Merge branch 'master' into jrc-idees-2020

This commit is contained in:
lisazeyen 2024-08-09 14:17:25 +02:00 committed by GitHub
commit fe9185ef3f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
28 changed files with 1852 additions and 633 deletions

0
borg-it Executable file → Normal file
View File

View File

@ -67,7 +67,6 @@ snapshots:
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable
enable:
retrieve: auto
prepare_links_p_nom: false
retrieve_databundle: true
retrieve_cost_data: true
build_cutout: false
@ -370,6 +369,23 @@ biomass:
- Sludge
municipal solid waste:
- Municipal waste
share_unsustainable_use_retained:
2020: 1
2025: 0.66
2030: 0.33
2035: 0
2040: 0
2045: 0
2050: 0
share_sustainable_potential_available:
2020: 0
2025: 0.33
2030: 0.66
2035: 1
2040: 1
2045: 1
2050: 1
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solar-thermal
solar_thermal:
@ -410,6 +426,22 @@ sector:
2045: 0.8
2050: 1.0
district_heating_loss: 0.15
forward_temperature: 90 #C
return_temperature: 50 #C
heat_source_cooling: 6 #K
heat_pump_cop_approximation:
refrigerant: ammonia
heat_exchanger_pinch_point_temperature_difference: 5 #K
isentropic_compressor_efficiency: 0.8
heat_loss: 0.0
heat_pump_sources:
urban central:
- air
urban decentral:
- air
rural:
- air
- ground
cluster_heat_buses: true
heat_demand_cutout: default
bev_dsm_restriction_value: 0.75
@ -492,7 +524,7 @@ sector:
aviation_demand_factor: 1.
HVC_demand_factor: 1.
time_dep_hp_cop: true
heat_pump_sink_T: 55.
heat_pump_sink_T_individual_heating: 55.
reduce_space_heat_exogenously: true
reduce_space_heat_exogenously_factor:
2020: 0.10 # this results in a space heat demand reduction of 10%
@ -722,7 +754,7 @@ industry:
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#costs
costs:
year: 2030
version: v0.9.0
version: v0.9.1
social_discountrate: 0.02
fill_values:
FOM: 0
@ -1040,6 +1072,7 @@ plotting:
services rural biomass boiler: '#c6cf98'
services urban decentral biomass boiler: '#dde5b5'
biomass to liquid: '#32CD32'
unsustainable bioliquids: '#32CD32'
electrobiofuels: 'red'
BioSNG: '#123456'
# power transmission

View File

@ -53,7 +53,6 @@ extensions = [
autodoc_mock_imports = [
"atlite",
"snakemake",
"pycountry",
"rioxarray",
"country_converter",
"tabula",

View File

@ -5,3 +5,5 @@ classes ,,,
-- solid biomass,--,Array of biomass comodity,The comodity that are included as solid biomass
-- not included,--,Array of biomass comodity,The comodity that are not included as a biomass potential
-- biogas,--,Array of biomass comodity,The comodity that are included as biogas
share_unsustainable_use_retained,--,Dictionary with planning horizons as keys., Share of unsustainable biomass use retained using primary production of Eurostat data as reference
share_sustainable_potential_available,--,Dictionary with planning horizons as keys., Share determines phase-in of ENSPRESO biomass potentials

1 Unit Values Description
5 -- solid biomass -- Array of biomass comodity The comodity that are included as solid biomass
6 -- not included -- Array of biomass comodity The comodity that are not included as a biomass potential
7 -- biogas -- Array of biomass comodity The comodity that are included as biogas
8 share_unsustainable_use_retained -- Dictionary with planning horizons as keys. Share of unsustainable biomass use retained using primary production of Eurostat data as reference
9 share_sustainable_potential_available -- Dictionary with planning horizons as keys. Share determines phase-in of ENSPRESO biomass potentials

View File

@ -1,6 +1,5 @@
,Unit,Values,Description
enable,str or bool,"{auto, true, false}","Switch to include (true) or exclude (false) the retrieve_* rules of snakemake into the workflow; 'auto' sets true|false based on availability of an internet connection to prevent issues with snakemake failing due to lack of internet connection."
prepare_links_p_nom,bool,"{true, false}","Switch to retrieve current HVDC projects from `Wikipedia <https://en.wikipedia.org/wiki/List_of_HVDC_projects>`_"
retrieve_databundle,bool,"{true, false}","Switch to retrieve databundle from zenodo via the rule :mod:`retrieve_databundle` or whether to keep a custom databundle located in the corresponding folder."
retrieve_cost_data,bool,"{true, false}","Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_."
build_cutout,bool,"{true, false}","Switch to enable the building of cutouts via the rule :mod:`build_cutout`."

1 Unit Values Description
2 enable str or bool {auto, true, false} Switch to include (true) or exclude (false) the retrieve_* rules of snakemake into the workflow; 'auto' sets true|false based on availability of an internet connection to prevent issues with snakemake failing due to lack of internet connection.
prepare_links_p_nom bool {true, false} Switch to retrieve current HVDC projects from `Wikipedia <https://en.wikipedia.org/wiki/List_of_HVDC_projects>`_
3 retrieve_databundle bool {true, false} Switch to retrieve databundle from zenodo via the rule :mod:`retrieve_databundle` or whether to keep a custom databundle located in the corresponding folder.
4 retrieve_cost_data bool {true, false} Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_.
5 build_cutout bool {true, false} Switch to enable the building of cutouts via the rule :mod:`build_cutout`.

View File

@ -9,6 +9,18 @@ district_heating,--,,`prepare_sector_network.py <https://github.com/PyPSA/pypsa-
-- potential,--,float,maximum fraction of urban demand which can be supplied by district heating
-- progress,--,Dictionary with planning horizons as keys., Increase of today's district heating demand to potential maximum district heating share. Progress = 0 means today's district heating share. Progress = 1 means maximum fraction of urban demand is supplied by district heating
-- district_heating_loss,--,float,Share increase in district heat demand in urban central due to heat losses
-- forward_temperature,°C,float,Forward temperature in district heating
-- return_temperature,°C,float,Return temperature in district heating. Must be lower than forward temperature
-- heat_source_cooling,K,float,Cooling of heat source for heat pumps
-- heat_pump_cop_approximation,,,
-- -- refrigerant,--,"{ammonia, isobutane}",Heat pump refrigerant assumed for COP approximation
-- -- heat_exchanger_pinch_point_temperature_difference,K,float,Heat pump pinch point temperature difference in heat exchangers assumed for approximation.
-- -- isentropic_compressor_efficiency,--,float,Isentropic efficiency of heat pump compressor assumed for approximation. Must be between 0 and 1.
-- -- heat_loss,--,float,Heat pump heat loss assumed for approximation. Must be between 0 and 1.
-- heat_pump_sources,--,,
-- -- urban central,--,List of heat sources for heat pumps in urban central heating,
-- -- urban decentral,--,List of heat sources for heat pumps in urban decentral heating,
-- -- rural,--,List of heat sources for heat pumps in rural heating,
cluster_heat_buses,--,"{true, false}",Cluster residential and service heat buses in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_ to one to save memory.
,,,
bev_dsm_restriction _value,--,float,Adds a lower state of charge (SOC) limit for battery electric vehicles (BEV) to manage its own energy demand (DSM). Located in `build_transport_demand.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_transport_demand.py>`_. Set to 0 for no restriction on BEV DSM

1 Unit Values Description
9 -- potential -- float maximum fraction of urban demand which can be supplied by district heating
10 -- progress -- Dictionary with planning horizons as keys. Increase of today's district heating demand to potential maximum district heating share. Progress = 0 means today's district heating share. Progress = 1 means maximum fraction of urban demand is supplied by district heating
11 -- district_heating_loss -- float Share increase in district heat demand in urban central due to heat losses
12 -- forward_temperature °C float Forward temperature in district heating
13 -- return_temperature °C float Return temperature in district heating. Must be lower than forward temperature
14 -- heat_source_cooling K float Cooling of heat source for heat pumps
15 -- heat_pump_cop_approximation
16 -- -- refrigerant -- {ammonia, isobutane} Heat pump refrigerant assumed for COP approximation
17 -- -- heat_exchanger_pinch_point_temperature_difference K float Heat pump pinch point temperature difference in heat exchangers assumed for approximation.
18 -- -- isentropic_compressor_efficiency -- float Isentropic efficiency of heat pump compressor assumed for approximation. Must be between 0 and 1.
19 -- -- heat_loss -- float Heat pump heat loss assumed for approximation. Must be between 0 and 1.
20 -- heat_pump_sources --
21 -- -- urban central -- List of heat sources for heat pumps in urban central heating
22 -- -- urban decentral -- List of heat sources for heat pumps in urban decentral heating
23 -- -- rural -- List of heat sources for heat pumps in rural heating
24 cluster_heat_buses -- {true, false} Cluster residential and service heat buses in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_ to one to save memory.
25
26 bev_dsm_restriction _value -- float Adds a lower state of charge (SOC) limit for battery electric vehicles (BEV) to manage its own energy demand (DSM). Located in `build_transport_demand.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_transport_demand.py>`_. Set to 0 for no restriction on BEV DSM

View File

@ -41,11 +41,6 @@ Rule ``build_cutout``
.. automodule:: build_cutout
Rule ``prepare_links_p_nom``
===============================
.. automodule:: prepare_links_p_nom
.. _base:
Rule ``base_network``

View File

@ -19,6 +19,14 @@ Upcoming Release
* Add flag ``sector: fossil_fuels`` in config to remove the option of importing fossil fuels
* Added unsustainable biomass potentials for solid, gaseous, and liquid biomass. The potentials can be phased-out and/or
substituted by the phase-in of sustainable biomass types using the config parameters
``biomass: share_unsustainable_use_retained`` and ``biomass: share_sustainable_potential_available``.
* The rule ``prepare_links_p_nom`` was removed since it was outdated and not used.
* Changed heat pump COP approximation for central heating to be based on `Jensen et al. (2018) <https://backend.orbit.dtu.dk/ws/portalfiles/portal/151965635/MAIN_Final.pdf>`__ and a default forward temperature of 90C. This is more realistic for district heating than the previously used approximation method.
* split solid biomass potentials into solid biomass and municipal solid waste. Add option to use municipal solid waste. This option is only activated in combination with the flag ``waste_to_energy``
* Add option to import solid biomass

View File

@ -17,7 +17,6 @@ tabula-py
# cartopy
scikit-learn
pycountry
pyyaml
seaborn
memory_profiler

View File

@ -18,7 +18,6 @@ dependencies:
# Dependencies of the workflow itself
- xlrd
- openpyxl!=3.1.1
- pycountry
- seaborn
- snakemake-minimal>=8.14
- memory_profiler

