s_{clusters}.csv``
Description
-------
This rule uses the `Hotmaps database <https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database>`. After removing entries without valid locations, it assigns each industrial site to a bus region based on its location.
Then, it calculates the nodal distribution key for each sector based on the emissions of the industrial sites in each region. This leads to a distribution key of 1 if there is only one bus per country and <1 if there are multiple buses per country. The sum over buses of one country is 1.
The following subcategories of industry are considered:
- Iron and steel
- Cement
- Refineries
- Paper and printing
- Chemical industry
- Glass
- Non-ferrous metals
- Non-metallic mineral products
- Other non-classified
Furthermore, the population distribution is added
- Population
"""
import logging
import uuid
from itertools import product
import country_converter as coco
import geopandas as gpd
import pandas as pd
from _helpers import configure_logging, set_scenario_config
logger = logging.getLogger(__name__)
cc = coco.CountryConverter()
def locate_missing_industrial_sites(df):
"""
Locate industrial sites without valid locations based on city and
countries.
Should only be used if the model's spatial resolution is coarser
than individual cities.
"""
try:
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
except ImportError:
raise ModuleNotFoundError(
"Optional dependency 'geopy' not found."
"Install via 'conda install -c conda-forge geopy'"
"or set 'industry: hotmaps_locate_missing: false'."
)
locator = Nominatim(user_agent=str(uuid.uuid4()))
geocode = RateLimiter(locator.geocode, min_delay_seconds=2)
def locate_missing(s):
if pd.isna(s.City) or s.City == "CONFIDENTIAL":
return None
loc = geocode([s.City, s.Country], geometry="wkt")
if loc is not None:
logger.debug(f"Found:\t{loc}\nFor:\t{s['City']}, {s['Country']}\n")
return f"POINT({loc.longitude} {loc.latitude})"
else:
return None
missing = df.index[df.geom.isna()]
df.loc[missing, "coordinates"] = df.loc[missing].apply(locate_missing, axis=1)
# report stats
num_still_missing = df.coordinates.isna().sum()
num_found = len(missing) - num_still_missing
share_missing = len(missing) / len(df) * 100
share_still_missing = num_still_missing / len(df) * 100
logger.warning(
f"Found {num_found} missing locations. \nShare of missing locations reduced from {share_missing:.2f}% to {share_still_missing:.2f}%."
)
return df
def prepare_hotmaps_database(regions):
"""
Load hotmaps database of industrial sites and map onto bus regions.
"""
df = pd.read_csv(snakemake.input.hotmaps, sep=";", index_col=0)
df[["srid", "coordinates"]] = df.geom.str.split(";", expand=True)
if snakemake.params.hotmaps_locate_missing:
df = locate_missing_industrial_sites(df)
# remove those sites without valid locations
df.drop(df.index[df.coordinates.isna()], inplace=True)
df["coordinates"] = gpd.GeoSeries.from_wkt(df["coordinates"])
gdf = gpd.GeoDataFrame(df, geometry="coordinates", crs="EPSG:4326")
gdf = gpd.sjoin(gdf, regions, how="inner", predicate="within")
gdf.rename(columns={"name": "bus"}, inplace=True)
gdf["country"] = gdf.bus.str[:2]
# the .sjoin can lead to duplicates if a geom is in two overlapping regions
if gdf.index.duplicated().any():
# get all duplicated entries
duplicated_i = gdf.index[gdf.index.duplicated()]
# convert from raw data country name to iso-2-code
code = cc.convert(gdf.loc[duplicated_i, "Country"], to="iso2") # noqa: F841
# screen out malformed country allocation
gdf_filtered = gdf.loc[duplicated_i].query("country == @code")
# concat not duplicated and filtered gdf
gdf = pd.concat([gdf.drop(duplicated_i), gdf_filtered])
return gdf
def prepare_gem_database(regions):
"""
Load GEM database of steel plants and map onto bus regions.
