Merge branch 'master' into wildcard-opts-config
This commit is contained in:
commit
f68e8d3d61
@ -14,7 +14,7 @@ from snakemake.utils import min_version
|
||||
min_version("7.7")
|
||||
|
||||
|
||||
if not exists("config/config.yaml"):
|
||||
if not exists("config/config.yaml") and exists("config/config.default.yaml"):
|
||||
copyfile("config/config.default.yaml", "config/config.yaml")
|
||||
|
||||
|
||||
@ -125,6 +125,7 @@ rule sync:
|
||||
shell:
|
||||
"""
|
||||
rsync -uvarh --ignore-missing-args --files-from=.sync-send . {params.cluster}
|
||||
rsync -uvarh --no-g {params.cluster}/resources . || echo "No resources directory, skipping rsync"
|
||||
rsync -uvarh --no-g {params.cluster}/results . || echo "No results directory, skipping rsync"
|
||||
rsync -uvarh --no-g {params.cluster}/logs . || echo "No logs directory, skipping rsync"
|
||||
"""
|
||||
|
@ -176,9 +176,12 @@ renewable:
|
||||
grid_codes: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32]
|
||||
distance: 1000
|
||||
distance_grid_codes: [1, 2, 3, 4, 5, 6]
|
||||
luisa: false
|
||||
# grid_codes: [1111, 1121, 1122, 1123, 1130, 1210, 1221, 1222, 1230, 1241, 1242]
|
||||
# distance: 1000
|
||||
# distance_grid_codes: [1111, 1121, 1122, 1123, 1130, 1210, 1221, 1222, 1230, 1241, 1242]
|
||||
natura: true
|
||||
excluder_resolution: 100
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
offwind-ac:
|
||||
cutout: europe-2013-era5
|
||||
@ -189,12 +192,12 @@ renewable:
|
||||
capacity_per_sqkm: 2
|
||||
correction_factor: 0.8855
|
||||
corine: [44, 255]
|
||||
luisa: false # [0, 5230]
|
||||
natura: true
|
||||
ship_threshold: 400
|
||||
max_depth: 50
|
||||
max_shore_distance: 30000
|
||||
excluder_resolution: 200
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
offwind-dc:
|
||||
cutout: europe-2013-era5
|
||||
@ -205,12 +208,12 @@ renewable:
|
||||
capacity_per_sqkm: 2
|
||||
correction_factor: 0.8855
|
||||
corine: [44, 255]
|
||||
luisa: false # [0, 5230]
|
||||
natura: true
|
||||
ship_threshold: 400
|
||||
max_depth: 50
|
||||
min_shore_distance: 30000
|
||||
excluder_resolution: 200
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
solar:
|
||||
cutout: europe-2013-sarah
|
||||
@ -220,12 +223,12 @@ renewable:
|
||||
orientation:
|
||||
slope: 35.
|
||||
azimuth: 180.
|
||||
capacity_per_sqkm: 1.7
|
||||
capacity_per_sqkm: 5.1
|
||||
# correction_factor: 0.854337
|
||||
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
|
||||
luisa: false # [1111, 1121, 1122, 1123, 1130, 1210, 1221, 1222, 1230, 1241, 1242, 1310, 1320, 1330, 1410, 1421, 1422, 2110, 2120, 2130, 2210, 2220, 2230, 2310, 2410, 2420, 3210, 3320, 3330]
|
||||
natura: true
|
||||
excluder_resolution: 100
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
hydro:
|
||||
cutout: europe-2013-era5
|
||||
@ -303,6 +306,7 @@ pypsa_eur:
|
||||
- offwind-dc
|
||||
- solar
|
||||
- ror
|
||||
- nuclear
|
||||
StorageUnit:
|
||||
- PHS
|
||||
- hydro
|
||||
@ -389,14 +393,14 @@ sector:
|
||||
v2g: true
|
||||
land_transport_fuel_cell_share:
|
||||
2020: 0
|
||||
2030: 0.05
|
||||
2040: 0.1
|
||||
2050: 0.15
|
||||
2030: 0
|
||||
2040: 0
|
||||
2050: 0
|
||||
land_transport_electric_share:
|
||||
2020: 0
|
||||
2030: 0.25
|
||||
2040: 0.6
|
||||
2050: 0.85
|
||||
2030: 0.3
|
||||
2040: 0.7
|
||||
2050: 1
|
||||
land_transport_ice_share:
|
||||
2020: 1
|
||||
2030: 0.7
|
||||
@ -462,7 +466,6 @@ sector:
|
||||
solar_cf_correction: 0.788457 # = >>> 1/1.2683
|
||||
marginal_cost_storage: 0. #1e-4
|
||||
methanation: true
|
||||
helmeth: false
|
||||
coal_cc: false
|
||||
dac: true
|
||||
co2_vent: false
|
||||
@ -472,6 +475,8 @@ sector:
|
||||
hydrogen_turbine: false
|
||||
SMR: true
|
||||
SMR_cc: true
|
||||
regional_methanol_demand: false
|
||||
regional_oil_demand: false
|
||||
regional_co2_sequestration_potential:
|
||||
enable: false
|
||||
attribute: 'conservative estimate Mt'
|
||||
@ -484,6 +489,7 @@ sector:
|
||||
co2_sequestration_lifetime: 50
|
||||
co2_spatial: false
|
||||
co2network: false
|
||||
co2_network_cost_factor: 1
|
||||
cc_fraction: 0.9
|
||||
hydrogen_underground_storage: true
|
||||
hydrogen_underground_storage_locations:
|
||||
@ -503,6 +509,16 @@ sector:
|
||||
electricity_distribution_grid: true
|
||||
electricity_distribution_grid_cost_factor: 1.0
|
||||
electricity_grid_connection: true
|
||||
transmission_efficiency:
|
||||
DC:
|
||||
efficiency_static: 0.98
|
||||
efficiency_per_1000km: 0.977
|
||||
H2 pipeline:
|
||||
efficiency_per_1000km: 1 # 0.979
|
||||
compression_per_1000km: 0.019
|
||||
gas pipeline:
|
||||
efficiency_per_1000km: 1 #0.977
|
||||
compression_per_1000km: 0.01
|
||||
H2_network: true
|
||||
gas_network: false
|
||||
H2_retrofit: false
|
||||
@ -648,11 +664,12 @@ solving:
|
||||
skip_iterations: true
|
||||
rolling_horizon: false
|
||||
seed: 123
|
||||
custom_extra_functionality: "../data/custom_extra_functionality.py"
|
||||
# options that go into the optimize function
|
||||
track_iterations: false
|
||||
min_iterations: 4
|
||||
max_iterations: 6
|
||||
transmission_losses: 0
|
||||
transmission_losses: 2
|
||||
linearized_unit_commitment: true
|
||||
horizon: 365
|
||||
|
||||
@ -974,7 +991,6 @@ plotting:
|
||||
Sabatier: '#9850ad'
|
||||
methanation: '#c44ce6'
|
||||
methane: '#c44ce6'
|
||||
helmeth: '#e899ff'
|
||||
# synfuels
|
||||
Fischer-Tropsch: '#25c49a'
|
||||
liquid: '#25c49a'
|
||||
@ -989,6 +1005,7 @@ plotting:
|
||||
CO2 sequestration: '#f29dae'
|
||||
DAC: '#ff5270'
|
||||
co2 stored: '#f2385a'
|
||||
co2 sequestered: '#f2682f'
|
||||
co2: '#f29dae'
|
||||
co2 vent: '#ffd4dc'
|
||||
CO2 pipeline: '#f5627f'
|
||||
|
11
data/custom_extra_functionality.py
Normal file
11
data/custom_extra_functionality.py
Normal file
@ -0,0 +1,11 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2023- The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
|
||||
def custom_extra_functionality(n, snapshots, snakemake):
|
||||
"""
|
||||
Add custom extra functionality constraints.
