Merge pull request #293 from PyPSA/introduce_hac_clustering
introduce hierarchical agglomeratice clustering (hac)
This commit is contained in:
commit
f9a996e5df
@ -20,8 +20,13 @@ scenario:
|
||||
countries: ['AL', 'AT', 'BA', 'BE', 'BG', 'CH', 'CZ', 'DE', 'DK', 'EE', 'ES', 'FI', 'FR', 'GB', 'GR', 'HR', 'HU', 'IE', 'IT', 'LT', 'LU', 'LV', 'ME', 'MK', 'NL', 'NO', 'PL', 'PT', 'RO', 'RS', 'SE', 'SI', 'SK']
|
||||
|
||||
clustering:
|
||||
simplify:
|
||||
simplify_network:
|
||||
to_substations: false # network is simplified to nodes with positive or negative power injection (i.e. substations or offwind connections)
|
||||
algorithm: kmeans # choose from: [hac, kmeans]
|
||||
feature: solar+onwind-time # only for hac. choose from: [solar+onwind-time, solar+onwind-cap, solar-time, solar-cap, solar+offwind-cap] etc.
|
||||
cluster_network:
|
||||
algorithm: kmeans
|
||||
feature: solar+onwind-time
|
||||
aggregation_strategies:
|
||||
generators:
|
||||
p_nom_max: sum # use "min" for more conservative assumptions
|
||||
|
@ -20,8 +20,13 @@ scenario:
|
||||
countries: ['BE']
|
||||
|
||||
clustering:
|
||||
simplify:
|
||||
simplify_network:
|
||||
to_substations: false # network is simplified to nodes with positive or negative power injection (i.e. substations or offwind connections)
|
||||
algorithm: kmeans # choose from: [hac, kmeans]
|
||||
feature: solar+onwind-time # only for hac. choose from: [solar+onwind-time, solar+onwind-cap, solar-time, solar-cap, solar+offwind-cap] etc.
|
||||
cluster_network:
|
||||
algorithm: kmeans
|
||||
feature: solar+onwind-time
|
||||
aggregation_strategies:
|
||||
generators:
|
||||
p_nom_max: sum # use "min" for more conservative assumptions
|
||||
|
@ -1,8 +1,13 @@
|
||||
,Unit,Values,Description
|
||||
simplify,,,
|
||||
simplify_network,,,
|
||||
-- to_substations,bool,"{'true','false'}","Aggregates all nodes without power injection (positive or negative, i.e. demand or generation) to electrically closest ones"
|
||||
-- aggregation_strategies,,,
|
||||
-- -- generators,,,
|
||||
-- -- -- {key},str,"{key} can be any of the component of the generator (str). It’s value can be any that can be converted to pandas.Series using getattr(). For example one of {min, max, sum}.","Aggregates the component according to the given strategy. For example, if sum, then all values within each cluster are summed to represent the new generator."
|
||||
-- -- buses,,,
|
||||
-- -- -- {key},str,"{key} can be any of the component of the bus (str). It’s value can be any that can be converted to pandas.Series using getattr(). For example one of {min, max, sum}.","Aggregates the component according to the given strategy. For example, if sum, then all values within each cluster are summed to represent the new bus."
|
||||
-- algorithm,str,"One of {‘kmeans’, ‘hac’}",
|
||||
-- feature,str,"Str in the format ‘carrier1+carrier2+...+carrierN-X’, where CarrierI can be from {‘solar’, ‘onwind’, ‘offwind’, ‘ror’} and X is one of {‘cap’, ‘time’}.",
|
||||
cluster_network
|
||||
-- algorithm,str,"One of {‘kmeans’, ‘hac’}",
|
||||
-- feature,str,"Str in the format ‘carrier1+carrier2+...+carrierN-X’, where CarrierI can be from {‘solar’, ‘onwind’, ‘offwind’, ‘ror’} and X is one of {‘cap’, ‘time’}.",
|
||||
aggregation_strategies,,,
|
||||
-- generators,,,
|
||||
-- -- {key},str,"{key} can be any of the component of the generator (str). It’s value can be any that can be converted to pandas.Series using getattr(). For example one of {min, max, sum}.","Aggregates the component according to the given strategy. For example, if sum, then all values within each cluster are summed to represent the new generator."
|
||||
-- buses,,,
|
||||
-- -- {key},str,"{key} can be any of the component of the bus (str). It’s value can be any that can be converted to pandas.Series using getattr(). For example one of {min, max, sum}.","Aggregates the component according to the given strategy. For example, if sum, then all values within each cluster are summed to represent the new bus."
