pypsa-eur/scripts/build_biomass_potentials.py
Fabian Neumann 013b705ee4
Clustering: build renewable profiles and add all assets after clustering (#1201)
* Cluster first: build renewable profiles and add all assets after clustering

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* correction: pass landfall_lengths through functions

* assign landfall_lenghts correctly

* remove parameter add_land_use_constraint

* fix network_dict

* calculate distance to shoreline, remove underwater_fraction

* adjust simplification parameter to exclude Crete from offshore wind connections

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove unused geth2015 hydro capacities

* removing remaining traces of {simpl} wildcard

* add release notes and update workflow graphics

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lisazeyen <lisa.zeyen@web.de>
2024-09-13 15:37:01 +02:00

404 lines
12 KiB
Python
Executable File

# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2021-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Compute biogas and solid biomass potentials for each clustered model region
using data from JRC ENSPRESO.
"""
import logging
import geopandas as gpd
import numpy as np
import pandas as pd
from _helpers import configure_logging, set_scenario_config
from build_energy_totals import build_eurostat
logger = logging.getLogger(__name__)
AVAILABLE_BIOMASS_YEARS = [2010, 2020, 2030, 2040, 2050]
def _calc_unsustainable_potential(df, df_unsustainable, share_unsus, resource_type):
"""
Calculate the unsustainable biomass potential for a given resource type or
regex.
Parameters
----------
df : pd.DataFrame
The dataframe with sustainable biomass potentials.
df_unsustainable : pd.DataFrame
The dataframe with unsustainable biomass potentials.
share_unsus : float
The share of unsustainable biomass potential retained.
resource_type : str or regex
The resource type to calculate the unsustainable potential for.
Returns
-------
pd.Series
The unsustainable biomass potential for the given resource type or regex.
"""
if "|" in resource_type:
resource_potential = df_unsustainable.filter(regex=resource_type).sum(axis=1)
else:
resource_potential = df_unsustainable[resource_type]
return (
df.apply(
lambda c: c.sum()
/ df.loc[df.index.str[:2] == c.name[:2]].sum().sum()
* resource_potential.loc[c.name[:2]],
axis=1,
)
.mul(share_unsus)
.clip(lower=0)
)
def build_nuts_population_data(year=2013):
pop = pd.read_csv(
snakemake.input.nuts3_population,
sep=r"\,| \t|\t",
engine="python",
na_values=[":"],
index_col=1,
)[str(year)]
# only countries
pop.drop("EU28", inplace=True)
# mapping from Cantons to NUTS3
cantons = pd.read_csv(snakemake.input.swiss_cantons)
cantons = cantons.set_index(cantons.HASC.str[3:]).NUTS
cantons = cantons.str.pad(5, side="right", fillchar="0")
# get population by NUTS3
swiss = pd.read_excel(
snakemake.input.swiss_population, skiprows=3, index_col=0
).loc["Residents in 1000"]
swiss = swiss.rename(cantons).filter(like="CH")
# aggregate also to higher order NUTS levels
swiss = [swiss.groupby(swiss.index.str[:i]).sum() for i in range(2, 6)]
# merge Europe + Switzerland
pop = pd.concat([pop, pd.concat(swiss)]).to_frame("total")
# add missing manually
pop["AL"] = 2778
pop["BA"] = 3234
pop["RS"] = 6664
pop["ME"] = 617
pop["XK"] = 1587
pop["ct"] = pop.index.str[:2]
return pop
def enspreso_biomass_potentials(year=2020, scenario="ENS_Low"):
"""
Loads the JRC ENSPRESO biomass potentials.
Parameters
----------
year : int
The year for which potentials are to be taken.
Can be {2010, 2020, 2030, 2040, 2050}.
scenario : str
The scenario. Can be {"ENS_Low", "ENS_Med", "ENS_High"}.
Returns
-------
pd.DataFrame