|
||||
"""
|
||||
pass
|
@ -7,10 +7,10 @@ capacity_per_sqkm,:math:`MW/km^2`,float,"Allowable density of wind turbine place
|
||||
correction_factor,--,float,"Correction factor for capacity factor time series."
|
||||
excluder_resolution,m,float,"Resolution on which to perform geographical elibility analysis."
|
||||
corine,--,"Any *realistic* subset of the `CORINE Land Cover code list <http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1/corine-land-cover-classes-and/clc_legend.csv/at_download/file>`_","Specifies areas according to CORINE Land Cover codes which are generally eligible for AC-connected offshore wind turbine placement."
|
||||
luisa,--,"Any subset of the `LUISA Base Map codes in Annex 1 <https://publications.jrc.ec.europa.eu/repository/bitstream/JRC124621/technical_report_luisa_basemap_2018_v7_final.pdf>`_","Specifies areas according to the LUISA Base Map codes which are generally eligible for AC-connected offshore wind turbine placement."
|
||||
natura,bool,"{true, false}","Switch to exclude `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas. Area is excluded if ``true``."
|
||||
ship_threshold,--,float,"Ship density threshold from which areas are excluded."
|
||||
max_depth,m,float,"Maximum sea water depth at which wind turbines can be build. Maritime areas with deeper waters are excluded in the process of calculating the AC-connected offshore wind potential."
|
||||
min_shore_distance,m,float,"Minimum distance to the shore below which wind turbines cannot be build. Such areas close to the shore are excluded in the process of calculating the AC-connected offshore wind potential."
|
||||
max_shore_distance,m,float,"Maximum distance to the shore above which wind turbines cannot be build. Such areas close to the shore are excluded in the process of calculating the AC-connected offshore wind potential."
|
||||
potential,--,"One of {'simple', 'conservative'}","Method to compute the maximal installable potential for a node; confer :ref:`renewableprofiles`"
|
||||
clip_p_max_pu,p.u.,float,"To avoid too small values in the renewables` per-unit availability time series values below this threshold are set to zero."
|
||||
|
|
@ -7,10 +7,10 @@ capacity_per_sqkm,:math:`MW/km^2`,float,"Allowable density of wind turbine place
|
||||
correction_factor,--,float,"Correction factor for capacity factor time series."
|
||||
excluder_resolution,m,float,"Resolution on which to perform geographical elibility analysis."
|
||||
corine,--,"Any *realistic* subset of the `CORINE Land Cover code list <http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1/corine-land-cover-classes-and/clc_legend.csv/at_download/file>`_","Specifies areas according to CORINE Land Cover codes which are generally eligible for AC-connected offshore wind turbine placement."
|
||||
luisa,--,"Any subset of the `LUISA Base Map codes in Annex 1 <https://publications.jrc.ec.europa.eu/repository/bitstream/JRC124621/technical_report_luisa_basemap_2018_v7_final.pdf>`_","Specifies areas according to the LUISA Base Map codes which are generally eligible for DC-connected offshore wind turbine placement."
|
||||
natura,bool,"{true, false}","Switch to exclude `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas. Area is excluded if ``true``."
|
||||
ship_threshold,--,float,"Ship density threshold from which areas are excluded."
|
||||
max_depth,m,float,"Maximum sea water depth at which wind turbines can be build. Maritime areas with deeper waters are excluded in the process of calculating the AC-connected offshore wind potential."
|
||||
min_shore_distance,m,float,"Minimum distance to the shore below which wind turbines cannot be build."
|
||||
max_shore_distance,m,float,"Maximum distance to the shore above which wind turbines cannot be build."
|
||||
potential,--,"One of {'simple', 'conservative'}","Method to compute the maximal installable potential for a node; confer :ref:`renewableprofiles`"
|
||||
clip_p_max_pu,p.u.,float,"To avoid too small values in the renewables` per-unit availability time series values below this threshold are set to zero."
|
||||
|
|
@ -8,8 +8,11 @@ corine,,,
|
||||
-- grid_codes,--,"Any subset of the `CORINE Land Cover code list <http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1/corine-land-cover-classes-and/clc_legend.csv/at_download/file>`_","Specifies areas according to CORINE Land Cover codes which are generally eligible for wind turbine placement."
|
||||
-- distance,m,float,"Distance to keep from areas specified in ``distance_grid_codes``"
|
||||
-- distance_grid_codes,--,"Any subset of the `CORINE Land Cover code list <http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1/corine-land-cover-classes-and/clc_legend.csv/at_download/file>`_","Specifies areas according to CORINE Land Cover codes to which wind turbines must maintain a distance specified in the setting ``distance``."
|
||||
luisa,,,
|
||||
-- grid_codes,--,"Any subset of the `LUISA Base Map codes in Annex 1 <https://publications.jrc.ec.europa.eu/repository/bitstream/JRC124621/technical_report_luisa_basemap_2018_v7_final.pdf>`_","Specifies areas according to the LUISA Base Map codes which are generally eligible for wind turbine placement."
