[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
This commit is contained in:
parent
b957f88645
commit
fb26aaf38d
@ -609,7 +609,7 @@ def fill_missing_years(fill_values: pd.Series) -> pd.Series:
|
|||||||
- The function groups the data by the 'country' level and computes the mean for each group.
|
- The function groups the data by the 'country' level and computes the mean for each group.
|
||||||
- Zero values in the original Series are replaced by the mean value of their respective country group.
|
- Zero values in the original Series are replaced by the mean value of their respective country group.
|
||||||
"""
|
"""
|
||||||
means = fill_values.groupby(level='country').transform('mean')
|
means = fill_values.groupby(level="country").transform("mean")
|
||||||
return fill_values.where(fill_values != 0, means)
|
return fill_values.where(fill_values != 0, means)
|
||||||
|
|
||||||
|
|
||||||
@ -675,33 +675,36 @@ def build_energy_totals(
|
|||||||
df = pd.concat([df.drop("CH", errors="ignore"), swiss]).sort_index()
|
df = pd.concat([df.drop("CH", errors="ignore"), swiss]).sort_index()
|
||||||
|
|
||||||
# get values for missing countries based on Eurostat EnergyBalances
|
# get values for missing countries based on Eurostat EnergyBalances
|
||||||
|
|
||||||
# agriculture
|
# agriculture
|
||||||
|
|
||||||
to_fill = df.index[
|
to_fill = df.index[
|
||||||
df["total agriculture"].isna()
|
df["total agriculture"].isna()
|
||||||
& df.index.get_level_values("country").isin(eurostat_countries)
|
& df.index.get_level_values("country").isin(eurostat_countries)
|
||||||
]
|
]
|
||||||
c = to_fill.get_level_values("country")
|
c = to_fill.get_level_values("country")
|
||||||
y = to_fill.get_level_values("year")
|
y = to_fill.get_level_values("year")
|
||||||
|
|
||||||
# take total final energy consumption from Eurostat
|
# take total final energy consumption from Eurostat
|
||||||
eurostat_sector = 'Agriculture & forestry'
|
eurostat_sector = "Agriculture & forestry"
|
||||||
slicer = idx[c, y, :, :, eurostat_sector]
|
slicer = idx[c, y, :, :, eurostat_sector]
|
||||||
|
|
||||||
fill_values = eurostat.loc[slicer]["Total all products"].groupby(level=[0,1]).sum()
|
fill_values = eurostat.loc[slicer]["Total all products"].groupby(level=[0, 1]).sum()
|
||||||
# fill missing years for some countries by mean over the other years
|
# fill missing years for some countries by mean over the other years
|
||||||
fill_values = fill_missing_years(fill_values)
|
fill_values = fill_missing_years(fill_values)
|
||||||
df.loc[to_fill, "total agriculture"] = fill_values
|
df.loc[to_fill, "total agriculture"] = fill_values
|
||||||
|
|
||||||
# split into end uses by average EU data from IDEES
|
# split into end uses by average EU data from IDEES
|
||||||
uses = ["electricity", "heat", "machinery"]
|
uses = ["electricity", "heat", "machinery"]
|
||||||
|
|
||||||
for use in uses:
|
for use in uses:
|
||||||
avg = (idees["total agriculture electricity"]
|
avg = (
|
||||||
/idees["total agriculture"]).mean()
|
idees["total agriculture electricity"] / idees["total agriculture"]
|
||||||
df.loc[to_fill, f"total agriculture {use}"] = df.loc[to_fill, "total agriculture"] * avg
|
).mean()
|
||||||
|
df.loc[to_fill, f"total agriculture {use}"] = (
|
||||||
|
df.loc[to_fill, "total agriculture"] * avg
|
||||||
|
)
|
||||||
|
|
||||||
# divide cooking/space/water according to averages in EU28
|
# divide cooking/space/water according to averages in EU28
|
||||||
|
|
||||||
uses = ["space", "cooking", "water"]
|
uses = ["space", "cooking", "water"]
|
||||||
|
Loading…
Reference in New Issue
Block a user