|
||||
|
Can't render this file because it has a wrong number of fields in line 6.
|
@ -76,6 +76,8 @@ Upcoming Release
|
||||
|
||||
* Clustering strategies for generators and buses have moved from distinct scripts to configurables to unify the process and make it more transparent.
|
||||
|
||||
* Hierarchical clustering was introduced. Distance metric is calculated from renewable potentials on hourly (feature entry ends with `-time`) or annual (feature entry in config end with `-cap`) values.
|
||||
|
||||
PyPSA-Eur 0.4.0 (22th September 2021)
|
||||
=====================================
|
||||
|
||||
|
@ -10,7 +10,7 @@ dependencies:
|
||||
- python>=3.8
|
||||
- pip
|
||||
|
||||
- pypsa>=0.18.1
|
||||
- pypsa>=0.19.1
|
||||
- atlite>=0.2.6
|
||||
- dask
|
||||
|
||||
|
@ -12,6 +12,7 @@ Relevant Settings
|
||||
.. code:: yaml
|
||||
|
||||
clustering:
|
||||
cluster_network:
|
||||
aggregation_strategies:
|
||||
|
||||
focus_weights:
|
||||
@ -137,7 +138,7 @@ import seaborn as sns
|
||||
from functools import reduce
|
||||
|
||||
from pypsa.networkclustering import (busmap_by_kmeans, busmap_by_spectral_clustering,
|
||||
_make_consense, get_clustering_from_busmap)
|
||||
busmap_by_hac, _make_consense, get_clustering_from_busmap)
|
||||
|
||||
import warnings
|
||||
warnings.filterwarnings(action='ignore', category=UserWarning)
|
||||
@ -172,6 +173,42 @@ def weighting_for_country(n, x):
|
||||
return (w * (100. / w.max())).clip(lower=1.).astype(int)
|
||||
|
||||
|
||||
def get_feature_for_hac(n, buses_i=None, feature=None):
|
||||
|
||||
if buses_i is None:
|
||||
buses_i = n.buses.index
|
||||
|
||||
if feature is None:
|
||||
feature = "solar+onwind-time"
|
||||
|
||||
carriers = feature.split('-')[0].split('+')
|
||||
if "offwind" in carriers:
|
||||
carriers.remove("offwind")
|
||||
carriers = np.append(carriers, network.generators.carrier.filter(like='offwind').unique())
|
||||
|
||||
if feature.split('-')[1] == 'cap':
|
||||
feature_data = pd.DataFrame(index=buses_i, columns=carriers)
|
||||
for carrier in carriers:
|
||||
gen_i = n.generators.query("carrier == @carrier").index
|
||||
attach = n.generators_t.p_max_pu[gen_i].mean().rename(index = n.generators.loc[gen_i].bus)
|
||||
feature_data[carrier] = attach
|
||||
|
||||
if feature.split('-')[1] == 'time':
|
||||
feature_data = pd.DataFrame(columns=buses_i)
|
||||
for carrier in carriers:
|
||||
gen_i = n.generators.query("carrier == @carrier").index
|
||||
attach = n.generators_t.p_max_pu[gen_i].rename(columns = n.generators.loc[gen_i].bus)
|
||||
feature_data = pd.concat([feature_data, attach], axis=0)[buses_i]
|
||||
|
||||
feature_data = feature_data.T
|
||||
# timestamp raises error in sklearn >= v1.2:
|
||||
feature_data.columns = feature_data.columns.astype(str)
|
||||
|
||||
feature_data = feature_data.fillna(0)
|
||||
|
||||
return feature_data
|
||||
|
||||
|
||||
def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"):
|
||||
"""Determine the number of clusters per country"""
|
||||
|
||||
@ -220,13 +257,50 @@ def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"):
|
||||
return pd.Series(m.n.get_values(), index=L.index).round().astype(int)
|
||||
|
||||
|
||||
def busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights=None, algorithm="kmeans", **algorithm_kwds):
|
||||
def busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights=None, algorithm="kmeans", feature=None, **algorithm_kwds):
|
||||
if algorithm == "kmeans":
|
||||
algorithm_kwds.setdefault('n_init', 1000)
|
||||
algorithm_kwds.setdefault('max_iter', 30000)
|
||||
algorithm_kwds.setdefault('tol', 1e-6)
|
||||
algorithm_kwds.setdefault('random_state', 0)
|
||||
|
||||
def fix_country_assignment_for_hac(n):
|
||||
from scipy.sparse import csgraph
|
||||
|
||||
# overwrite country of nodes that are disconnected from their country-topology
|
||||
for country in n.buses.country.unique():
|
||||
m = n[n.buses.country ==country].copy()
|
||||
|
||||
_, labels = csgraph.connected_components(m.adjacency_matrix(), directed=False)
|
||||
|
||||
component = pd.Series(labels, index=m.buses.index)
|
||||
component_sizes = component.value_counts()
|
||||
|
||||
if len(component_sizes)>1:
|
||||
disconnected_bus = component[component==component_sizes.index[-1]].index[0]
|
||||
|
||||
neighbor_bus = (
|
||||
n.lines.query("bus0 == @disconnected_bus or bus1 == @disconnected_bus")
|
||||
.iloc[0][['bus0', 'bus1']]
|
||||
)
|
||||
new_country = list(set(n.buses.loc[neighbor_bus].country)-set([country]))[0]
|
||||
|
||||
logger.info(
|
||||
f"overwriting country `{country}` of bus `{disconnected_bus}` "
|
||||
f"to new country `{new_country}`, because it is disconnected "
|
||||
"from its inital inter-country transmission grid."