|
||||
-- distance,m,float,"Distance to keep from areas specified in ``distance_grid_codes``"
|
||||
-- distance_grid_codes,--,"Any subset of the `LUISA Base Map codes in Annex 1 <https://publications.jrc.ec.europa.eu/repository/bitstream/JRC124621/technical_report_luisa_basemap_2018_v7_final.pdf>`_","Specifies areas according to the LUISA Base Map codes to which wind turbines must maintain a distance specified in the setting ``distance``."
|
||||
natura,bool,"{true, false}","Switch to exclude `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas. Area is excluded if ``true``."
|
||||
potential,--,"One of {'simple', 'conservative'}","Method to compute the maximal installable potential for a node; confer :ref:`renewableprofiles`"
|
||||
clip_p_max_pu,p.u.,float,"To avoid too small values in the renewables` per-unit availability time series values below this threshold are set to zero."
|
||||
correction_factor,--,float,"Correction factor for capacity factor time series."
|
||||
excluder_resolution,m,float,"Resolution on which to perform geographical elibility analysis."
|
||||
|
|
@ -71,7 +71,6 @@ solar_thermal,--,"{true, false}",Add option for using solar thermal to generate
|
||||
solar_cf_correction,--,float,The correction factor for the value provided by the solar thermal profile calculations
|
||||
marginal_cost_storage,currency/MWh ,float,The marginal cost of discharging batteries in distributed grids
|
||||
methanation,--,"{true, false}",Add option for transforming hydrogen and CO2 into methane using methanation.
|
||||
helmeth,--,"{true, false}",Add option for transforming power into gas using HELMETH (Integrated High-Temperature ELectrolysis and METHanation for Effective Power to Gas Conversion)
|
||||
coal_cc,--,"{true, false}",Add option for coal CHPs with carbon capture
|
||||
dac,--,"{true, false}",Add option for Direct Air Capture (DAC)
|
||||
co2_vent,--,"{true, false}",Add option for vent out CO2 from storages to the atmosphere.
|
||||
@ -80,6 +79,8 @@ hydrogen_fuel_cell,--,"{true, false}",Add option to include hydrogen fuel cell f
|
||||
hydrogen_turbine,--,"{true, false}",Add option to include hydrogen turbine for re-electrification. Assuming OCGT technology costs
|
||||
SMR,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR)
|
||||
SMR CC,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR) and Carbon Capture (CC)
|
||||
regional_methanol_demand,--,"{true, false}",Spatially resolve methanol demand. Set to true if regional CO2 constraints needed.
|
||||
regional_oil_demand,--,"{true, false}",Spatially resolve oil demand. Set to true if regional CO2 constraints needed.
|
||||
regional_co2 _sequestration_potential,,,
|
||||
-- enable,--,"{true, false}",Add option for regionally-resolved geological carbon dioxide sequestration potentials based on `CO2StoP <https://setis.ec.europa.eu/european-co2-storage-database_en>`_.
|
||||
-- attribute,--,string,Name of the attribute for the sequestration potential
|
||||
@ -92,6 +93,7 @@ co2_sequestration_cost,currency/tCO2,float,The cost of sequestering a ton of CO2
|
||||
co2_spatial,--,"{true, false}","Add option to spatially resolve carrier representing stored carbon dioxide. This allows for more detailed modelling of CCUTS, e.g. regarding the capturing of industrial process emissions, usage as feedstock for electrofuels, transport of carbon dioxide, and geological sequestration sites."
|
||||
,,,
|
||||
co2network,--,"{true, false}",Add option for planning a new carbon dioxide transmission network
|
||||
co2_network_cost_factor,p.u.,float,The cost factor for the capital cost of the carbon dioxide transmission network
|
||||
,,,
|
||||
cc_fraction,--,float,The default fraction of CO2 captured with post-combustion capture
|
||||
hydrogen_underground _storage,--,"{true, false}",Add options for storing hydrogen underground. Storage potential depends regionally.
|
||||
@ -108,6 +110,11 @@ electricity_distribution _grid,--,"{true, false}",Add a simplified representatio
|
||||
electricity_distribution _grid_cost_factor,,,Multiplies the investment cost of the electricity distribution grid
|
||||
,,,
|
||||
electricity_grid _connection,--,"{true, false}",Add the cost of electricity grid connection for onshore wind and solar
|
||||
transmission_efficiency,,,Section to specify transmission losses or compression energy demands of bidirectional links. Splits them into two capacity-linked unidirectional links.
|
||||
-- {carrier},--,str,The carrier of the link.
|
||||
-- -- efficiency_static,p.u.,float,Length-independent transmission efficiency.
|
||||
-- -- efficiency_per_1000km,p.u. per 1000 km,float,Length-dependent transmission efficiency ($\eta^{\text{length}}$)
|
||||
-- -- compression_per_1000km,p.u. per 1000 km,float,Length-dependent electricity demand for compression ($\eta \cdot \text{length}$) implemented as multi-link to local electricity bus.
|
||||
H2_network,--,"{true, false}",Add option for new hydrogen pipelines
|
||||
gas_network,--,"{true, false}","Add existing natural gas infrastructure, incl. LNG terminals, production and entry-points. The existing gas network is added with a lossless transport model. A length-weighted `k-edge augmentation algorithm <https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_ can be run to add new candidate gas pipelines such that all regions of the model can be connected to the gas network. When activated, all the gas demands are regionally disaggregated as well."
|
||||
H2_retrofit,--,"{true, false}",Add option for retrofiting existing pipelines to transport hydrogen.
|
||||
|
|
@ -9,7 +9,7 @@ resource,,,
|
||||
capacity_per_sqkm,:math:`MW/km^2`,float,"Allowable density of solar panel placement."
|
||||
correction_factor,--,float,"A correction factor for the capacity factor (availability) time series."
|
||||
corine,--,"Any subset of the `CORINE Land Cover code list <http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1/corine-land-cover-classes-and/clc_legend.csv/at_download/file>`_","Specifies areas according to CORINE Land Cover codes which are generally eligible for solar panel placement."
|
||||
luisa,--,"Any subset of the `LUISA Base Map codes in Annex 1 <https://publications.jrc.ec.europa.eu/repository/bitstream/JRC124621/technical_report_luisa_basemap_2018_v7_final.pdf>`_","Specifies areas according to the LUISA Base Map codes which are generally eligible for solar panel placement."