View File

@ -2,21 +2,6 @@
#
# SPDX-License-Identifier: MIT
if config["enable"].get("prepare_links_p_nom", False):
rule prepare_links_p_nom:
output:
"data/links_p_nom.csv",
log:
logs("prepare_links_p_nom.log"),
threads: 1
resources:
mem_mb=1500,
conda:
"../envs/environment.yaml"
script:
"../scripts/prepare_links_p_nom.py"
rule build_electricity_demand:
params:
@ -106,8 +91,8 @@ rule build_shapes:
params:
countries=config_provider("countries"),
input:
naturalearth=ancient("data/bundle/naturalearth/ne_10m_admin_0_countries.shp"),
eez=ancient("data/bundle/eez/World_EEZ_v8_2014.shp"),
naturalearth=ancient("data/naturalearth/ne_10m_admin_0_countries_deu.shp"),
eez=ancient("data/eez/World_EEZ_v12_20231025_gpkg/eez_v12.gpkg"),
nuts3=ancient("data/bundle/NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp"),
nuts3pop=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"),
nuts3gdp=ancient("data/bundle/nama_10r_3gdp.tsv.gz"),

View File

@ -217,13 +217,27 @@ rule build_temperature_profiles:
rule build_cop_profiles:
params:
heat_pump_sink_T=config_provider("sector", "heat_pump_sink_T"),
heat_pump_sink_T_decentral_heating=config_provider(
"sector", "heat_pump_sink_T_individual_heating"
),
forward_temperature_central_heating=config_provider(
"sector", "district_heating", "forward_temperature"
),
return_temperature_central_heating=config_provider(
"sector", "district_heating", "return_temperature"
),
heat_source_cooling_central_heating=config_provider(
"sector", "district_heating", "heat_source_cooling"
),
heat_pump_cop_approximation_central_heating=config_provider(
"sector", "district_heating", "heat_pump_cop_approximation"
),
heat_pump_sources=config_provider("sector", "heat_pump_sources"),
input:
temp_soil_total=resources("temp_soil_total_elec_s{simpl}_{clusters}.nc"),
temp_air_total=resources("temp_air_total_elec_s{simpl}_{clusters}.nc"),
output:
cop_soil_total=resources("cop_soil_total_elec_s{simpl}_{clusters}.nc"),
cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"),
cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"),
resources:
mem_mb=20000,
log:
@ -233,7 +247,7 @@ rule build_cop_profiles:
conda:
"../envs/environment.yaml"
script:
"../scripts/build_cop_profiles.py"
"../scripts/build_cop_profiles/run.py"
def solar_thermal_cutout(wildcards):
@ -331,7 +345,8 @@ rule build_biomass_potentials:
"https://zenodo.org/records/10356004/files/ENSPRESO_BIOMASS.xlsx",
keep_local=True,
),
nuts2="data/bundle/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21
eurostat="data/eurostat/Balances-April2023",
nuts2="data/bundle/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson",
regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"),
nuts3_population=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"),
swiss_cantons=ancient("data/ch_cantons.csv"),
@ -344,7 +359,7 @@ rule build_biomass_potentials:
biomass_potentials=resources(
"biomass_potentials_s{simpl}_{clusters}_{planning_horizons}.csv"
),
threads: 1
threads: 8
resources:
mem_mb=1000,
log:
@ -943,7 +958,10 @@ rule prepare_sector_network:
countries=config_provider("countries"),
adjustments=config_provider("adjustments", "sector"),
emissions_scope=config_provider("energy", "emissions"),
biomass=config_provider("biomass"),
RDIR=RDIR,
heat_pump_sources=config_provider("sector", "heat_pump_sources"),
heat_systems=config_provider("sector", "heat_systems"),
input:
unpack(input_profile_offwind),
**rules.cluster_gas_network.output,
@ -1020,8 +1038,7 @@ rule prepare_sector_network:
),
temp_soil_total=resources("temp_soil_total_elec_s{simpl}_{clusters}.nc"),
temp_air_total=resources("temp_air_total_elec_s{simpl}_{clusters}.nc"),
cop_soil_total=resources("cop_soil_total_elec_s{simpl}_{clusters}.nc"),
cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"),
cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"),
solar_thermal_total=lambda w: (
resources("solar_thermal_total_elec_s{simpl}_{clusters}.nc")
if config_provider("sector", "solar_thermal")(w)

View File

@ -4,6 +4,7 @@
import requests
from datetime import datetime, timedelta
from shutil import move, unpack_archive
if config["enable"].get("retrieve", "auto") == "auto":
config["enable"]["retrieve"] = has_internet_access()
@ -15,8 +16,6 @@ if config["enable"]["retrieve"] is False:
if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle", True):
datafiles = [
"je-e-21.03.02.xls",
"eez/World_EEZ_v8_2014.shp",
"naturalearth/ne_10m_admin_0_countries.shp",
"NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp",
"nama_10r_3popgdp.tsv.gz",
"nama_10r_3gdp.tsv.gz",
@ -223,6 +222,64 @@ if config["enable"]["retrieve"]:
move(input[0], output[0])
if config["enable"]["retrieve"]:
rule retrieve_eez:
params:
zip="data/eez/World_EEZ_v12_20231025_gpkg.zip",
output:
gpkg="data/eez/World_EEZ_v12_20231025_gpkg/eez_v12.gpkg",
run:
import os
import requests
from uuid import uuid4
name = str(uuid4())[:8]
org = str(uuid4())[:8]
response = requests.post(
"https://www.marineregions.org/download_file.php",
params={"name": "World_EEZ_v12_20231025_gpkg.zip"},
data={
"name": name,
"organisation": org,
"email": f"{name}@{org}.org",
"country": "Germany",
"user_category": "academia",
"purpose_category": "Research",
"agree": "1",
},
)
with open(params["zip"], "wb") as f:
f.write(response.content)
output_folder = Path(params["zip"]).parent
unpack_archive(params["zip"], output_folder)
os.remove(params["zip"])
if config["enable"]["retrieve"]:
# Download directly from naciscdn.org which is a redirect from naturalearth.com
# (https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/)
# Use point-of-view (POV) variant of Germany so that Crimea is included.
rule retrieve_naturalearth_countries:
input:
storage(
"https://naciscdn.org/naturalearth/10m/cultural/ne_10m_admin_0_countries_deu.zip"
),
params:
zip="data/naturalearth/ne_10m_admin_0_countries_deu.zip",
output:
countries="data/naturalearth/ne_10m_admin_0_countries_deu.shp",
run:
move(input[0], params["zip"])
output_folder = Path(output["countries"]).parent
unpack_archive(params["zip"], output_folder)
os.remove(params["zip"])
if config["enable"]["retrieve"]:
# Some logic to find the correct file URL
# Sometimes files are released delayed or ahead of schedule, check which file is currently available

View File

@ -9,6 +9,7 @@ rule add_existing_baseyear:
sector=config_provider("sector"),
existing_capacities=config_provider("existing_capacities"),
costs=config_provider("costs"),
heat_pump_sources=config_provider("sector", "heat_pump_sources"),
input:
network=RESULTS
+ "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
@ -21,8 +22,7 @@ rule add_existing_baseyear:
config_provider("scenario", "planning_horizons", 0)(w)
)
),
cop_soil_total=resources("cop_soil_total_elec_s{simpl}_{clusters}.nc"),
cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"),
cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"),
existing_heating_distribution=resources(
"existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
),
@ -69,6 +69,7 @@ rule add_brownfield:
snapshots=config_provider("snapshots"),
drop_leap_day=config_provider("enable", "drop_leap_day"),
carriers=config_provider("electricity", "renewable_carriers"),
heat_pump_sources=config_provider("sector", "heat_pump_sources"),
input:
unpack(input_profile_tech_brownfield),
simplify_busmap=resources("busmap_elec_s{simpl}.csv"),
@ -77,8 +78,7 @@ rule add_brownfield:
+ "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
network_p=solved_previous_horizon, #solved network at previous time step
costs=resources("costs_{planning_horizons}.csv"),
cop_soil_total=resources("cop_soil_total_elec_s{simpl}_{clusters}.nc"),
cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"),
cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"),
output:
RESULTS
+ "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",

View File

@ -7,6 +7,7 @@ rule add_existing_baseyear:
sector=config_provider("sector"),
existing_capacities=config_provider("existing_capacities"),
costs=config_provider("costs"),
heat_pump_sources=config_provider("sector", "heat_pump_sources"),
input:
network=RESULTS
+ "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
@ -19,8 +20,7 @@ rule add_existing_baseyear:
config_provider("scenario", "planning_horizons", 0)(w)
)
),
cop_soil_total=resources("cop_soil_total_elec_s{simpl}_{clusters}.nc"),
cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"),
cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"),
existing_heating_distribution=resources(
"existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
),