"""
df = pd.read_excel(
snakemake.input.gem_gspt,
sheet_name="Steel Plants",
na_values=["N/A", "unknown", ">0"],
).query("Region == 'Europe'")
df["Retired Date"] = pd.to_numeric(
df["Retired Date"].combine_first(df["Idled Date"]), errors="coerce"
)
df["Start date"] = pd.to_numeric(
df["Start date"].str.split("-").str[0], errors="coerce"
)
latlon = (
df["Coordinates"]
.str.split(", ", expand=True)
.rename(columns={0: "lat", 1: "lon"})
)
geometry = gpd.points_from_xy(latlon["lon"], latlon["lat"])
gdf = gpd.GeoDataFrame(df, geometry=geometry, crs="EPSG:4326")
gdf = gpd.sjoin(gdf, regions, how="inner", predicate="within")
gdf.rename(columns={"name": "bus"}, inplace=True)
gdf["country"] = gdf.bus.str[:2]
return gdf
def prepare_ammonia_database(regions):
"""
Load ammonia database of plants and map onto bus regions.
"""
df = pd.read_csv(snakemake.input.ammonia, index_col=0)
geometry = gpd.points_from_xy(df.Longitude, df.Latitude)
gdf = gpd.GeoDataFrame(df, geometry=geometry, crs="EPSG:4326")
gdf = gpd.sjoin(gdf, regions, how="inner", predicate="within")
gdf.rename(columns={"name": "bus"}, inplace=True)
gdf["country"] = gdf.bus.str[:2]
return gdf
def prepare_cement_supplement(regions):
"""
Load supplementary cement plants from non-EU-(NO-CH) and map onto bus
regions.
"""
df = pd.read_csv(snakemake.input.cement_supplement, index_col=0)
geometry = gpd.points_from_xy(df.Longitude, df.Latitude)
gdf = gpd.GeoDataFrame(df, geometry=geometry, crs="EPSG:4326")
gdf = gpd.sjoin(gdf, regions, how="inner", predicate="within")
gdf.rename(columns={"name": "bus"}, inplace=True)
gdf["country"] = gdf.bus.str[:2]
return gdf
def prepare_refineries_supplement(regions):
"""
Load supplementary refineries from non-EU-(NO-CH) and map onto bus regions.
"""
df = pd.read_csv(snakemake.input.refineries_supplement, index_col=0)
geometry = gpd.points_from_xy(df.Longitude, df.Latitude)
gdf = gpd.GeoDataFrame(df, geometry=geometry, crs="EPSG:4326")
gdf = gpd.sjoin(gdf, regions, how="inner", predicate="within")
gdf.rename(columns={"name": "bus"}, inplace=True)
gdf["country"] = gdf.bus.str[:2]
return gdf
def build_nodal_distribution_key(
hotmaps, gem, ammonia, cement, refineries, regions, countries
):
"""
Build nodal distribution keys for each sector.
"""
sectors = hotmaps.Subsector.unique()
keys = pd.DataFrame(index=regions.index, columns=sectors, dtype=float)
pop = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
pop["country"] = pop.index.str[:2]
ct_total = pop.total.groupby(pop["country"]).sum()
keys["population"] = pop.total / pop.country.map(ct_total)
for sector, country in product(sectors, countries):
regions_ct = regions.index[regions.index.str.contains(country)]
facilities = hotmaps.query("country == @country and Subsector == @sector")
if not facilities.empty:
emissions = facilities["Emissions_ETS_2014"].fillna(
hotmaps["Emissions_EPRTR_2014"].dropna()
)
if emissions.sum() == 0:
key = pd.Series(1 / len(facilities), facilities.index)
else:
# assume 20% quantile for missing values
emissions = emissions.fillna(emissions.quantile(0.2))
key = emissions / emissions.sum()
key = key.groupby(facilities.bus).sum().reindex(regions_ct, fill_value=0.0)
elif sector == "Cement" and country in cement.country.unique():
facilities = cement.query("country == @country")
production = facilities["Cement [kt/a]"]
if production.sum() == 0:
key = pd.Series(1 / len(facilities), facilities.index)
else:
key = production / production.sum()
key = key.groupby(facilities.bus).sum().reindex(regions_ct, fill_value=0.0)
elif sector == "Refineries" and country in refineries.country.unique():
facilities = refineries.query("country == @country")