|
||||
natura,bool,"{true, false}","Switch to exclude `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas. Area is excluded if ``true``."
|
||||
potential,--,"One of {'simple', 'conservative'}","Method to compute the maximal installable potential for a node; confer :ref:`renewableprofiles`"
|
||||
clip_p_max_pu,p.u.,float,"To avoid too small values in the renewables` per-unit availability time series values below this threshold are set to zero."
|
||||
excluder_resolution,m,float,"Resolution on which to perform geographical elibility analysis."
|
||||
|
|
@ -6,6 +6,7 @@ options,,,
|
||||
-- skip_iterations,bool,"{'true','false'}","Skip iterating, do not update impedances of branches. Defaults to true."
|
||||
-- rolling_horizon,bool,"{'true','false'}","Whether to optimize the network in a rolling horizon manner, where the snapshot range is split into slices of size `horizon` which are solved consecutively."
|
||||
-- seed,--,int,Random seed for increased deterministic behaviour.
|
||||
-- custom_extra_functionality,--,str,Path to a Python file with custom extra functionality code to be injected into the solving rules of the workflow relative to ``rules`` directory.
|
||||
-- track_iterations,bool,"{'true','false'}",Flag whether to store the intermediate branch capacities and objective function values are recorded for each iteration in ``network.lines['s_nom_opt_X']`` (where ``X`` labels the iteration)
|
||||
-- min_iterations,--,int,Minimum number of solving iterations in between which resistance and reactence (``x/r``) are updated for branches according to ``s_nom_opt`` of the previous run.
|
||||
-- max_iterations,--,int,Maximum number of solving iterations in between which resistance and reactence (``x/r``) are updated for branches according to ``s_nom_opt`` of the previous run.
|
||||
|
|
@ -10,6 +10,44 @@ Release Notes
|
||||
Upcoming Release
|
||||
================
|
||||
|
||||
* Distinguish between stored and sequestered CO2. Stored CO2 is stored
|
||||
overground in tanks and can be used for CCU (e.g. methanolisation).
|
||||
Sequestered CO2 is stored underground and can no longer be used for CCU. This
|
||||
distinction is made because storage in tanks is more expensive than
|
||||
underground storage. The link that connects stored and sequestered CO2 is
|
||||
unidirectional.
|
||||
|
||||
* Increase deployment density of solar to 5.1 MW/sqkm by default.
|
||||
|
||||
* Default to full electrification of land transport by 2050.
|
||||
|
||||
* Default to approximating transmission losses in HVAC lines
|
||||
(``transmission_losses: 2``).
|
||||
|
||||
* Remove all negative loads on the ``co2 atmosphere`` bus representing emissions
|
||||
for e.g. fixed fossil demands for transport oil. Instead these are handled
|
||||
more transparently with a fixed transport oil demand and a link taking care of
|
||||
the emissions to the ``co2 atmosphere`` bus. This is also a preparation for
|
||||
endogenous transport optimisation, where demand will be subject to
|
||||
optimisation (e.g. fuel switching in the transport sector).
|
||||
|
||||
* Allow possibility to go from copperplated to regionally resolved methanol and
|
||||
oil demand with switches ``sector: regional_methanol_demand: true`` and
|
||||
``sector: regional_oil_demand: true``. This allows nodal/regional CO2
|
||||
constraints to be applied.
|
||||
|
||||
* Process emissions from steam crackers (i.e. naphtha processing for HVC) are now
|
||||
piped from the consumption link to the process emissions bus where the model
|
||||
can decide about carbon capture. Previously the process emissions for naphtha
|
||||
were a fixed load.
|
||||
|
||||
* Add option to specify losses for bidirectional links, e.g. pipelines or HVDC
|
||||
links, in configuration file under ``sector: transmission_efficiency:``. Users
|
||||
can specify static or length-dependent values as well as a length-dependent
|
||||
electricity demand for compression, which is implemented as a multi-link to
|
||||
the local electricity buses. The bidirectional links will then be split into
|
||||
two unidirectional links with linked capacities.
|
||||
|
||||
* Pin ``snakemake`` version to below 8.0.0, as the new version is not yet
|
||||
supported by ``pypsa-eur``.
|
||||
|
||||
@ -72,6 +110,11 @@ Upcoming Release
|
||||
reconnected to the main Ukrainian grid with the configuration option
|
||||
`reconnect_crimea`.
|
||||
|
||||
* Add option to reference an additional source file where users can specify
|
||||
custom ``extra_functionality`` constraints in the configuration file. The
|
||||
default setting points to an empty hull at
|
||||
``data/custom_extra_functionality.py``.
|
||||
|
||||
* Validate downloads from Zenodo using MD5 checksums. This identifies corrupted
|
||||
or incomplete downloads.
|
||||
|
||||
@ -79,6 +122,21 @@ Upcoming Release
|
||||
Energy Monitor's `Europe Gas Tracker
|
||||
<https://globalenergymonitor.org/projects/europe-gas-tracker>`_.
|
||||
|
||||
* Remove HELMETH option.
|
||||
|
||||
* Print Irreducible Infeasible Subset (IIS) if model is infeasible. Only for
|
||||
solvers with IIS support.
|
||||
|
||||
* Add option to use `LUISA Base Map
|
||||
<https://publications.jrc.ec.europa.eu/repository/handle/JRC124621>`_ 50m land
|
||||
coverage dataset for land eligibility analysis in
|
||||
:mod:`build_renewable_profiles`. Settings are analogous to the CORINE dataset
|
||||
but with the key ``luisa:`` in the configuration file. To leverage the
|
||||
dataset's full advantages, set the excluder resolution to 50m
|
||||
(``excluder_resolution: 50``). For land category codes, see `Annex 1 of the
|
||||
technical documentation
|
||||
<https://publications.jrc.ec.europa.eu/repository/bitstream/JRC124621/technical_report_luisa_basemap_2018_v7_final.pdf>`_.