View File

@ -24,6 +24,10 @@ from _helpers import (
from add_electricity import sanitize_carriers
from prepare_sector_network import cluster_heat_buses, define_spatial, prepare_costs
from scripts.definitions.heat_sector import HeatSector
from scripts.definitions.heat_system import HeatSystem
from scripts.definitions.heat_system_type import HeatSystemType
logger = logging.getLogger(__name__)
cc = coco.CountryConverter()
idx = pd.IndexSlice
@ -416,14 +420,14 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
def add_heating_capacities_installed_before_baseyear(
n,
baseyear,
grouping_years,
ashp_cop,
gshp_cop,
time_dep_hp_cop,
costs,
default_lifetime,
n: pypsa.Network,
baseyear: int,
grouping_years: list,
cop: dict,
time_dep_hp_cop: bool,
costs: pd.DataFrame,
default_lifetime: int,
existing_heating: pd.DataFrame,
):
"""
Parameters
@ -435,36 +439,30 @@ def add_heating_capacities_installed_before_baseyear(
currently assumed heating capacities split between residential and
services proportional to heating load in both 50% capacities
in rural buses 50% in urban buses
cop: xr.DataArray
DataArray with time-dependent coefficients of performance (COPs) heat pumps. Coordinates are heat sources (see config), heat system types (see :file:`scripts/enums/HeatSystemType.py`), nodes and snapshots.
time_dep_hp_cop: bool
If True, time-dependent (dynamic) COPs are used for heat pumps
"""
logger.debug(f"Adding heating capacities installed before {baseyear}")
existing_heating = pd.read_csv(
snakemake.input.existing_heating_distribution, header=[0, 1], index_col=0
for heat_system in existing_heating.columns.get_level_values(0).unique():
heat_system = HeatSystem(heat_system)
nodes = pd.Index(
n.buses.location[n.buses.index.str.contains(f"{heat_system} heat")]
)
for name in existing_heating.columns.get_level_values(0).unique():
name_type = "central" if name == "urban central" else "decentral"
nodes = pd.Index(n.buses.location[n.buses.index.str.contains(f"{name} heat")])
if (name_type != "central") and options["electricity_distribution_grid"]:
if (not heat_system == HeatSystem.URBAN_CENTRAL) and options[
"electricity_distribution_grid"
]:
nodes_elec = nodes + " low voltage"
else:
nodes_elec = nodes
heat_pump_type = "air" if "urban" in name else "ground"
# Add heat pumps
costs_name = f"decentral {heat_pump_type}-sourced heat pump"
cop = {"air": ashp_cop, "ground": gshp_cop}
if time_dep_hp_cop:
efficiency = cop[heat_pump_type][nodes]
else:
efficiency = costs.at[costs_name, "efficiency"]
too_large_grouping_years = [gy for gy in grouping_years if gy >= int(baseyear)]
too_large_grouping_years = [
gy for gy in grouping_years if gy >= int(baseyear)
]
if too_large_grouping_years:
logger.warning(
f"Grouping years >= baseyear are ignored. Dropping {too_large_grouping_years}."
@ -488,18 +486,37 @@ def add_heating_capacities_installed_before_baseyear(
ratios = _years / _years.sum()
for ratio, grouping_year in zip(ratios, valid_grouping_years):
# Add heat pumps
for heat_source in snakemake.params.heat_pump_sources[
heat_system.system_type.value
]:
costs_name = heat_system.heat_pump_costs_name(heat_source)
efficiency = (
cop.sel(
heat_system=heat_system.system_type.value,
heat_source=heat_source,
name=nodes,
)
.to_pandas()
.reindex(index=n.snapshots)
if time_dep_hp_cop
else costs.at[costs_name, "efficiency"]
)
n.madd(
"Link",
nodes,
suffix=f" {name} {heat_pump_type} heat pump-{grouping_year}",
suffix=f" {heat_system} {heat_source} heat pump-{grouping_year}",
bus0=nodes_elec,
bus1=nodes + " " + name + " heat",
carrier=f"{name} {heat_pump_type} heat pump",
bus1=nodes + " " + heat_system.value + " heat",
carrier=f"{heat_system} {heat_source} heat pump",
efficiency=efficiency,
capital_cost=costs.at[costs_name, "efficiency"]
* costs.at[costs_name, "fixed"],
p_nom=existing_heating.loc[nodes, (name, f"{heat_pump_type} heat pump")]
p_nom=existing_heating.loc[
nodes, (heat_system.value, f"{heat_source} heat pump")
]
* ratio
/ costs.at[costs_name, "efficiency"],
build_year=int(grouping_year),
@ -510,66 +527,70 @@ def add_heating_capacities_installed_before_baseyear(
n.madd(
"Link",
nodes,
suffix=f" {name} resistive heater-{grouping_year}",
suffix=f" {heat_system} resistive heater-{grouping_year}",
bus0=nodes_elec,
bus1=nodes + " " + name + " heat",
carrier=name + " resistive heater",
efficiency=costs.at[f"{name_type} resistive heater", "efficiency"],
bus1=nodes + " " + heat_system.value + " heat",
carrier=heat_system.value + " resistive heater",
efficiency=costs.at[
heat_system.resistive_heater_costs_name, "efficiency"
],
capital_cost=(
costs.at[f"{name_type} resistive heater", "efficiency"]
* costs.at[f"{name_type} resistive heater", "fixed"]
costs.at[heat_system.resistive_heater_costs_name, "efficiency"]
* costs.at[heat_system.resistive_heater_costs_name, "fixed"]
),
p_nom=(
existing_heating.loc[nodes, (name, "resistive heater")]
existing_heating.loc[nodes, (heat_system.value, "resistive heater")]
* ratio
/ costs.at[f"{name_type} resistive heater", "efficiency"]
/ costs.at[heat_system.resistive_heater_costs_name, "efficiency"]
),
build_year=int(grouping_year),
lifetime=costs.at[f"{name_type} resistive heater", "lifetime"],
lifetime=costs.at[heat_system.resistive_heater_costs_name, "lifetime"],
)
n.madd(
"Link",
nodes,
suffix=f" {name} gas boiler-{grouping_year}",
suffix=f"{heat_system} gas boiler-{grouping_year}",
bus0="EU gas" if "EU gas" in spatial.gas.nodes else nodes + " gas",
bus1=nodes + " " + name + " heat",
bus1=nodes + " " + heat_system.value + " heat",
bus2="co2 atmosphere",
carrier=name + " gas boiler",
efficiency=costs.at[f"{name_type} gas boiler", "efficiency"],
carrier=heat_system.value + " gas boiler",
efficiency=costs.at[heat_system.gas_boiler_costs_name, "efficiency"],
efficiency2=costs.at["gas", "CO2 intensity"],
capital_cost=(
costs.at[f"{name_type} gas boiler", "efficiency"]
* costs.at[f"{name_type} gas boiler", "fixed"]
costs.at[heat_system.gas_boiler_costs_name, "efficiency"]
* costs.at[heat_system.gas_boiler_costs_name, "fixed"]
),
p_nom=(
existing_heating.loc[nodes, (name, "gas boiler")]
existing_heating.loc[nodes, (heat_system.value, "gas boiler")]
* ratio
/ costs.at[f"{name_type} gas boiler", "efficiency"]
/ costs.at[heat_system.gas_boiler_costs_name, "efficiency"]
),
build_year=int(grouping_year),
lifetime=costs.at[f"{name_type} gas boiler", "lifetime"],
lifetime=costs.at[heat_system.gas_boiler_costs_name, "lifetime"],
)
n.madd(
"Link",
nodes,
suffix=f" {name} oil boiler-{grouping_year}",
suffix=f" {heat_system} oil boiler-{grouping_year}",
bus0=spatial.oil.nodes,
bus1=nodes + " " + name + " heat",
bus1=nodes + " " + heat_system.value + " heat",
bus2="co2 atmosphere",
carrier=name + " oil boiler",
efficiency=costs.at["decentral oil boiler", "efficiency"],
carrier=heat_system.value + " oil boiler",
efficiency=costs.at[heat_system.oil_boiler_costs_name, "efficiency"],
efficiency2=costs.at["oil", "CO2 intensity"],
capital_cost=costs.at["decentral oil boiler", "efficiency"]
* costs.at["decentral oil boiler", "fixed"],
capital_cost=costs.at[heat_system.oil_boiler_costs_name, "efficiency"]
* costs.at[heat_system.oil_boiler_costs_name, "fixed"],
p_nom=(
existing_heating.loc[nodes, (name, "oil boiler")]
existing_heating.loc[nodes, (heat_system.value, "oil boiler")]
* ratio
/ costs.at["decentral oil boiler", "efficiency"]
/ costs.at[heat_system.oil_boiler_costs_name, "efficiency"]
),
build_year=int(grouping_year),
lifetime=costs.at[f"{name_type} gas boiler", "lifetime"],
lifetime=costs.at[
f"{heat_system.central_or_decentral} gas boiler", "lifetime"
],
)
# delete links with p_nom=nan corresponding to extra nodes in country
@ -639,29 +660,22 @@ if __name__ == "__main__":
)
if options["heating"]:
time_dep_hp_cop = options["time_dep_hp_cop"]
ashp_cop = (
xr.open_dataarray(snakemake.input.cop_air_total)
.to_pandas()
.reindex(index=n.snapshots)
)
gshp_cop = (
xr.open_dataarray(snakemake.input.cop_soil_total)
.to_pandas()
.reindex(index=n.snapshots)
)
default_lifetime = snakemake.params.existing_capacities[
"default_heating_lifetime"
]
add_heating_capacities_installed_before_baseyear(
n,
baseyear,
grouping_years_heat,
ashp_cop,
gshp_cop,
time_dep_hp_cop,
costs,
default_lifetime,
n=n,
baseyear=baseyear,
grouping_years=grouping_years_heat,
cop=xr.open_dataarray(snakemake.input.cop_profiles),
time_dep_hp_cop=options["time_dep_hp_cop"],
costs=costs,
default_lifetime=snakemake.params.existing_capacities[
"default_heating_lifetime"
],
existing_heating=pd.read_csv(
snakemake.input.existing_heating_distribution,
header=[0, 1],
index_col=0,
),
)
if options.get("cluster_heat_buses", False):

View File

@ -13,11 +13,51 @@ import geopandas as gpd
import numpy as np
import pandas as pd
from _helpers import configure_logging, set_scenario_config
from build_energy_totals import build_eurostat
logger = logging.getLogger(__name__)
AVAILABLE_BIOMASS_YEARS = [2010, 2020, 2030, 2040, 2050]
def _calc_unsustainable_potential(df, df_unsustainable, share_unsus, resource_type):
"""
Calculate the unsustainable biomass potential for a given resource type or
regex.
Parameters
----------
df : pd.DataFrame
The dataframe with sustainable biomass potentials.
df_unsustainable : pd.DataFrame
The dataframe with unsustainable biomass potentials.
share_unsus : float
The share of unsustainable biomass potential retained.
resource_type : str or regex
The resource type to calculate the unsustainable potential for.
Returns
-------
pd.Series
The unsustainable biomass potential for the given resource type or regex.
"""
if "|" in resource_type:
resource_potential = df_unsustainable.filter(regex=resource_type).sum(axis=1)
else:
resource_potential = df_unsustainable[resource_type]
return (
df.apply(
lambda c: c.sum()
/ df.loc[df.index.str[:2] == c.name[:2]].sum().sum()
* resource_potential.loc[c.name[:2]],
axis=1,
)
.mul(share_unsus)
.clip(lower=0)
)
def build_nuts_population_data(year=2013):
pop = pd.read_csv(
snakemake.input.nuts3_population,
@ -211,15 +251,104 @@ def convert_nuts2_to_regions(bio_nuts2, regions):
return bio_regions
def add_unsustainable_potentials(df):
"""
Add unsustainable biomass potentials to the given dataframe. The difference
between the data of JRC and Eurostat is assumed to be unsustainable
biomass.
Parameters
----------
df : pd.DataFrame
The dataframe with sustainable biomass potentials.
unsustainable_biomass : str
Path to the file with unsustainable biomass potentials.
Returns
-------
pd.DataFrame
The dataframe with added unsustainable biomass potentials.
"""
if "GB" in snakemake.config["countries"]:
latest_year = 2019
else:
latest_year = 2021
idees_rename = {"GR": "EL", "GB": "UK"}
df_unsustainable = (
build_eurostat(
countries=snakemake.config["countries"],
input_eurostat=snakemake.input.eurostat,
nprocesses=int(snakemake.threads),
)
.xs(
max(min(latest_year, int(snakemake.wildcards.planning_horizons)), 1990),
level=1,
)
.xs("Primary production", level=2)
.droplevel([1, 2, 3])
)
df_unsustainable.index = df_unsustainable.index.str.strip()
df_unsustainable = df_unsustainable.rename(
{v: k for k, v in idees_rename.items()}, axis=0
)
bio_carriers = [
"Primary solid biofuels",
"Biogases",
"Renewable municipal waste",
"Pure biogasoline",
"Blended biogasoline",
"Pure biodiesels",
"Blended biodiesels",
"Pure bio jet kerosene",
"Blended bio jet kerosene",
"Other liquid biofuels",
]
df_unsustainable = df_unsustainable[bio_carriers]
# Phase out unsustainable biomass potentials linearly from 2020 to 2035 while phasing in sustainable potentials
share_unsus = params.get("share_unsustainable_use_retained").get(investment_year)
df_wo_ch = df.drop(df.filter(regex="CH\d", axis=0).index)
# Calculate unsustainable solid biomass
df_wo_ch["unsustainable solid biomass"] = _calc_unsustainable_potential(
df_wo_ch, df_unsustainable, share_unsus, "Primary solid biofuels"
)
# Calculate unsustainable biogas
df_wo_ch["unsustainable biogas"] = _calc_unsustainable_potential(
df_wo_ch, df_unsustainable, share_unsus, "Biogases"
)
# Calculate unsustainable bioliquids
df_wo_ch["unsustainable bioliquids"] = _calc_unsustainable_potential(
df_wo_ch,
df_unsustainable,
share_unsus,
resource_type="gasoline|diesel|kerosene|liquid",
)
share_sus = params.get("share_sustainable_potential_available").get(investment_year)
df *= share_sus
df = df.join(df_wo_ch.filter(like="unsustainable")).fillna(0)
return df
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_biomass_potentials",
simpl="",
clusters="5",
planning_horizons=2050,
clusters="37",
planning_horizons=2020,
)
configure_logging(snakemake)
@ -269,6 +398,8 @@ if __name__ == "__main__":
grouper = {v: k for k, vv in params["classes"].items() for v in vv}
df = df.T.groupby(grouper).sum().T
df = add_unsustainable_potentials(df)
df *= 1e6 # TWh/a to MWh/a
df.index.name = "MWh/a"