|
||||
)
|
||||
n.buses.at[disconnected_bus, "country"] = new_country
|
||||
return n
|
||||
|
||||
if algorithm == "hac":
|
||||
feature = get_feature_for_hac(n, buses_i=n.buses.index, feature=feature)
|
||||
n = fix_country_assignment_for_hac(n)
|
||||
|
||||
if (algorithm != "hac") and (feature is not None):
|
||||
logger.warning(f"Keyword argument feature is only valid for algorithm `hac`. "
|
||||
f"Given feature `{feature}` will be ignored.")
|
||||
|
||||
n.determine_network_topology()
|
||||
|
||||
n_clusters = distribute_clusters(n, n_clusters, focus_weights=focus_weights, solver_name=solver_name)
|
||||
@ -250,8 +324,10 @@ def busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights=None, algori
|
||||
return prefix + busmap_by_spectral_clustering(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds)
|
||||
elif algorithm == "louvain":
|
||||
return prefix + busmap_by_louvain(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds)
|
||||
elif algorithm == "hac":
|
||||
return prefix + busmap_by_hac(n, n_clusters[x.name], buses_i=x.index, feature=feature.loc[x.index])
|
||||
else:
|
||||
raise ValueError(f"`algorithm` must be one of 'kmeans', 'spectral' or 'louvain'. Is {algorithm}.")
|
||||
raise ValueError(f"`algorithm` must be one of 'kmeans', 'hac', 'spectral' or 'louvain'. Is {algorithm}.")
|
||||
|
||||
return (n.buses.groupby(['country', 'sub_network'], group_keys=False)
|
||||
.apply(busmap_for_country).squeeze().rename('busmap'))
|
||||
@ -259,12 +335,12 @@ def busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights=None, algori
|
||||
|
||||
def clustering_for_n_clusters(n, n_clusters, custom_busmap=False, aggregate_carriers=None,
|
||||
line_length_factor=1.25, aggregation_strategies=dict(), solver_name="cbc",
|
||||
algorithm="kmeans", extended_link_costs=0, focus_weights=None):
|
||||
algorithm="hac", feature=None, extended_link_costs=0, focus_weights=None):
|
||||
|
||||
bus_strategies, generator_strategies = get_aggregation_strategies(aggregation_strategies)
|
||||
|
||||
if not isinstance(custom_busmap, pd.Series):
|
||||
busmap = busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights, algorithm)
|
||||
busmap = busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights, algorithm, feature)
|
||||
else:
|
||||
busmap = custom_busmap
|
||||
|
||||
@ -375,10 +451,13 @@ if __name__ == "__main__":
|
||||
custom_busmap.index = custom_busmap.index.astype(str)
|
||||
logger.info(f"Imported custom busmap from {snakemake.input.custom_busmap}")
|
||||
|
||||
cluster_config = snakemake.config.get('clustering', {}).get('cluster_network', {})
|
||||
clustering = clustering_for_n_clusters(n, n_clusters, custom_busmap, aggregate_carriers,
|
||||
line_length_factor, aggregation_strategies,
|
||||
snakemake.config['solving']['solver']['name'],
|
||||
"kmeans", hvac_overhead_cost, focus_weights)
|
||||
cluster_config.get("algorithm", "hac"),
|
||||
cluster_config.get("feature", "solar+onwind-time"),
|
||||
hvac_overhead_cost, focus_weights)
|
||||
|
||||
update_p_nom_max(clustering.network)
|
||||
|
||||
|
@ -14,7 +14,8 @@ Relevant Settings
|
||||
.. code:: yaml
|
||||
|
||||
clustering:
|
||||
simplify:
|
||||
simplify_network:
|
||||
cluster_network:
|
||||
aggregation_strategies:
|
||||
|
||||
costs:
|
||||
@ -364,11 +365,10 @@ def aggregate_to_substations(n, aggregation_strategies=dict(), buses_i=None):
|
||||
line_length_factor=1.0,
|
||||