|
||||
|
||||
**Bugs and Compatibility**
|
||||
|
||||
* A bug preventing custom powerplants specified in ``data/custom_powerplants.csv`` was fixed. (https://github.com/PyPSA/pypsa-eur/pull/732)
|
||||
|
@ -269,6 +269,11 @@ rule build_renewable_profiles:
|
||||
if config["renewable"][w.technology]["natura"]
|
||||
else []
|
||||
),
|
||||
luisa=lambda w: (
|
||||
"data/LUISA_basemap_020321_50m.tif"
|
||||
if config["renewable"][w.technology].get("luisa")
|
||||
else []
|
||||
),
|
||||
gebco=ancient(
|
||||
lambda w: (
|
||||
"data/bundle/GEBCO_2014_2D.nc"
|
||||
|
@ -67,76 +67,60 @@ rule build_simplified_population_layouts:
|
||||
"../scripts/build_clustered_population_layouts.py"
|
||||
|
||||
|
||||
if config["sector"]["gas_network"] or config["sector"]["H2_retrofit"]:
|
||||
|
||||
rule build_gas_network:
|
||||
input:
|
||||
gas_network="data/gas_network/scigrid-gas/data/IGGIELGN_PipeSegments.geojson",
|
||||
output:
|
||||
cleaned_gas_network=RESOURCES + "gas_network.csv",
|
||||
resources:
|
||||
mem_mb=4000,
|
||||
log:
|
||||
LOGS + "build_gas_network.log",
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_gas_network.py"
|
||||
|
||||
rule build_gas_input_locations:
|
||||
input:
|
||||
gem=HTTP.remote(
|
||||
"https://globalenergymonitor.org/wp-content/uploads/2023/07/Europe-Gas-Tracker-2023-03-v3.xlsx",
|
||||
keep_local=True,
|
||||
),
|
||||
entry="data/gas_network/scigrid-gas/data/IGGIELGN_BorderPoints.geojson",
|
||||
storage="data/gas_network/scigrid-gas/data/IGGIELGN_Storages.geojson",
|
||||
regions_onshore=RESOURCES
|
||||
+ "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_offshore=RESOURCES
|
||||
+ "regions_offshore_elec_s{simpl}_{clusters}.geojson",
|
||||
output:
|
||||
gas_input_nodes=RESOURCES
|
||||
+ "gas_input_locations_s{simpl}_{clusters}.geojson",
|
||||
gas_input_nodes_simplified=RESOURCES
|
||||
+ "gas_input_locations_s{simpl}_{clusters}_simplified.csv",
|
||||
resources:
|
||||
mem_mb=2000,
|
||||
log:
|
||||
LOGS + "build_gas_input_locations_s{simpl}_{clusters}.log",
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_gas_input_locations.py"
|
||||
|
||||
rule cluster_gas_network:
|
||||
input:
|
||||
cleaned_gas_network=RESOURCES + "gas_network.csv",
|
||||
regions_onshore=RESOURCES
|
||||
+ "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_offshore=RESOURCES
|
||||
+ "regions_offshore_elec_s{simpl}_{clusters}.geojson",
|
||||
output:
|
||||
clustered_gas_network=RESOURCES + "gas_network_elec_s{simpl}_{clusters}.csv",
|
||||
resources:
|
||||
mem_mb=4000,
|
||||
log:
|
||||
LOGS + "cluster_gas_network_s{simpl}_{clusters}.log",
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/cluster_gas_network.py"
|
||||
|
||||
gas_infrastructure = {
|
||||
**rules.cluster_gas_network.output,
|
||||
**rules.build_gas_input_locations.output,
|
||||
}
|
||||
rule build_gas_network:
|
||||
input:
|
||||
gas_network="data/gas_network/scigrid-gas/data/IGGIELGN_PipeSegments.geojson",
|
||||
output:
|
||||
cleaned_gas_network=RESOURCES + "gas_network.csv",
|
||||
resources:
|
||||
mem_mb=4000,
|
||||
log:
|
||||
LOGS + "build_gas_network.log",
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_gas_network.py"
|
||||
|
||||
|
||||
if not (config["sector"]["gas_network"] or config["sector"]["H2_retrofit"]):
|
||||
# this is effecively an `else` statement which is however not liked by snakefmt
|
||||
rule build_gas_input_locations:
|
||||
input:
|
||||
gem=HTTP.remote(
|
||||
"https://globalenergymonitor.org/wp-content/uploads/2023/07/Europe-Gas-Tracker-2023-03-v3.xlsx",
|
||||
keep_local=True,
|
||||
),
|
||||
entry="data/gas_network/scigrid-gas/data/IGGIELGN_BorderPoints.geojson",
|
||||
storage="data/gas_network/scigrid-gas/data/IGGIELGN_Storages.geojson",
|
||||
regions_onshore=RESOURCES + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_offshore=RESOURCES + "regions_offshore_elec_s{simpl}_{clusters}.geojson",
|
||||
output:
|
||||
gas_input_nodes=RESOURCES + "gas_input_locations_s{simpl}_{clusters}.geojson",
|
||||
gas_input_nodes_simplified=RESOURCES
|
||||
+ "gas_input_locations_s{simpl}_{clusters}_simplified.csv",
|
||||
resources:
|
||||
mem_mb=2000,
|
||||
log:
|
||||
LOGS + "build_gas_input_locations_s{simpl}_{clusters}.log",
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_gas_input_locations.py"
|
||||
|
||||
gas_infrastructure = {}
|
||||
|
||||
rule cluster_gas_network:
|
||||
input:
|
||||
cleaned_gas_network=RESOURCES + "gas_network.csv",
|
||||
regions_onshore=RESOURCES + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_offshore=RESOURCES + "regions_offshore_elec_s{simpl}_{clusters}.geojson",
|
||||
output:
|
||||
clustered_gas_network=RESOURCES + "gas_network_elec_s{simpl}_{clusters}.csv",
|
||||
resources:
|
||||
mem_mb=4000,
|
||||
log:
|
||||
LOGS + "cluster_gas_network_s{simpl}_{clusters}.log",
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/cluster_gas_network.py"
|
||||
|
||||
|
||||
rule build_heat_demands:
|
||||
@ -722,7 +706,8 @@ rule prepare_sector_network:
|
||||
input:
|
||||
**build_retro_cost_output,
|
||||
**build_biomass_transport_costs_output,
|
||||
**gas_infrastructure,
|
||||
**rules.cluster_gas_network.output,
|
||||
**rules.build_gas_input_locations.output,
|
||||
**build_sequestration_potentials_output,
|
||||
network=RESOURCES + "networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
energy_totals_name=RESOURCES + "energy_totals.csv",