Biomass potentials for given year and scenario
in TWh/a by commodity and NUTS2 region.
"""
glossary = pd.read_excel(
str(snakemake.input.enspreso_biomass),
sheet_name="Glossary",
usecols="B:D",
skiprows=1,
index_col=0,
)
df = pd.read_excel(
str(snakemake.input.enspreso_biomass),
sheet_name="ENER - NUTS2 BioCom E",
usecols="A:H",
)
df["group"] = df["E-Comm"].map(glossary.group)
df["commodity"] = df["E-Comm"].map(glossary.description)
to_rename = {
"NUTS2 Potential available by Bio Commodity": "potential",
"NUST2": "NUTS2",
}
df.rename(columns=to_rename, inplace=True)
# fill up with NUTS0 if NUTS2 is not given
df.NUTS2 = df.apply(lambda x: x.NUTS0 if x.NUTS2 == "-" else x.NUTS2, axis=1)
# convert PJ to TWh
df.potential /= 3.6
df.Unit = "TWh/a"
dff = df.query("Year == @year and Scenario == @scenario")
bio = dff.groupby(["NUTS2", "commodity"]).potential.sum().unstack()
return bio
def disaggregate_nuts0(bio):
"""
Some commodities are only given on NUTS0 level. These are disaggregated
here using the NUTS2 population as distribution key.
Parameters
----------
bio : pd.DataFrame
from enspreso_biomass_potentials()
Returns
-------
pd.DataFrame
"""
pop = build_nuts_population_data()
# get population in nuts2
pop_nuts2 = pop.loc[pop.index.str.len() == 4].copy()
by_country = pop_nuts2.total.groupby(pop_nuts2.ct).sum()
pop_nuts2["fraction"] = pop_nuts2.total / pop_nuts2.ct.map(by_country)
# distribute nuts0 data to nuts2 by population
bio_nodal = bio.loc[pop_nuts2.ct]
bio_nodal.index = pop_nuts2.index
bio_nodal = bio_nodal.mul(pop_nuts2.fraction, axis=0).astype(float)
# update inplace
bio.update(bio_nodal)
return bio
def build_nuts2_shapes():
"""
- load NUTS2 geometries
- add RS, AL, BA country shapes (not covered in NUTS 2013)
- consistently name ME, MK
"""
nuts2 = gpd.GeoDataFrame(
gpd.read_file(snakemake.input.nuts2).set_index("NUTS_ID").geometry
)
countries = gpd.read_file(snakemake.input.country_shapes).set_index("name")
missing_iso2 = countries.index.intersection(["AL", "RS", "XK", "BA"])
missing = countries.loc[missing_iso2]
nuts2.rename(index={"ME00": "ME", "MK00": "MK"}, inplace=True)
return pd.concat([nuts2, missing])
def area(gdf):
"""
Returns area of GeoDataFrame geometries in square kilometers.
"""
return gdf.to_crs(epsg=3035).area.div(1e6)
def convert_nuts2_to_regions(bio_nuts2, regions):
"""
Converts biomass potentials given in NUTS2 to PyPSA-Eur regions based on
the overlay of both GeoDataFrames in proportion to the area.
Parameters
----------
bio_nuts2 : gpd.GeoDataFrame
JRC ENSPRESO biomass potentials indexed by NUTS2 shapes.
regions : gpd.GeoDataFrame
PyPSA-Eur clustered onshore regions
Returns
-------
gpd.GeoDataFrame
"""
# calculate area of nuts2 regions
bio_nuts2["area_nuts2"] = area(bio_nuts2)
overlay = gpd.overlay(regions, bio_nuts2, keep_geom_type=True)
# calculate share of nuts2 area inside region
overlay["share"] = area(overlay) / overlay["area_nuts2"]
# multiply all nuts2-level values with share of nuts2 inside region
adjust_cols = overlay.columns.difference(
{"name", "area_nuts2", "geometry", "share"}
)
overlay[adjust_cols] = overlay[adjust_cols].multiply(overlay["share"], axis=0)
bio_regions = overlay.dissolve("name", aggfunc="sum")
bio_regions.drop(["area_nuts2", "share"], axis=1, inplace=True)
return bio_regions
def add_unsustainable_potentials(df):
"""
Add unsustainable biomass potentials to the given dataframe. The difference
between the data of JRC and Eurostat is assumed to be unsustainable
biomass.
Parameters
----------
df : pd.DataFrame
The dataframe with sustainable biomass potentials.
unsustainable_biomass : str
Path to the file with unsustainable biomass potentials.