generator_strategies=generator_strategies,
|
||||
scale_link_capital_costs=False)
|
||||
|
||||
return clustering.network, busmap
|
||||
|
||||
|
||||
def cluster(n, n_clusters, config, aggregation_strategies=dict()):
|
||||
def cluster(n, n_clusters, config, algorithm="hac", feature=None, aggregation_strategies=dict()):
|
||||
logger.info(f"Clustering to {n_clusters} buses")
|
||||
|
||||
focus_weights = config.get('focus_weights', None)
|
||||
@ -380,6 +380,7 @@ def cluster(n, n_clusters, config, aggregation_strategies=dict()):
|
||||
clustering = clustering_for_n_clusters(n, n_clusters, custom_busmap=False,
|
||||
aggregation_strategies=aggregation_strategies,
|
||||
solver_name=config['solving']['solver']['name'],
|
||||
algorithm=algorithm, feature=feature,
|
||||
focus_weights=focus_weights)
|
||||
|
||||
return clustering.network, clustering.busmap
|
||||
@ -414,12 +415,29 @@ if __name__ == "__main__":
|
||||
|
||||
busmaps = [trafo_map, simplify_links_map, stub_map]
|
||||
|
||||
if snakemake.config.get('clustering', {}).get('simplify', {}).get('to_substations', False):
|
||||
cluster_config = snakemake.config.get('clustering', {}).get('simplify_network', {})
|
||||
if cluster_config.get('clustering', {}).get('simplify_network', {}).get('to_substations', False):
|
||||
n, substation_map = aggregate_to_substations(n, aggregation_strategies)
|
||||
busmaps.append(substation_map)
|
||||
|
||||
# treatment of outliers (nodes without a profile for considered carrier):
|
||||
# all nodes that have no profile of the given carrier are being aggregated to closest neighbor
|
||||
if (
|
||||
snakemake.config.get("clustering", {}).get("cluster_network", {}).get("algorithm", "hac") == "hac" or
|
||||
cluster_config.get("algorithm", "hac") == "hac"
|
||||
):
|
||||
carriers = cluster_config.get("feature", "solar+onwind-time").split('-')[0].split('+')
|
||||
for carrier in carriers:
|
||||
buses_i = list(set(n.buses.index)-set(n.generators.query("carrier == @carrier").bus))
|
||||
logger.info(f'clustering preparaton (hac): aggregating {len(buses_i)} buses of type {carrier}.')
|
||||
n, busmap_hac = aggregate_to_substations(n, aggregation_strategies, buses_i)
|
||||
busmaps.append(busmap_hac)
|
||||
|
||||
if snakemake.wildcards.simpl:
|
||||
n, cluster_map = cluster(n, int(snakemake.wildcards.simpl), snakemake.config, aggregation_strategies)
|
||||
n, cluster_map = cluster(n, int(snakemake.wildcards.simpl), snakemake.config,
|
||||
cluster_config.get('algorithm', 'hac'),
|
||||
cluster_config.get('feature', None),
|
||||
aggregation_strategies)
|
||||
busmaps.append(cluster_map)
|
||||
|
||||
# some entries in n.buses are not updated in previous functions, therefore can be wrong. as they are not needed
|
||||
|
@ -19,8 +19,13 @@ scenario:
|
||||
countries: ['BE']
|
||||
|
||||
clustering:
|
||||
simplify:
|
||||
simplify_network:
|
||||
to_substations: false # network is simplified to nodes with positive or negative power injection (i.e. substations or offwind connections)
|
||||
algorithm: kmeans # choose from: [hac, kmeans]
|
||||
feature: solar+onwind-time # only for hac. choose from: [solar+onwind-time, solar+onwind-cap, solar-time, solar-cap, solar+offwind-cap] etc.
|
||||
cluster_network:
|
||||
algorithm: kmeans
|
||||
feature: solar+onwind-time
|
||||
aggregation_strategies:
|
||||
generators:
|
||||
p_nom_max: sum # use "min" for more conservative assumptions
|
||||
|
Loading…
Reference in New Issue
Block a user