|
||||
|
@ -2,9 +2,14 @@
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
import os, sys
|
||||
import os, sys, glob
|
||||
|
||||
helper_source_path = [match for match in glob.glob("**/_helpers.py", recursive=True)]
|
||||
|
||||
for path in helper_source_path:
|
||||
path = os.path.dirname(os.path.abspath(path))
|
||||
sys.path.insert(0, os.path.abspath(path))
|
||||
|
||||
sys.path.insert(0, os.path.abspath("scripts"))
|
||||
from _helpers import validate_checksum
|
||||
|
||||
|
||||
@ -28,6 +33,13 @@ def memory(w):
|
||||
return int(factor * (10000 + 195 * int(w.clusters)))
|
||||
|
||||
|
||||
def input_custom_extra_functionality(w):
|
||||
path = config["solving"]["options"].get("custom_extra_functionality", False)
|
||||
if path:
|
||||
return workflow.source_path(path)
|
||||
return []
|
||||
|
||||
|
||||
# Check if the workflow has access to the internet by trying to access the HEAD of specified url
|
||||
def has_internet_access(url="www.zenodo.org") -> bool:
|
||||
import http.client as http_client
|
||||
|
@ -162,9 +162,7 @@ if config["enable"]["retrieve"] and config["enable"].get(
|
||||
"../scripts/retrieve_sector_databundle.py"
|
||||
|
||||
|
||||
if config["enable"]["retrieve"] and (
|
||||
config["sector"]["gas_network"] or config["sector"]["H2_retrofit"]
|
||||
):
|
||||
if config["enable"]["retrieve"]:
|
||||
datafiles = [
|
||||
"IGGIELGN_LNGs.geojson",
|
||||
"IGGIELGN_BorderPoints.geojson",
|
||||
@ -249,6 +247,22 @@ if config["enable"]["retrieve"]:
|
||||
validate_checksum(output[0], input[0])
|
||||
|
||||
|
||||
if config["enable"]["retrieve"]:
|
||||
|
||||
# Downloading LUISA Base Map for land cover and land use:
|
||||
# Website: https://ec.europa.eu/jrc/en/luisa
|
||||
rule retrieve_luisa_land_cover:
|
||||
input:
|
||||
HTTP.remote(
|
||||
"jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/LUISA/EUROPE/Basemaps/LandUse/2018/LATEST/LUISA_basemap_020321_50m.tif",
|
||||
static=True,
|
||||
),
|
||||
output:
|
||||
"data/LUISA_basemap_020321_50m.tif",
|
||||
run:
|
||||
move(input[0], output[0])
|
||||
|
||||
|
||||
if config["enable"]["retrieve"]:
|
||||
# Some logic to find the correct file URL
|
||||
# Sometimes files are released delayed or ahead of schedule, check which file is currently available
|
||||
|
@ -11,6 +11,7 @@ rule solve_network:
|
||||
co2_sequestration_potential=config["sector"].get(
|
||||
"co2_sequestration_potential", 200
|
||||
),
|
||||
custom_extra_functionality=input_custom_extra_functionality,
|
||||
input:
|
||||
network=RESOURCES + "networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
config=RESULTS + "config.yaml",
|
||||
|
@ -88,6 +88,7 @@ rule solve_sector_network_myopic:
|
||||
co2_sequestration_potential=config["sector"].get(
|
||||
"co2_sequestration_potential", 200
|
||||
),
|
||||
custom_extra_functionality=input_custom_extra_functionality,
|
||||
input:
|
||||
network=RESULTS
|
||||
+ "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
|
@ -11,6 +11,7 @@ rule solve_sector_network:
|
||||
co2_sequestration_potential=config["sector"].get(
|
||||
"co2_sequestration_potential", 200
|
||||
),
|
||||
custom_extra_functionality=input_custom_extra_functionality,
|
||||
input:
|
||||
network=RESULTS
|
||||
+ "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
|
@ -118,6 +118,7 @@ rule solve_sector_network_perfect:
|
||||
co2_sequestration_potential=config["sector"].get(
|
||||
"co2_sequestration_potential", 200
|
||||
),
|
||||
custom_extra_functionality=input_custom_extra_functionality,
|
||||
input:
|
||||
network=RESULTS
|
||||
+ "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_brownfield_all_years.nc",
|
||||
|
@ -120,6 +120,31 @@ def add_brownfield(n, n_p, year):
|
||||
n.links.loc[new_pipes, "p_nom_min"] = 0.0
|
||||
|
||||
|
||||
def disable_grid_expansion_if_LV_limit_hit(n):
|
||||
if not "lv_limit" in n.global_constraints.index:
|
||||
return
|
||||
|
||||
total_expansion = (
|
||||
n.lines.eval("s_nom_min * length").sum()
|
||||
+ n.links.query("carrier == 'DC'").eval("p_nom_min * length").sum()
|
||||
).sum()
|
||||
|
||||
lv_limit = n.global_constraints.at["lv_limit", "constant"]
|
||||
|
||||
# allow small numerical differences
|
||||
if lv_limit - total_expansion < 1:
|
||||
logger.info(f"LV is already reached, disabling expansion and LV limit")
|
||||
extendable_acs = n.lines.query("s_nom_extendable").index
|
||||
n.lines.loc[extendable_acs, "s_nom_extendable"] = False
|
||||
n.lines.loc[extendable_acs, "s_nom"] = n.lines.loc[extendable_acs, "s_nom_min"]
|
||||
|
||||
extendable_dcs = n.links.query("carrier == 'DC' and p_nom_extendable").index
|
||||
n.links.loc[extendable_dcs, "p_nom_extendable"] = False
|
||||
n.links.loc[extendable_dcs, "p_nom"] = n.links.loc[extendable_dcs, "p_nom_min"]
|
||||
|
||||
n.global_constraints.drop("lv_limit", inplace=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
@ -150,5 +175,7 @@ if __name__ == "__main__":
|
||||
|
||||
add_brownfield(n, n_p, year)
|
||||
|
||||
disable_grid_expansion_if_LV_limit_hit(n)
|
||||
|
||||
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
|
||||
n.export_to_netcdf(snakemake.output[0])
|
||||
|
@ -305,7 +305,7 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
|
||||
else:
|
||||
bus0 = vars(spatial)[carrier[generator]].nodes
|
||||
if "EU" not in vars(spatial)[carrier[generator]].locations:
|
||||