View File

@ -1,69 +0,0 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Build coefficient of performance (COP) time series for air- or ground-sourced
heat pumps.
The COP is approximated as a quatratic function of the temperature difference between source and
sink, based on Staffell et al. 2012.
This rule is executed in ``build_sector.smk``.
Relevant Settings
-----------------
.. code:: yaml
heat_pump_sink_T:
Inputs:
-------
- ``resources/<run_name>/temp_soil_total_elec_s<simpl>_<clusters>.nc``: Soil temperature (total) time series.
- ``resources/<run_name>/temp_air_total_elec_s<simpl>_<clusters>.nc``: Ambient air temperature (total) time series.
Outputs:
--------
- ``resources/cop_soil_total_elec_s<simpl>_<clusters>.nc``: COP (ground-sourced) time series (total).
- ``resources/cop_air_total_elec_s<simpl>_<clusters>.nc``: COP (air-sourced) time series (total).
References
----------
[1] Staffell et al., Energy & Environmental Science 11 (2012): A review of domestic heat pumps, https://doi.org/10.1039/C2EE22653G.
"""
import xarray as xr
from _helpers import set_scenario_config
def coefficient_of_performance(delta_T, source="air"):
if source == "air":
return 6.81 - 0.121 * delta_T + 0.000630 * delta_T**2
elif source == "soil":
return 8.77 - 0.150 * delta_T + 0.000734 * delta_T**2
else:
raise NotImplementedError("'source' must be one of ['air', 'soil']")
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_cop_profiles",
simpl="",
clusters=48,
)
set_scenario_config(snakemake)
for source in ["air", "soil"]:
source_T = xr.open_dataarray(snakemake.input[f"temp_{source}_total"])
delta_T = snakemake.params.heat_pump_sink_T - source_T
cop = coefficient_of_performance(delta_T, source)
cop.to_netcdf(snakemake.output[f"cop_{source}_total"])

View File

@ -0,0 +1,111 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from abc import ABC, abstractmethod
from typing import Union
import numpy as np
import xarray as xr
class BaseCopApproximator(ABC):
"""
Abstract class for approximating the coefficient of performance (COP) of a
heat pump.
Attributes:
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
Methods:
-------
__init__(self, forward_temperature_celsius, source_inlet_temperature_celsius)
Initialize CopApproximator.
approximate_cop(self)
Approximate heat pump coefficient of performance (COP).
celsius_to_kelvin(t_celsius)
Convert temperature from Celsius to Kelvin.
logarithmic_mean(t_hot, t_cold)
Calculate the logarithmic mean temperature difference.
"""
def __init__(
self,
forward_temperature_celsius: Union[xr.DataArray, np.array],
source_inlet_temperature_celsius: Union[xr.DataArray, np.array],
):
"""
Initialize CopApproximator.
Parameters:
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
"""
pass
@abstractmethod
def approximate_cop(self) -> Union[xr.DataArray, np.array]:
"""
Approximate heat pump coefficient of performance (COP).
Returns:
-------
Union[xr.DataArray, np.array]
The calculated COP values.
"""
pass
@staticmethod
def celsius_to_kelvin(
t_celsius: Union[float, xr.DataArray, np.array]
) -> Union[float, xr.DataArray, np.array]:
"""
Convert temperature from Celsius to Kelvin.
Parameters:
----------
t_celsius : Union[float, xr.DataArray, np.array]
Temperature in Celsius.
Returns:
-------
Union[float, xr.DataArray, np.array]
Temperature in Kelvin.
"""
if (np.asarray(t_celsius) > 200).any():
raise ValueError(
"t_celsius > 200. Are you sure you are using the right units?"
)
return t_celsius + 273.15
@staticmethod
def logarithmic_mean(
t_hot: Union[float, xr.DataArray, np.ndarray],
t_cold: Union[float, xr.DataArray, np.ndarray],
) -> Union[float, xr.DataArray, np.ndarray]:
"""
Calculate the logarithmic mean temperature difference.
Parameters:
----------
t_hot : Union[float, xr.DataArray, np.ndarray]
Hot temperature.
t_cold : Union[float, xr.DataArray, np.ndarray]
Cold temperature.
Returns:
-------
Union[float, xr.DataArray, np.ndarray]
Logarithmic mean temperature difference.
"""
if (np.asarray(t_hot <= t_cold)).any():
raise ValueError("t_hot must be greater than t_cold")
return (t_hot - t_cold) / np.log(t_hot / t_cold)