Returns
-------
pd.DataFrame
The dataframe with added unsustainable biomass potentials.
"""
if "GB" in snakemake.config["countries"]:
latest_year = 2019
else:
latest_year = 2021
idees_rename = {"GR": "EL", "GB": "UK"}
df_unsustainable = (
build_eurostat(
countries=snakemake.config["countries"],
input_eurostat=snakemake.input.eurostat,
nprocesses=int(snakemake.threads),
)
.xs(
max(min(latest_year, int(snakemake.wildcards.planning_horizons)), 1990),
level=1,
)
.xs("Primary production", level=2)
.droplevel([1, 2, 3])
)
df_unsustainable.index = df_unsustainable.index.str.strip()
df_unsustainable = df_unsustainable.rename(
{v: k for k, v in idees_rename.items()}, axis=0
)
bio_carriers = [
"Primary solid biofuels",
"Biogases",
"Renewable municipal waste",
"Pure biogasoline",
"Blended biogasoline",
"Pure biodiesels",
"Blended biodiesels",
"Pure bio jet kerosene",
"Blended bio jet kerosene",
"Other liquid biofuels",
]
df_unsustainable = df_unsustainable[bio_carriers]
# Phase out unsustainable biomass potentials linearly from 2020 to 2035 while phasing in sustainable potentials
share_unsus = params.get("share_unsustainable_use_retained").get(investment_year)
df_wo_ch = df.drop(df.filter(regex=r"CH\d", axis=0).index)
# Calculate unsustainable solid biomass
df_wo_ch["unsustainable solid biomass"] = _calc_unsustainable_potential(
df_wo_ch, df_unsustainable, share_unsus, "Primary solid biofuels"
)
# Calculate unsustainable biogas
df_wo_ch["unsustainable biogas"] = _calc_unsustainable_potential(
df_wo_ch, df_unsustainable, share_unsus, "Biogases"
)
# Calculate unsustainable bioliquids
df_wo_ch["unsustainable bioliquids"] = _calc_unsustainable_potential(
df_wo_ch,
df_unsustainable,
share_unsus,
resource_type="gasoline|diesel|kerosene|liquid",
)
share_sus = params.get("share_sustainable_potential_available").get(investment_year)
df.loc[df_wo_ch.index] *= share_sus
df = df.join(df_wo_ch.filter(like="unsustainable")).fillna(0)
return df
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_biomass_potentials",
clusters="39",
planning_horizons=2050,
)
configure_logging(snakemake)
set_scenario_config(snakemake)
overnight = snakemake.config["foresight"] == "overnight"
params = snakemake.params.biomass
investment_year = int(snakemake.wildcards.planning_horizons)
year = params["year"] if overnight else investment_year
scenario = params["scenario"]
if year > 2050:
logger.info("No biomass potentials for years after 2050, using 2050.")
max_year = max(AVAILABLE_BIOMASS_YEARS)
enspreso = enspreso_biomass_potentials(max_year, scenario)
elif year not in AVAILABLE_BIOMASS_YEARS:
before = int(np.floor(year / 10) * 10)
after = int(np.ceil(year / 10) * 10)
logger.info(
f"No biomass potentials for {year}, interpolating linearly between {before} and {after}."
)
enspreso_before = enspreso_biomass_potentials(before, scenario)
enspreso_after = enspreso_biomass_potentials(after, scenario)
fraction = (year - before) / (after - before)
enspreso = enspreso_before + fraction * (enspreso_after - enspreso_before)
else:
logger.info(f"Using biomass potentials for {year}.")
enspreso = enspreso_biomass_potentials(year, scenario)
enspreso = disaggregate_nuts0(enspreso)
nuts2 = build_nuts2_shapes()
df_nuts2 = gpd.GeoDataFrame(nuts2.geometry).join(enspreso)
regions = gpd.read_file(snakemake.input.regions_onshore)
df = convert_nuts2_to_regions(df_nuts2, regions)
df.to_csv(snakemake.output.biomass_potentials_all)
grouper = {v: k for k, vv in params["classes"].items() for v in vv}
df = df.T.groupby(grouper).sum().T
df = add_unsustainable_potentials(df)
df *= 1e6 # TWh/a to MWh/a
df.index.name = "MWh/a"
df.to_csv(snakemake.output.biomass_potentials)