bus0 = bus0.intersection(capacity.index + " gas")
|
||||
bus0 = bus0.intersection(capacity.index + " " + carrier[generator])
|
||||
|
||||
# check for missing bus
|
||||
missing_bus = pd.Index(bus0).difference(n.buses.index)
|
||||
|
@ -25,10 +25,7 @@ if __name__ == "__main__":
|
||||
cutout = atlite.Cutout(snakemake.input.cutout)
|
||||
|
||||
clustered_regions = (
|
||||
gpd.read_file(snakemake.input.regions_onshore)
|
||||
.set_index("name")
|
||||
.buffer(0)
|
||||
.squeeze()
|
||||
gpd.read_file(snakemake.input.regions_onshore).set_index("name").buffer(0)
|
||||
)
|
||||
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
@ -31,10 +31,7 @@ if __name__ == "__main__":
|
||||
cutout = atlite.Cutout(snakemake.input.cutout).sel(time=time)
|
||||
|
||||
clustered_regions = (
|
||||
gpd.read_file(snakemake.input.regions_onshore)
|
||||
.set_index("name")
|
||||
.buffer(0)
|
||||
.squeeze()
|
||||
gpd.read_file(snakemake.input.regions_onshore).set_index("name").buffer(0)
|
||||
)
|
||||
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
@ -130,7 +130,7 @@ def build_nodal_distribution_key(hotmaps, regions, countries):
|
||||
|
||||
if not facilities.empty:
|
||||
emissions = facilities["Emissions_ETS_2014"].fillna(
|
||||
hotmaps["Emissions_EPRTR_2014"]
|
||||
hotmaps["Emissions_EPRTR_2014"].dropna()
|
||||
)
|
||||
if emissions.sum() == 0:
|
||||
key = pd.Series(1 / len(facilities), facilities.index)
|
||||
|
@ -26,20 +26,9 @@ Relevant settings
|
||||
|
||||
renewable:
|
||||
{technology}:
|
||||
cutout:
|
||||
corine:
|
||||
grid_codes:
|
||||
distance:
|
||||
natura:
|
||||
max_depth:
|
||||
max_shore_distance:
|
||||
min_shore_distance:
|
||||
capacity_per_sqkm:
|
||||
correction_factor:
|
||||
potential:
|
||||
min_p_max_pu:
|
||||
clip_p_max_pu:
|
||||
resource:
|
||||
cutout: corine: luisa: grid_codes: distance: natura: max_depth:
|
||||
max_shore_distance: min_shore_distance: capacity_per_sqkm:
|
||||
correction_factor: min_p_max_pu: clip_p_max_pu: resource:
|
||||
|
||||
.. seealso::
|
||||
Documentation of the configuration file ``config/config.yaml`` at
|
||||
@ -48,21 +37,37 @@ Relevant settings
|
||||
Inputs
|
||||
------
|
||||
|
||||
- ``data/bundle/corine/g250_clc06_V18_5.tif``: `CORINE Land Cover (CLC) <https://land.copernicus.eu/pan-european/corine-land-cover>`_ inventory on `44 classes <https://wiki.openstreetmap.org/wiki/Corine_Land_Cover#Tagging>`_ of land use (e.g. forests, arable land, industrial, urban areas).
|
||||
- ``data/bundle/corine/g250_clc06_V18_5.tif``: `CORINE Land Cover (CLC)
|
||||
<https://land.copernicus.eu/pan-european/corine-land-cover>`_ inventory on `44
|
||||
classes <https://wiki.openstreetmap.org/wiki/Corine_Land_Cover#Tagging>`_ of
|
||||
land use (e.g. forests, arable land, industrial, urban areas) at 100m
|
||||
resolution.
|
||||
|
||||
.. image:: img/corine.png
|
||||
:scale: 33 %
|
||||
|
||||
- ``data/bundle/GEBCO_2014_2D.nc``: A `bathymetric <https://en.wikipedia.org/wiki/Bathymetry>`_ data set with a global terrain model for ocean and land at 15 arc-second intervals by the `General Bathymetric Chart of the Oceans (GEBCO) <https://www.gebco.net/data_and_products/gridded_bathymetry_data/>`_.
|
||||
- ``data/LUISA_basemap_020321_50m.tif``: `LUISA Base Map
|
||||
<https://publications.jrc.ec.europa.eu/repository/handle/JRC124621>`_ land
|
||||
coverage dataset at 50m resolution similar to CORINE. For codes in relation to
|
||||
CORINE land cover, see `Annex 1 of the technical documentation
|
||||
<https://publications.jrc.ec.europa.eu/repository/bitstream/JRC124621/technical_report_luisa_basemap_2018_v7_final.pdf>`_.
|
||||
|
||||
- ``data/bundle/GEBCO_2014_2D.nc``: A `bathymetric
|
||||
<https://en.wikipedia.org/wiki/Bathymetry>`_ data set with a global terrain
|
||||
model for ocean and land at 15 arc-second intervals by the `General
|
||||
Bathymetric Chart of the Oceans (GEBCO)
|
||||
<https://www.gebco.net/data_and_products/gridded_bathymetry_data/>`_.
|
||||
|
||||
.. image:: img/gebco_2019_grid_image.jpg
|
||||
:scale: 50 %
|
||||
|
||||
**Source:** `GEBCO <https://www.gebco.net/data_and_products/images/gebco_2019_grid_image.jpg>`_
|
||||
**Source:** `GEBCO
|
||||
<https://www.gebco.net/data_and_products/images/gebco_2019_grid_image.jpg>`_
|
||||
|
||||
- ``resources/natura.tiff``: confer :ref:`natura`
|
||||
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
|
||||
- ``resources/regions_onshore.geojson``: (if not offshore wind), confer :ref:`busregions`
|
||||
- ``resources/regions_onshore.geojson``: (if not offshore wind), confer
|
||||
:ref:`busregions`
|
||||
- ``resources/regions_offshore.geojson``: (if offshore wind), :ref:`busregions`
|
||||
- ``"cutouts/" + params["renewable"][{technology}]['cutout']``: :ref:`cutout`
|
||||
- ``networks/base.nc``: :ref:`base`
|
||||
@ -128,25 +133,26 @@ Description
|
||||
This script functions at two main spatial resolutions: the resolution of the
|
||||
network nodes and their `Voronoi cells
|
||||
<https://en.wikipedia.org/wiki/Voronoi_diagram>`_, and the resolution of the
|
||||
cutout grid cells for the weather data. Typically the weather data grid is
|
||||
finer than the network nodes, so we have to work out the distribution of
|
||||
generators across the grid cells within each Voronoi cell. This is done by
|
||||
taking account of a combination of the available land at each grid cell and the
|
||||
capacity factor there.