View File

@ -0,0 +1,392 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from typing import Union
import numpy as np
import xarray as xr
from BaseCopApproximator import BaseCopApproximator
class CentralHeatingCopApproximator(BaseCopApproximator):
"""
Approximate the coefficient of performance (COP) for a heat pump in a
central heating system (district heating).
Uses an approximation method proposed by Jensen et al. (2018) and
default parameters from Pieper et al. (2020). The method is based on
a thermodynamic heat pump model with some hard-to-know parameters
being approximated.
Attributes:
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
return_temperature_celsius : Union[xr.DataArray, np.array]
The return temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
source_outlet_temperature_celsius : Union[xr.DataArray, np.array]
The source outlet temperature in Celsius.
delta_t_pinch_point : float, optional
The pinch point temperature difference, by default 5.
isentropic_compressor_efficiency : float, optional
The isentropic compressor efficiency, by default 0.8.
heat_loss : float, optional
The heat loss, by default 0.0.
Methods:
-------
__init__(
forward_temperature_celsius: Union[xr.DataArray, np.array],
source_inlet_temperature_celsius: Union[xr.DataArray, np.array],
return_temperature_celsius: Union[xr.DataArray, np.array],
source_outlet_temperature_celsius: Union[xr.DataArray, np.array],
delta_t_pinch_point: float = 5,
isentropic_compressor_efficiency: float = 0.8,
heat_loss: float = 0.0,
) -> None:
Initializes the CentralHeatingCopApproximator object.
approximate_cop(self) -> Union[xr.DataArray, np.array]:
Calculate the coefficient of performance (COP) for the system.
_approximate_delta_t_refrigerant_source(
self, delta_t_source: Union[xr.DataArray, np.array]
) -> Union[xr.DataArray, np.array]:
Approximates the temperature difference between the refrigerant and the source.
_approximate_delta_t_refrigerant_sink(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.2, "isobutane": -0.0011},
b: float = {"ammonia": 0.2, "isobutane": 0.3},
c: float = {"ammonia": 0.016, "isobutane": 2.4},
) -> Union[xr.DataArray, np.array]:
Approximates the temperature difference between the refrigerant and heat sink.
_ratio_evaporation_compression_work_approximation(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.0014, "isobutane": 0.0035},
) -> Union[xr.DataArray, np.array]:
Calculate the ratio of evaporation to compression work based on approximation.
_approximate_delta_t_refrigerant_sink(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.2, "isobutane": -0.0011},
b: float = {"ammonia": 0.2, "isobutane": 0.3},
c: float = {"ammonia": 0.016, "isobutane": 2.4},
) -> Union[xr.DataArray, np.array]:
Approximates the temperature difference between the refrigerant and heat sink.
_ratio_evaporation_compression_work_approximation(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.0014, "isobutane": 0.0035},
) -> Union[xr.DataArray, np.array]:
Calculate the ratio of evaporation to compression work based on approximation.
"""
def __init__(
self,
forward_temperature_celsius: Union[xr.DataArray, np.array],
source_inlet_temperature_celsius: Union[xr.DataArray, np.array],
return_temperature_celsius: Union[xr.DataArray, np.array],
source_outlet_temperature_celsius: Union[xr.DataArray, np.array],
delta_t_pinch_point: float = 5,
isentropic_compressor_efficiency: float = 0.8,
heat_loss: float = 0.0,
) -> None:
"""
Initializes the CentralHeatingCopApproximator object.
Parameters:
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
return_temperature_celsius : Union[xr.DataArray, np.array]
The return temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
source_outlet_temperature_celsius : Union[xr.DataArray, np.array]
The source outlet temperature in Celsius.
delta_t_pinch_point : float, optional
The pinch point temperature difference, by default 5.
isentropic_compressor_efficiency : float, optional
The isentropic compressor efficiency, by default 0.8.
heat_loss : float, optional
The heat loss, by default 0.0.
"""
self.t_source_in_kelvin = BaseCopApproximator.celsius_to_kelvin(
source_inlet_temperature_celsius
)
self.t_sink_out_kelvin = BaseCopApproximator.celsius_to_kelvin(
forward_temperature_celsius
)
self.t_sink_in_kelvin = BaseCopApproximator.celsius_to_kelvin(
return_temperature_celsius
)
self.t_source_out = BaseCopApproximator.celsius_to_kelvin(
source_outlet_temperature_celsius
)
self.isentropic_efficiency_compressor_kelvin = isentropic_compressor_efficiency
self.heat_loss = heat_loss
self.delta_t_pinch = delta_t_pinch_point
def approximate_cop(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the coefficient of performance (COP) for the system.
Returns:
--------
Union[xr.DataArray, np.array]: The calculated COP values.
"""
return (
self.ideal_lorenz_cop
* (
(
1
+ (self.delta_t_refrigerant_sink + self.delta_t_pinch)
/ self.t_sink_mean_kelvin
)
/ (
1
+ (
self.delta_t_refrigerant_sink
+ self.delta_t_refrigerant_source
+ 2 * self.delta_t_pinch
)
/ self.delta_t_lift
)
)
* self.isentropic_efficiency_compressor_kelvin
* (1 - self.ratio_evaporation_compression_work)
+ 1
- self.isentropic_efficiency_compressor_kelvin
- self.heat_loss
)
@property
def t_sink_mean_kelvin(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the logarithmic mean temperature difference between the cold
and hot sinks.
Returns
-------
Union[xr.DataArray, np.array]
The mean temperature difference.
"""
return BaseCopApproximator.logarithmic_mean(
t_cold=self.t_sink_in_kelvin, t_hot=self.t_sink_out_kelvin
)
@property
def t_source_mean_kelvin(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the logarithmic mean temperature of the heat source.
Returns
-------
Union[xr.DataArray, np.array]
The mean temperature of the heat source.
"""
return BaseCopApproximator.logarithmic_mean(
t_hot=self.t_source_in_kelvin, t_cold=self.t_source_out
)
@property
def delta_t_lift(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the temperature lift as the difference between the
logarithmic sink and source temperatures.
Returns
-------
Union[xr.DataArray, np.array]
The temperature difference between the sink and source.
"""
return self.t_sink_mean_kelvin - self.t_source_mean_kelvin
@property
def ideal_lorenz_cop(self) -> Union[xr.DataArray, np.array]:
"""
Ideal Lorenz coefficient of performance (COP).
The ideal Lorenz COP is calculated as the ratio of the mean sink temperature
to the lift temperature difference.
Returns
-------
np.array
The ideal Lorenz COP.
"""
return self.t_sink_mean_kelvin / self.delta_t_lift
@property
def delta_t_refrigerant_source(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the temperature difference between the refrigerant source
inlet and outlet.
Returns
-------
Union[xr.DataArray, np.array]
The temperature difference between the refrigerant source inlet and outlet.
"""
return self._approximate_delta_t_refrigerant_source(
delta_t_source=self.t_source_in_kelvin - self.t_source_out
)
@property
def delta_t_refrigerant_sink(self) -> Union[xr.DataArray, np.array]:
"""
Temperature difference between the refrigerant and the sink based on
approximation.
Returns
-------
Union[xr.DataArray, np.array]
The temperature difference between the refrigerant and the sink.
"""
return self._approximate_delta_t_refrigerant_sink()
@property
def ratio_evaporation_compression_work(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the ratio of evaporation to compression work based on
approximation.
Returns
-------
Union[xr.DataArray, np.array]
The calculated ratio of evaporation to compression work.
"""
return self._ratio_evaporation_compression_work_approximation()
@property
def delta_t_sink(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the temperature difference at the sink.
Returns
-------
Union[xr.DataArray, np.array]
The temperature difference at the sink.
"""
return self.t_sink_out_kelvin - self.t_sink_in_kelvin
def _approximate_delta_t_refrigerant_source(
self, delta_t_source: Union[xr.DataArray, np.array]
) -> Union[xr.DataArray, np.array]:
"""
Approximates the temperature difference between the refrigerant and the
source.
Parameters
----------
delta_t_source : Union[xr.DataArray, np.array]
The temperature difference for the refrigerant source.
Returns
-------
Union[xr.DataArray, np.array]
The approximate temperature difference between the refrigerant and heat source.
"""
return delta_t_source / 2
def _approximate_delta_t_refrigerant_sink(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.2, "isobutane": -0.0011},
b: float = {"ammonia": 0.2, "isobutane": 0.3},
c: float = {"ammonia": 0.016, "isobutane": 2.4},
) -> Union[xr.DataArray, np.array]:
"""
Approximates the temperature difference between the refrigerant and
heat sink.
Parameters:
----------
refrigerant : str, optional
The refrigerant used in the system. Either 'isobutane' or 'ammonia. Default is 'ammonia'.
a : float, optional
Coefficient for the temperature difference between the sink and source, default is 0.2.
b : float, optional
Coefficient for the temperature difference at the sink, default is 0.2.
c : float, optional
Constant term, default is 0.016.
Returns:
-------
Union[xr.DataArray, np.array]
The approximate temperature difference between the refrigerant and heat sink.
Notes:
------
This function assumes ammonia as the refrigerant.
The approximate temperature difference at the refrigerant sink is calculated using the following formula:
a * (t_sink_out - t_source_out + 2 * delta_t_pinch) + b * delta_t_sink + c
"""
if refrigerant not in a.keys():
raise ValueError(
f"Invalid refrigerant '{refrigerant}'. Must be one of {a.keys()}"
)
return (
a[refrigerant]
* (self.t_sink_out_kelvin - self.t_source_out + 2 * self.delta_t_pinch)
+ b[refrigerant] * self.delta_t_sink
+ c[refrigerant]
)
def _ratio_evaporation_compression_work_approximation(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.0014, "isobutane": 0.0035},
b: float = {"ammonia": -0.0015, "isobutane": -0.0033},
c: float = {"ammonia": 0.039, "isobutane": 0.053},
) -> Union[xr.DataArray, np.array]:
"""
Calculate the ratio of evaporation to compression work approximation.
Parameters:
----------
refrigerant : str, optional
The refrigerant used in the system. Either 'isobutane' or 'ammonia. Default is 'ammonia'.
a : float, optional
Coefficient 'a' in the approximation equation. Default is 0.0014.
b : float, optional
Coefficient 'b' in the approximation equation. Default is -0.0015.
c : float, optional
Coefficient 'c' in the approximation equation. Default is 0.039.
Returns:
-------
Union[xr.DataArray, np.array]
The approximated ratio of evaporation to compression work.
Notes:
------
This function assumes ammonia as the refrigerant.
The approximation equation used is:
ratio = a * (t_sink_out - t_source_out + 2 * delta_t_pinch) + b * delta_t_sink + c
"""
if refrigerant not in a.keys():
raise ValueError(
f"Invalid refrigerant '{refrigerant}'. Must be one of {a.keys()}"
)
return (
a[refrigerant]
* (self.t_sink_out_kelvin - self.t_source_out + 2 * self.delta_t_pinch)
+ b[refrigerant] * self.delta_t_sink
+ c[refrigerant]
)

View File

@ -0,0 +1,110 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from typing import Union
import numpy as np
import xarray as xr
from BaseCopApproximator import BaseCopApproximator
class DecentralHeatingCopApproximator(BaseCopApproximator):
"""
Approximate the coefficient of performance (COP) for a heat pump in a
decentral heating system (individual/household heating).
Uses a quadratic regression on the temperature difference between the source and sink based on empirical data proposed by Staffell et al. 2012.
Attributes
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
source_type : str
The source of the heat pump. Must be either 'air' or 'ground'.
Methods
-------
__init__(forward_temperature_celsius, source_inlet_temperature_celsius, source_type)
Initialize the DecentralHeatingCopApproximator object.
approximate_cop()
Compute the COP values using quadratic regression for air-/ground-source heat pumps.
_approximate_cop_air_source()
Evaluate quadratic regression for an air-sourced heat pump.
_approximate_cop_ground_source()
Evaluate quadratic regression for a ground-sourced heat pump.
References
----------
[1] Staffell et al., Energy & Environmental Science 11 (2012): A review of domestic heat pumps, https://doi.org/10.1039/C2EE22653G.
"""
def __init__(
self,
forward_temperature_celsius: Union[xr.DataArray, np.array],
source_inlet_temperature_celsius: Union[xr.DataArray, np.array],
source_type: str,
):
"""
Initialize the DecentralHeatingCopApproximator object.
Parameters
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
source_type : str
The source of the heat pump. Must be either 'air' or 'ground'.
"""
self.delta_t = forward_temperature_celsius - source_inlet_temperature_celsius
if source_type not in ["air", "ground"]:
raise ValueError("'source_type' must be one of ['air', 'ground']")
else:
self.source_type = source_type
def approximate_cop(self) -> Union[xr.DataArray, np.array]:
"""
Compute the COP values using quadratic regression for air-/ground-
source heat pumps.
Returns
-------
Union[xr.DataArray, np.array]
The calculated COP values.
"""
if self.source_type == "air":
return self._approximate_cop_air_source()
elif self.source_type == "ground":
return self._approximate_cop_ground_source()
def _approximate_cop_air_source(self) -> Union[xr.DataArray, np.array]:
"""
Evaluate quadratic regression for an air-sourced heat pump.
COP = 6.81 - 0.121 * delta_T + 0.000630 * delta_T^2
Returns
-------
Union[xr.DataArray, np.array]
The calculated COP values.
"""
return 6.81 - 0.121 * self.delta_t + 0.000630 * self.delta_t**2
def _approximate_cop_ground_source(self) -> Union[xr.DataArray, np.array]:
"""
Evaluate quadratic regression for a ground-sourced heat pump.
COP = 8.77 - 0.150 * delta_T + 0.000734 * delta_T^2
Returns
-------
Union[xr.DataArray, np.array]
The calculated COP values.
"""
return 8.77 - 0.150 * self.delta_t + 0.000734 * self.delta_t**2

View File

@ -0,0 +1,95 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
import sys
import numpy as np
import pandas as pd
import xarray as xr
from _helpers import set_scenario_config
from CentralHeatingCopApproximator import CentralHeatingCopApproximator
from DecentralHeatingCopApproximator import DecentralHeatingCopApproximator
from scripts.definitions.heat_system_type import HeatSystemType
sys.path.append("..")
def get_cop(
heat_system_type: str,
heat_source: str,
source_inlet_temperature_celsius: xr.DataArray,
) -> xr.DataArray:
"""
Calculate the coefficient of performance (COP) for a heating system.
Parameters
----------
heat_system_type : str
The type of heating system.
heat_source : str
The heat source used in the heating system.
source_inlet_temperature_celsius : xr.DataArray
The inlet temperature of the heat source in Celsius.
Returns
-------
xr.DataArray
The calculated coefficient of performance (COP) for the heating system.
"""
if HeatSystemType(heat_system_type).is_central:
return CentralHeatingCopApproximator(
forward_temperature_celsius=snakemake.params.forward_temperature_central_heating,
return_temperature_celsius=snakemake.params.return_temperature_central_heating,
source_inlet_temperature_celsius=source_inlet_temperature_celsius,
source_outlet_temperature_celsius=source_inlet_temperature_celsius
- snakemake.params.heat_source_cooling_central_heating,
).approximate_cop()
else:
return DecentralHeatingCopApproximator(
forward_temperature_celsius=snakemake.params.heat_pump_sink_T_decentral_heating,
source_inlet_temperature_celsius=source_inlet_temperature_celsius,
source_type=heat_source,
).approximate_cop()
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_cop_profiles",
simpl="",
clusters=48,
)
set_scenario_config(snakemake)
cop_all_system_types = []
for heat_system_type, heat_sources in snakemake.params.heat_pump_sources.items():
cop_this_system_type = []
for heat_source in heat_sources:
source_inlet_temperature_celsius = xr.open_dataarray(
snakemake.input[f"temp_{heat_source.replace('ground', 'soil')}_total"]
)
cop_da = get_cop(
heat_system_type=heat_system_type,
heat_source=heat_source,
source_inlet_temperature_celsius=source_inlet_temperature_celsius,
)
cop_this_system_type.append(cop_da)
cop_all_system_types.append(
xr.concat(
cop_this_system_type, dim=pd.Index(heat_sources, name="heat_source")
)
)
cop_dataarray = xr.concat(
cop_all_system_types,
dim=pd.Index(snakemake.params.heat_pump_sources.keys(), name="heat_system"),
)
cop_dataarray.to_netcdf(snakemake.output.cop_profiles)