production = facilities["Capacity [bbl/day]"]
if production.sum() == 0:
key = pd.Series(1 / len(facilities), facilities.index)
else:
key = production / production.sum()
key = key.groupby(facilities.bus).sum().reindex(regions_ct, fill_value=0.0)
else:
key = keys.loc[regions_ct, "population"]
keys.loc[regions_ct, sector] = key
# add specific steel subsectors
steel_processes = ["EAF", "DRI + EAF", "Integrated steelworks"]
for process, country in product(steel_processes, countries):
regions_ct = regions.index[regions.index.str.contains(country)]
facilities = gem.query("country == @country")
if process == "EAF":
status_list = [
"construction",
"operating",
"operating pre-retirement",
"retired",
]
capacities = facilities.loc[
facilities["Capacity operating status"].isin(status_list)
& (
facilities["Retired Date"].isna()
| facilities["Retired Date"].gt(2025)
),
"Nominal EAF steel capacity (ttpa)",
].dropna()
elif process == "DRI + EAF":
status_list = [
"construction",
"operating",
"operating pre-retirement",
"retired",
"announced",
]
sel = [
"Nominal BOF steel capacity (ttpa)",
"Nominal OHF steel capacity (ttpa)",
"Nominal iron capacity (ttpa)",
]
status_filter = facilities["Capacity operating status"].isin(status_list)
retirement_filter = facilities["Retired Date"].isna() | facilities[
"Retired Date"
].gt(2030)
start_filter = (
facilities["Start date"].isna()
& ~facilities["Capacity operating status"].eq("announced")
) | facilities["Start date"].le(2030)
capacities = (
facilities.loc[status_filter & retirement_filter & start_filter, sel]
.sum(axis=1)
.dropna()
)
elif process == "Integrated steelworks":
status_list = [
"construction",
"operating",
"operating pre-retirement",
"retired",
]
sel = [
"Nominal BOF steel capacity (ttpa)",
"Nominal OHF steel capacity (ttpa)",
]
capacities = (
facilities.loc[
facilities["Capacity operating status"].isin(status_list)
& (
facilities["Retired Date"].isna()
| facilities["Retired Date"].gt(2025)
),
sel,
]
.sum(axis=1)
.dropna()
)
else:
raise ValueError(f"Unknown process {process}")
if not capacities.empty:
if capacities.sum() == 0:
key = pd.Series(1 / len(capacities), capacities.index)
else:
key = capacities / capacities.sum()
buses = facilities.loc[capacities.index, "bus"]
key = key.groupby(buses).sum().reindex(regions_ct, fill_value=0.0)
else:
key = keys.loc[regions_ct, "population"]
keys.loc[regions_ct, process] = key
# add ammonia
for country in countries:
regions_ct = regions.index[regions.index.str.contains(country)]
facilities = ammonia.query("country == @country")
if not facilities.empty:
production = facilities["Ammonia [kt/a]"]
if production.sum() == 0:
key = pd.Series(1 / len(facilities), facilities.index)
else:
# assume 50% of the minimum production for missing values
production = production.fillna(0.5 * facilities["Ammonia [kt/a]"].min())
key = production / production.sum()
key = key.groupby(facilities.bus).sum().reindex(regions_ct, fill_value=0.0)
else:
key = 0.0
keys.loc[regions_ct, "Ammonia"] = key
return keys
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_industrial_distribution_key",
clusters=128,
)
configure_logging(snakemake)
set_scenario_config(snakemake)
countries = snakemake.params.countries
regions = gpd.read_file(snakemake.input.regions_onshore).set_index("name")
hotmaps = prepare_hotmaps_database(regions)
gem = prepare_gem_database(regions)
ammonia = prepare_ammonia_database(regions)
cement = prepare_cement_supplement(regions)
refineries = prepare_refineries_supplement(regions)
keys = build_nodal_distribution_key(
hotmaps, gem, ammonia, cement, refineries, regions, countries
)
keys.to_csv(snakemake.output.industrial_distribution_key)