View File

@ -26,7 +26,7 @@ Inputs
.. image:: img/countries.png
:scale: 33 %
- ``data/bundle/eez/World_EEZ_v8_2014.shp``: World `exclusive economic zones <https://en.wikipedia.org/wiki/Exclusive_economic_zone>`_ (EEZ)
- ``data/eez/World_EEZ_v12_20231025_gpkg/eez_v12.gpkg ``: World `exclusive economic zones <https://en.wikipedia.org/wiki/Exclusive_economic_zone>`_ (EEZ)
.. image:: img/eez.png
:scale: 33 %
@ -73,22 +73,16 @@ from functools import reduce
from itertools import takewhile
from operator import attrgetter
import country_converter as coco
import geopandas as gpd
import numpy as np
import pandas as pd
import pycountry as pyc
from _helpers import configure_logging, set_scenario_config
from shapely.geometry import MultiPolygon, Polygon
logger = logging.getLogger(__name__)
def _get_country(target, **keys):
assert len(keys) == 1
try:
return getattr(pyc.countries.get(**keys), target)
except (KeyError, AttributeError):
return np.nan
cc = coco.CountryConverter()
def _simplify_polys(polys, minarea=0.1, tolerance=None, filterremote=True):
@ -135,22 +129,15 @@ def countries(naturalearth, country_list):
return s
def eez(country_shapes, eez, country_list):
def eez(eez, country_list):
df = gpd.read_file(eez)
df = df.loc[
df["ISO_3digit"].isin(
[_get_country("alpha_3", alpha_2=c) for c in country_list]
)
]
df["name"] = df["ISO_3digit"].map(lambda c: _get_country("alpha_2", alpha_3=c))
iso3_list = cc.convert(country_list, src="ISO2", to="ISO3")
df = df.query("ISO_TER1 in @iso3_list and POL_TYPE == '200NM'").copy()
df["name"] = cc.convert(df.ISO_TER1, src="ISO3", to="ISO2")
s = df.set_index("name").geometry.map(
lambda s: _simplify_polys(s, filterremote=False)
)
s = gpd.GeoSeries(
{k: v for k, v in s.items() if v.distance(country_shapes[k]) < 1e-3},
crs=df.crs,
)
s = s.to_frame("geometry")
s = s.to_frame("geometry").set_crs(df.crs)
s.index.name = "name"
return s
@ -262,9 +249,7 @@ if __name__ == "__main__":
country_shapes = countries(snakemake.input.naturalearth, snakemake.params.countries)
country_shapes.reset_index().to_file(snakemake.output.country_shapes)
offshore_shapes = eez(
country_shapes, snakemake.input.eez, snakemake.params.countries
)
offshore_shapes = eez(snakemake.input.eez, snakemake.params.countries)
offshore_shapes.reset_index().to_file(snakemake.output.offshore_shapes)
europe_shape = gpd.GeoDataFrame(

View File

@ -0,0 +1,28 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from enum import Enum
class HeatSector(Enum):
"""
Enumeration class representing different heat sectors.
Attributes:
RESIDENTIAL (str): Represents the residential heat sector.
SERVICES (str): Represents the services heat sector.
"""
RESIDENTIAL = "residential"
SERVICES = "services"
def __str__(self) -> str:
"""
Returns the string representation of the heat sector.
Returns:
str: The string representation of the heat sector.
"""
return self.value

View File

@ -0,0 +1,267 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from enum import Enum
from scripts.definitions.heat_sector import HeatSector
from scripts.definitions.heat_system_type import HeatSystemType
class HeatSystem(Enum):
"""
Enumeration representing different heat systems.
Attributes
----------
RESIDENTIAL_RURAL : str
Heat system for residential areas in rural locations.
SERVICES_RURAL : str
Heat system for service areas in rural locations.
RESIDENTIAL_URBAN_DECENTRAL : str
Heat system for residential areas in urban decentralized locations.
SERVICES_URBAN_DECENTRAL : str
Heat system for service areas in urban decentralized locations.
URBAN_CENTRAL : str
Heat system for urban central areas.
Methods
-------
__str__()
Returns the string representation of the heat system.
central_or_decentral()
Returns whether the heat system is central or decentralized.
system_type()
Returns the type of the heat system.
sector()
Returns the sector of the heat system.
rural()
Returns whether the heat system is for rural areas.
urban_decentral()
Returns whether the heat system is for urban decentralized areas.
urban()
Returns whether the heat system is for urban areas.
heat_demand_weighting(urban_fraction=None, dist_fraction=None)
Calculates the heat demand weighting based on urban fraction and distribution fraction.
heat_pump_costs_name(heat_source)
Generates the name for the heat pump costs based on the heat source.
"""
RESIDENTIAL_RURAL = "residential rural"
SERVICES_RURAL = "services rural"
RESIDENTIAL_URBAN_DECENTRAL = "residential urban decentral"
SERVICES_URBAN_DECENTRAL = "services urban decentral"
URBAN_CENTRAL = "urban central"
def __init__(self, *args):
super().__init__(*args)
def __str__(self) -> str:
"""
Returns the string representation of the heat system.
Returns
-------
str
The string representation of the heat system.
"""
return self.value
@property
def central_or_decentral(self) -> str:
"""
Returns whether the heat system is central or decentralized.
Returns
-------
str
"central" if the heat system is central, "decentral" otherwise.
"""
if self == HeatSystem.URBAN_CENTRAL:
return "central"
else:
return "decentral"
@property
def system_type(self) -> HeatSystemType:
"""
Returns the type of the heat system.
Returns
-------
str
The type of the heat system.
Raises
------
RuntimeError
If the heat system is invalid.
"""
if self == HeatSystem.URBAN_CENTRAL:
return HeatSystemType.URBAN_CENTRAL
elif (
self == HeatSystem.RESIDENTIAL_URBAN_DECENTRAL
or self == HeatSystem.SERVICES_URBAN_DECENTRAL
):
return HeatSystemType.URBAN_DECENTRAL
elif self == HeatSystem.RESIDENTIAL_RURAL or self == HeatSystem.SERVICES_RURAL:
return HeatSystemType.RURAL
else:
raise RuntimeError(f"Invalid heat system: {self}")
@property
def sector(self) -> HeatSector:
"""
Returns the sector of the heat system.
Returns
-------
HeatSector
The sector of the heat system.
"""
if (
self == HeatSystem.RESIDENTIAL_RURAL
or self == HeatSystem.RESIDENTIAL_URBAN_DECENTRAL
):
return HeatSector.RESIDENTIAL
elif (
self == HeatSystem.SERVICES_RURAL
or self == HeatSystem.SERVICES_URBAN_DECENTRAL
):
return HeatSector.SERVICES
else:
"tot"
@property
def is_rural(self) -> bool:
"""
Returns whether the heat system is for rural areas.
Returns
-------
bool
True if the heat system is for rural areas, False otherwise.
"""
if self == HeatSystem.RESIDENTIAL_RURAL or self == HeatSystem.SERVICES_RURAL:
return True
else:
return False
@property
def is_urban_decentral(self) -> bool:
"""
Returns whether the heat system is for urban decentralized areas.
Returns
-------
bool
True if the heat system is for urban decentralized areas, False otherwise.
"""
if (
self == HeatSystem.RESIDENTIAL_URBAN_DECENTRAL
or self == HeatSystem.SERVICES_URBAN_DECENTRAL
):
return True
else:
return False
@property
def is_urban(self) -> bool:
"""
Returns whether the heat system is for urban areas.
Returns
-------
bool True if the heat system is for urban areas, False otherwise.
"""
return not self.is_rural
def heat_demand_weighting(self, urban_fraction=None, dist_fraction=None) -> float:
"""
Calculates the heat demand weighting based on urban fraction and
distribution fraction.
Parameters
----------
urban_fraction : float, optional
The fraction of urban heat demand.
dist_fraction : float, optional
The fraction of distributed heat demand.
Returns
-------
float
The heat demand weighting.
Raises
------
RuntimeError
If the heat system is invalid.
"""
if "rural" in self.value:
return 1 - urban_fraction
elif "urban central" in self.value:
return dist_fraction
elif "urban decentral" in self.value:
return urban_fraction - dist_fraction
else:
raise RuntimeError(f"Invalid heat system: {self}")
def heat_pump_costs_name(self, heat_source: str) -> str:
"""
Generates the name for the heat pump costs based on the heat source and
system.
Used to retrieve data from `technology-data <https://github.com/PyPSA/technology-data>`.
Parameters
----------
heat_source : str
The heat source.
Returns
-------
str
The name for the heat pump costs.
"""
return f"{self.central_or_decentral} {heat_source}-sourced heat pump"
@property
def resistive_heater_costs_name(self) -> str:
"""
Generates the name for the resistive heater costs based on the heat
system.
Used to retrieve data from `technology-data <https://github.com/PyPSA/technology-data>`.
Returns
-------
str
The name for the heater costs.
"""
return f"{self.central_or_decentral} resistive heater"
@property
def gas_boiler_costs_name(self) -> str:
"""
Generates the name for the gas boiler costs based on the heat system.
Used to retrieve data from `technology-data <https://github.com/PyPSA/technology-data>`.
Returns
-------
str
The name for the gas boiler costs.
"""
return f"{self.central_or_decentral} gas boiler"
@property
def oil_boiler_costs_name(self) -> str:
"""
Generates the name for the oil boiler costs based on the heat system.
Used to retrieve data from `technology-data <https://github.com/PyPSA/technology-data>`.
Returns
-------
str
The name for the oil boiler costs.
"""
return "decentral oil boiler"

View File

@ -0,0 +1,35 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from enum import Enum
class HeatSystemType(Enum):
"""
Enumeration representing different types of heat systems.
"""
URBAN_CENTRAL = "urban central"
URBAN_DECENTRAL = "urban decentral"
RURAL = "rural"
def __str__(self) -> str:
"""
Returns the string representation of the heat system type.
Returns:
str: The string representation of the heat system type.
"""
return self.value
@property
def is_central(self) -> bool:
"""
Returns whether the heat system type is central.
Returns:
bool: True if the heat system type is central, False otherwise.
"""
return self == HeatSystemType.URBAN_CENTRAL

View File

@ -1,95 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Extracts capacities of HVDC links from `Wikipedia.
<https://en.wikipedia.org/wiki/List_of_HVDC_projects>`_.
Relevant Settings
-----------------
.. code:: yaml
enable:
prepare_links_p_nom:
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at
:ref:`toplevel_cf`
Inputs
------
*None*
Outputs
-------
- ``data/links_p_nom.csv``: A plain download of https://en.wikipedia.org/wiki/List_of_HVDC_projects#Europe plus extracted coordinates.
Description
-----------
*None*
"""
import logging
import pandas as pd
from _helpers import configure_logging, set_scenario_config
logger = logging.getLogger(__name__)
def multiply(s):
return s.str[0].astype(float) * s.str[1].astype(float)
def extract_coordinates(s):
regex = (
r"(\d{1,2})°(\d{1,2})(\d{1,2})″(N|S) " r"(\d{1,2})°(\d{1,2})(\d{1,2})″(E|W)"
)
e = s.str.extract(regex, expand=True)
lat = (
e[0].astype(float) + (e[1].astype(float) + e[2].astype(float) / 60.0) / 60.0
) * e[3].map({"N": +1.0, "S": -1.0})
lon = (
e[4].astype(float) + (e[5].astype(float) + e[6].astype(float) / 60.0) / 60.0
) * e[7].map({"E": +1.0, "W": -1.0})
return lon, lat
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake # rule must be enabled in config
snakemake = mock_snakemake("prepare_links_p_nom", simpl="")
configure_logging(snakemake)
set_scenario_config(snakemake)
links_p_nom = pd.read_html(
"https://en.wikipedia.org/wiki/List_of_HVDC_projects", header=0, match="SwePol"
)[0]
mw = "Power (MW)"
m_b = links_p_nom[mw].str.contains("x").fillna(False)
links_p_nom.loc[m_b, mw] = links_p_nom.loc[m_b, mw].str.split("x").pipe(multiply)
links_p_nom[mw] = (
links_p_nom[mw].str.extract("[-/]?([\d.]+)", expand=False).astype(float)
)
links_p_nom["x1"], links_p_nom["y1"] = extract_coordinates(
links_p_nom["Converterstation 1"]
)
links_p_nom["x2"], links_p_nom["y2"] = extract_coordinates(
links_p_nom["Converterstation 2"]
)
links_p_nom.dropna(subset=["x1", "y1", "x2", "y2"]).to_csv(
snakemake.output[0], index=False
)

View File

@ -37,6 +37,10 @@ from pypsa.geo import haversine_pts
from pypsa.io import import_components_from_dataframe
from scipy.stats import beta
from scripts.definitions.heat_sector import HeatSector
from scripts.definitions.heat_system import HeatSystem
from scripts.definitions.heat_system_type import HeatSystemType
spatial = SimpleNamespace()
logger = logging.getLogger(__name__)
@ -60,6 +64,7 @@ def define_spatial(nodes, options):
if options.get("biomass_spatial", options["biomass_transport"]):
spatial.biomass.nodes = nodes + " solid biomass"
spatial.biomass.bioliquids = nodes + " bioliquids"
spatial.biomass.locations = nodes
spatial.biomass.industry = nodes + " solid biomass for industry"
spatial.biomass.industry_cc = nodes + " solid biomass for industry CC"
@ -67,6 +72,7 @@ def define_spatial(nodes, options):
spatial.msw.locations = nodes
else:
spatial.biomass.nodes = ["EU solid biomass"]
spatial.biomass.bioliquids = ["EU unsustainable bioliquids"]
spatial.biomass.locations = ["EU"]
spatial.biomass.industry = ["solid biomass for industry"]
spatial.biomass.industry_cc = ["solid biomass for industry CC"]
@ -1776,7 +1782,7 @@ def build_heat_demand(n):
.unstack(level=1)
)
sectors = ["residential", "services"]
sectors = [sector.value for sector in HeatSector]
uses = ["water", "space"]
heat_demand = {}
@ -1804,10 +1810,21 @@ def build_heat_demand(n):
return heat_demand
def add_heat(n, costs):
def add_heat(n: pypsa.Network, costs: pd.DataFrame, cop: xr.DataArray):
"""
Add heat sector to the network.
Parameters:
n (pypsa.Network): The PyPSA network object.
costs (pd.DataFrame): DataFrame containing cost information.
cop (xr.DataArray): DataArray containing coefficient of performance (COP) values.
Returns:
None
"""
logger.info("Add heat sector")
sectors = ["residential", "services"]
sectors = [sector.value for sector in HeatSector]
heat_demand = build_heat_demand(n)
@ -1826,23 +1843,6 @@ def add_heat(n, costs):
for sector in sectors:
heat_demand[sector + " space"] = (1 - dE) * heat_demand[sector + " space"]
heat_systems = [
"residential rural",
"services rural",
"residential urban decentral",
"services urban decentral",
"urban central",
]
cop = {
"air": xr.open_dataarray(snakemake.input.cop_air_total)
.to_pandas()
.reindex(index=n.snapshots),
"ground": xr.open_dataarray(snakemake.input.cop_soil_total)
.to_pandas()
.reindex(index=n.snapshots),
}
if options["solar_thermal"]:
solar_thermal = (
xr.open_dataarray(snakemake.input.solar_thermal_total)
@ -1852,31 +1852,34 @@ def add_heat(n, costs):
# 1e3 converts from W/m^2 to MW/(1000m^2) = kW/m^2
solar_thermal = options["solar_cf_correction"] * solar_thermal / 1e3
for name in heat_systems:
name_type = "central" if name == "urban central" else "decentral"
for (
heat_system
) in (
HeatSystem
): # this loops through all heat systems defined in _entities.HeatSystem
if name == "urban central":
if heat_system == HeatSystem.URBAN_CENTRAL:
nodes = dist_fraction.index[dist_fraction > 0]
else:
nodes = pop_layout.index
n.add("Carrier", name + " heat")
n.add("Carrier", f"{heat_system} heat")
n.madd(
"Bus",
nodes + f" {name} heat",
nodes + f" {heat_system.value} heat",
location=nodes,
carrier=name + " heat",
carrier=f"{heat_system.value} heat",
unit="MWh_th",
)
if name == "urban central" and options.get("central_heat_vent"):
if heat_system == HeatSystem.URBAN_CENTRAL and options.get("central_heat_vent"):
n.madd(
"Generator",
nodes + f" {name} heat vent",
bus=nodes + f" {name} heat",
nodes + f" {heat_system} heat vent",
bus=nodes + f" {heat_system} heat",
location=nodes,
carrier=name + " heat vent",
carrier=f"{heat_system} heat vent",
p_nom_extendable=True,
p_max_pu=0,
p_min_pu=-1,
@ -1884,30 +1887,24 @@ def add_heat(n, costs):
)
## Add heat load
for sector in sectors:
# heat demand weighting
if "rural" in name:
factor = 1 - urban_fraction[nodes]
elif "urban central" in name:
factor = dist_fraction[nodes]
elif "urban decentral" in name:
factor = urban_fraction[nodes] - dist_fraction[nodes]
else:
raise NotImplementedError(
f" {name} not in " f"heat systems: {heat_systems}"
factor = heat_system.heat_demand_weighting(
urban_fraction=urban_fraction[nodes], dist_fraction=dist_fraction[nodes]
)
if sector in name:
if not heat_system == HeatSystem.URBAN_CENTRAL:
heat_load = (
heat_demand[[sector + " water", sector + " space"]]
heat_demand[
[
heat_system.sector.value + " water",
heat_system.sector.value + " space",
]
]
.T.groupby(level=1)
.sum()
.T[nodes]
.multiply(factor)
)
if name == "urban central":
if heat_system == HeatSystem.URBAN_CENTRAL:
heat_load = (
heat_demand.T.groupby(level=1)
.sum()
@ -1920,20 +1917,25 @@ def add_heat(n, costs):
n.madd(
"Load",
nodes,
suffix=f" {name} heat",
bus=nodes + f" {name} heat",
carrier=name + " heat",
suffix=f" {heat_system} heat",
bus=nodes + f" {heat_system} heat",
carrier=f"{heat_system} heat",
p_set=heat_load,
)
## Add heat pumps
heat_pump_types = ["air"] if "urban" in name else ["ground", "air"]
for heat_pump_type in heat_pump_types:
costs_name = f"{name_type} {heat_pump_type}-sourced heat pump"
for heat_source in snakemake.params.heat_pump_sources[
heat_system.system_type.value
]:
costs_name = heat_system.heat_pump_costs_name(heat_source)
efficiency = (
cop[heat_pump_type][nodes]
cop.sel(
heat_system=heat_system.system_type.value,
heat_source=heat_source,
name=nodes,
)
.to_pandas()
.reindex(index=n.snapshots)
if options["time_dep_hp_cop"]
else costs.at[costs_name, "efficiency"]
)
@ -1941,10 +1943,10 @@ def add_heat(n, costs):
n.madd(
"Link",
nodes,
suffix=f" {name} {heat_pump_type} heat pump",
suffix=f" {heat_system} {heat_source} heat pump",
bus0=nodes,
bus1=nodes + f" {name} heat",
carrier=f"{name} {heat_pump_type} heat pump",
bus1=nodes + f" {heat_system} heat",
carrier=f"{heat_system} {heat_source} heat pump",
efficiency=efficiency,
capital_cost=costs.at[costs_name, "efficiency"]
* costs.at[costs_name, "fixed"]
@ -1954,59 +1956,65 @@ def add_heat(n, costs):
)
if options["tes"]:
n.add("Carrier", name + " water tanks")
n.add("Carrier", f"{heat_system} water tanks")
n.madd(
"Bus",
nodes + f" {name} water tanks",
nodes + f" {heat_system} water tanks",
location=nodes,
carrier=name + " water tanks",
carrier=f"{heat_system} water tanks",
unit="MWh_th",
)
n.madd(
"Link",
nodes + f" {name} water tanks charger",
bus0=nodes + f" {name} heat",
bus1=nodes + f" {name} water tanks",
nodes + f" {heat_system} water tanks charger",
bus0=nodes + f" {heat_system} heat",
bus1=nodes + f" {heat_system} water tanks",
efficiency=costs.at["water tank charger", "efficiency"],
carrier=name + " water tanks charger",
carrier=f"{heat_system} water tanks charger",
p_nom_extendable=True,
)
n.madd(
"Link",
nodes + f" {name} water tanks discharger",
bus0=nodes + f" {name} water tanks",
bus1=nodes + f" {name} heat",
carrier=name + " water tanks discharger",
nodes + f" {heat_system} water tanks discharger",
bus0=nodes + f" {heat_system} water tanks",
bus1=nodes + f" {heat_system} heat",
carrier=f"{heat_system} water tanks discharger",
efficiency=costs.at["water tank discharger", "efficiency"],
p_nom_extendable=True,
)
tes_time_constant_days = options["tes_tau"][name_type]
tes_time_constant_days = options["tes_tau"][
heat_system.central_or_decentral
]
n.madd(
"Store",
nodes + f" {name} water tanks",
bus=nodes + f" {name} water tanks",
nodes + f" {heat_system} water tanks",
bus=nodes + f" {heat_system} water tanks",
e_cyclic=True,
e_nom_extendable=True,
carrier=name + " water tanks",
carrier=f"{heat_system} water tanks",
standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days),
capital_cost=costs.at[name_type + " water tank storage", "fixed"],
lifetime=costs.at[name_type + " water tank storage", "lifetime"],
capital_cost=costs.at[
heat_system.central_or_decentral + " water tank storage", "fixed"
],
lifetime=costs.at[
heat_system.central_or_decentral + " water tank storage", "lifetime"
],
)
if options["resistive_heaters"]:
key = f"{name_type} resistive heater"
key = f"{heat_system.central_or_decentral} resistive heater"
n.madd(
"Link",
nodes + f" {name} resistive heater",
nodes + f" {heat_system} resistive heater",
bus0=nodes,
bus1=nodes + f" {name} heat",
carrier=name + " resistive heater",
bus1=nodes + f" {heat_system} heat",
carrier=f"{heat_system} resistive heater",
efficiency=costs.at[key, "efficiency"],
capital_cost=costs.at[key, "efficiency"]
* costs.at[key, "fixed"]
@ -2016,16 +2024,16 @@ def add_heat(n, costs):
)
if options["boilers"]:
key = f"{name_type} gas boiler"
key = f"{heat_system.central_or_decentral} gas boiler"
n.madd(
"Link",
nodes + f" {name} gas boiler",
nodes + f" {heat_system} gas boiler",
p_nom_extendable=True,
bus0=spatial.gas.df.loc[nodes, "nodes"].values,
bus1=nodes + f" {name} heat",
bus1=nodes + f" {heat_system} heat",
bus2="co2 atmosphere",
carrier=name + " gas boiler",
carrier=f"{heat_system} gas boiler",
efficiency=costs.at[key, "efficiency"],
efficiency2=costs.at["gas", "CO2 intensity"],
capital_cost=costs.at[key, "efficiency"]
@ -2035,22 +2043,26 @@ def add_heat(n, costs):
)
if options["solar_thermal"]:
n.add("Carrier", name + " solar thermal")
n.add("Carrier", f"{heat_system} solar thermal")
n.madd(
"Generator",
nodes,
suffix=f" {name} solar thermal collector",
bus=nodes + f" {name} heat",
carrier=name + " solar thermal",
suffix=f" {heat_system} solar thermal collector",
bus=nodes + f" {heat_system} heat",
carrier=f"{heat_system} solar thermal",
p_nom_extendable=True,
capital_cost=costs.at[name_type + " solar thermal", "fixed"]
capital_cost=costs.at[
heat_system.central_or_decentral + " solar thermal", "fixed"
]
* overdim_factor,
p_max_pu=solar_thermal[nodes],
lifetime=costs.at[name_type + " solar thermal", "lifetime"],
lifetime=costs.at[
heat_system.central_or_decentral + " solar thermal", "lifetime"
],
)
if options["chp"] and name == "urban central":
if options["chp"] and heat_system == HeatSystem.URBAN_CENTRAL:
# add gas CHP; biomass CHP is added in biomass section
n.madd(
"Link",
@ -2107,16 +2119,20 @@ def add_heat(n, costs):
lifetime=costs.at["central gas CHP", "lifetime"],
)
if options["chp"] and options["micro_chp"] and name != "urban central":
if (
options["chp"]
and options["micro_chp"]
and heat_system.value != "urban central"
):
n.madd(
"Link",
nodes + f" {name} micro gas CHP",
nodes + f" {heat_system} micro gas CHP",
p_nom_extendable=True,
bus0=spatial.gas.df.loc[nodes, "nodes"].values,
bus1=nodes,
bus2=nodes + f" {name} heat",
bus2=nodes + f" {heat_system} heat",
bus3="co2 atmosphere",
carrier=name + " micro gas CHP",
carrier=heat_system.value + " micro gas CHP",
efficiency=costs.at["micro CHP", "efficiency"],
efficiency2=costs.at["micro CHP", "efficiency-heat"],
efficiency3=costs.at["gas", "CO2 intensity"],
@ -2152,7 +2168,7 @@ def add_heat(n, costs):
) / heat_demand.T.groupby(level=[1]).sum().T
for name in n.loads[
n.loads.carrier.isin([x + " heat" for x in heat_systems])
n.loads.carrier.isin([x + " heat" for x in HeatSystem])
].index:
node = n.buses.loc[name, "location"]
ct = pop_layout.loc[node, "ct"]
@ -2248,8 +2264,14 @@ def add_biomass(n, costs):
biogas_potentials_spatial = biomass_potentials["biogas"].rename(
index=lambda x: x + " biogas"
)
unsustainable_biogas_potentials_spatial = biomass_potentials[
"unsustainable biogas"
].rename(index=lambda x: x + " biogas")
else:
biogas_potentials_spatial = biomass_potentials["biogas"].sum()
unsustainable_biogas_potentials_spatial = biomass_potentials[
"unsustainable biogas"
].sum()
if options.get("biomass_spatial", options["biomass_transport"]):
solid_biomass_potentials_spatial = biomass_potentials["solid biomass"].rename(
@ -2258,11 +2280,27 @@ def add_biomass(n, costs):
msw_biomass_potentials_spatial = biomass_potentials[
"municipal solid waste"
].rename(index=lambda x: x + " municipal solid waste")
unsustainable_solid_biomass_potentials_spatial = biomass_potentials[
"unsustainable solid biomass"
].rename(index=lambda x: x + " solid biomass")
else:
solid_biomass_potentials_spatial = biomass_potentials["solid biomass"].sum()
msw_biomass_potentials_spatial = biomass_potentials[
"municipal solid waste"
].sum()
unsustainable_solid_biomass_potentials_spatial = biomass_potentials[
"unsustainable solid biomass"
].sum()
if options["regional_oil_demand"]:
unsustainable_liquid_biofuel_potentials_spatial = biomass_potentials[
"unsustainable bioliquids"
].rename(index=lambda x: x + " bioliquids")
else:
unsustainable_liquid_biofuel_potentials_spatial = biomass_potentials[
"unsustainable bioliquids"
].sum()
n.add("Carrier", "biogas")
n.add("Carrier", "solid biomass")
@ -2387,6 +2425,81 @@ def add_biomass(n, costs):
p_nom_extendable=True,
)
if biomass_potentials.filter(like="unsustainable").sum().sum() > 0:
# Create timeseries to force usage of unsustainable potentials
e_max_pu = pd.DataFrame(1, index=n.snapshots, columns=spatial.gas.biogas)
e_max_pu.iloc[-1] = 0
n.madd(
"Store",
spatial.gas.biogas,
suffix=" unsustainable",
bus=spatial.gas.biogas,
carrier="unsustainable biogas",
e_nom=unsustainable_biogas_potentials_spatial,
marginal_cost=costs.at["biogas", "fuel"],
e_initial=unsustainable_biogas_potentials_spatial,
e_nom_extendable=False,
e_max_pu=e_max_pu,
)
e_max_pu = pd.DataFrame(1, index=n.snapshots, columns=spatial.biomass.nodes)
e_max_pu.iloc[-1] = 0
n.madd(
"Store",
spatial.biomass.nodes,
suffix=" unsustainable",
bus=spatial.biomass.nodes,
carrier="unsustainable solid biomass",
e_nom=unsustainable_solid_biomass_potentials_spatial,
marginal_cost=costs.at["fuelwood", "fuel"],
e_initial=unsustainable_solid_biomass_potentials_spatial,
e_nom_extendable=False,
e_max_pu=e_max_pu,
)
n.madd(
"Bus",
spatial.biomass.bioliquids,
location=spatial.biomass.locations,
carrier="unsustainable bioliquids",
unit="MWh_LHV",
)
e_max_pu = pd.DataFrame(
1, index=n.snapshots, columns=spatial.biomass.bioliquids
)
e_max_pu.iloc[-1] = 0
n.madd(
"Store",
spatial.biomass.bioliquids,
suffix=" unsustainable",
bus=spatial.biomass.bioliquids,
carrier="unsustainable bioliquids",
e_nom=unsustainable_liquid_biofuel_potentials_spatial,
marginal_cost=costs.at["biodiesel crops", "fuel"],
e_initial=unsustainable_liquid_biofuel_potentials_spatial,
e_nom_extendable=False,
e_max_pu=e_max_pu,
)
n.madd(
"Link",
spatial.biomass.bioliquids,
bus0=spatial.biomass.bioliquids,
bus1=spatial.oil.nodes,
bus2="co2 atmosphere",
carrier="unsustainable bioliquids",
efficiency=1,
efficiency2=-costs.at["solid biomass", "CO2 intensity"]
+ costs.at["BtL", "CO2 stored"],
p_nom=unsustainable_liquid_biofuel_potentials_spatial,
marginal_cost=costs.at["BtL", "VOM"],
)
n.madd(
"Link",
spatial.gas.biogas_to_gas,
@ -3110,20 +3223,16 @@ def add_industry(n, costs):
if options["oil_boilers"]:
nodes = pop_layout.index
for name in [
"residential rural",
"services rural",
"residential urban decentral",
"services urban decentral",
]:
for heat_system in HeatSystem:
if not heat_system == HeatSystem.URBAN_CENTRAL:
n.madd(
"Link",
nodes + f" {name} oil boiler",
nodes + f" {heat_system} oil boiler",
p_nom_extendable=True,
bus0=spatial.oil.nodes,
bus1=nodes + f" {name} heat",
bus1=nodes + f" {heat_system} heat",
bus2="co2 atmosphere",
carrier=f"{name} oil boiler",
carrier=f"{heat_system} oil boiler",
efficiency=costs.at["decentral oil boiler", "efficiency"],
efficiency2=costs.at["oil", "CO2 intensity"],
capital_cost=costs.at["decentral oil boiler", "efficiency"]
@ -4122,6 +4231,7 @@ def add_enhanced_geothermal(n, egs_potentials, egs_overlap, costs):
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
@ -4186,7 +4296,7 @@ if __name__ == "__main__":
add_land_transport(n, costs)
if options["heating"]:
add_heat(n, costs)
add_heat(n=n, costs=costs, cop=xr.open_dataarray(snakemake.input.cop_profiles))
if options["biomass"]:
add_biomass(n, costs)