|
||||
cutout grid cells for the weather data. Typically the weather data grid is finer
|
||||
than the network nodes, so we have to work out the distribution of generators
|
||||
across the grid cells within each Voronoi cell. This is done by taking account
|
||||
of a combination of the available land at each grid cell and the capacity factor
|
||||
there.
|
||||
|
||||
First the script computes how much of the technology can be installed at each
|
||||
cutout grid cell and each node using the `GLAES
|
||||
<https://github.com/FZJ-IEK3-VSA/glaes>`_ library. This uses the CORINE land use data,
|
||||
Natura2000 nature reserves and GEBCO bathymetry data.
|
||||
cutout grid cell and each node using the `atlite
|
||||
<https://github.com/pypsa/atlite>`_ library. This uses the CORINE land use data,
|
||||
LUISA land use data, Natura2000 nature reserves, GEBCO bathymetry data, and
|
||||
shipping lanes.
|
||||
|
||||
.. image:: img/eligibility.png
|
||||
:scale: 50 %
|
||||
:align: center
|
||||
|
||||
To compute the layout of generators in each node's Voronoi cell, the
|
||||
installable potential in each grid cell is multiplied with the capacity factor
|
||||
at each grid cell. This is done since we assume more generators are installed
|
||||
at cells with a higher capacity factor.
|
||||
To compute the layout of generators in each node's Voronoi cell, the installable
|
||||
potential in each grid cell is multiplied with the capacity factor at each grid
|
||||
cell. This is done since we assume more generators are installed at cells with a
|
||||
higher capacity factor.
|
||||
|
||||
.. image:: img/offwinddc-gridcell.png
|
||||
:scale: 50 %
|
||||
@ -164,20 +170,14 @@ at cells with a higher capacity factor.
|
||||
:scale: 50 %
|
||||
:align: center
|
||||
|
||||
This layout is then used to compute the generation availability time series
|
||||
from the weather data cutout from ``atlite``.
|
||||
This layout is then used to compute the generation availability time series from
|
||||
the weather data cutout from ``atlite``.
|
||||
|
||||
Two methods are available to compute the maximal installable potential for the
|
||||
node (`p_nom_max`): ``simple`` and ``conservative``:
|
||||
|
||||
- ``simple`` adds up the installable potentials of the individual grid cells.
|
||||
If the model comes close to this limit, then the time series may slightly
|
||||
overestimate production since it is assumed the geographical distribution is
|
||||
proportional to capacity factor.
|
||||
|
||||
- ``conservative`` assertains the nodal limit by increasing capacities
|
||||
proportional to the layout until the limit of an individual grid cell is
|
||||
reached.
|
||||
The maximal installable potential for the node (`p_nom_max`) is computed by
|
||||
adding up the installable potentials of the individual grid cells. If the model
|
||||
comes close to this limit, then the time series may slightly overestimate
|
||||
production since it is assumed the geographical distribution is proportional to
|
||||
capacity factor.
|
||||
"""
|
||||
import functools
|
||||
import logging
|
||||
@ -210,12 +210,8 @@ if __name__ == "__main__":
|
||||
resource = params["resource"] # pv panel params / wind turbine params
|
||||
correction_factor = params.get("correction_factor", 1.0)
|
||||
capacity_per_sqkm = params["capacity_per_sqkm"]
|
||||
p_nom_max_meth = params.get("potential", "conservative")
|
||||
snapshots = snakemake.params.snapshots
|
||||
|
||||
if isinstance(params.get("corine", {}), list):
|
||||
params["corine"] = {"grid_codes": params["corine"]}
|
||||
|
||||
if correction_factor != 1.0:
|
||||
logger.info(f"correction_factor is set as {correction_factor}")
|
||||
|
||||
@ -241,16 +237,29 @@ if __name__ == "__main__":
|
||||
if params["natura"]:
|
||||
excluder.add_raster(snakemake.input.natura, nodata=0, allow_no_overlap=True)
|
||||
|
||||
corine = params.get("corine", {})
|
||||
if "grid_codes" in corine:
|
||||
codes = corine["grid_codes"]
|
||||
excluder.add_raster(snakemake.input.corine, codes=codes, invert=True, crs=3035)
|
||||
if corine.get("distance", 0.0) > 0.0:
|
||||
codes = corine["distance_grid_codes"]
|
||||
buffer = corine["distance"]
|
||||
excluder.add_raster(
|
||||
snakemake.input.corine, codes=codes, buffer=buffer, crs=3035
|
||||
)
|
||||
for dataset in ["corine", "luisa"]:
|
||||
kwargs = {"nodata": 0} if dataset == "luisa" else {}
|
||||
settings = params.get(dataset, {})
|
||||
if not settings:
|
||||
continue
|
||||
if dataset == "luisa" and res > 50:
|
||||
logger.info(
|
||||
"LUISA data is available at 50m resolution, "
|
||||
f"but coarser {res}m resolution is used."
|
||||
)
|
||||
if isinstance(settings, list):
|
||||
settings = {"grid_codes": settings}
|
||||
if "grid_codes" in settings:
|
||||
codes = settings["grid_codes"]
|
||||
excluder.add_raster(
|
||||
snakemake.input[dataset], codes=codes, invert=True, crs=3035, **kwargs
|
||||
)
|
||||
if settings.get("distance", 0.0) > 0.0:
|
||||
codes = settings["distance_grid_codes"]
|
||||
buffer = settings["distance"]
|
||||
excluder.add_raster(
|
||||
snakemake.input[dataset], codes=codes, buffer=buffer, crs=3035, **kwargs
|
||||
)
|
||||
|
||||
if params.get("ship_threshold"):
|
||||
shipping_threshold = (
|
||||
@ -278,15 +287,14 @@ if __name__ == "__main__":
|
||||
snakemake.input.country_shapes, buffer=buffer, invert=True
|
||||
)
|
||||
|
||||
logger.info("Calculate landuse availability...")
|
||||
start = time.time()
|
||||
|
||||
kwargs = dict(nprocesses=nprocesses, disable_progressbar=noprogress)
|
||||
if noprogress:
|
||||
logger.info("Calculate landuse availabilities...")
|
||||
start = time.time()
|
||||
availability = cutout.availabilitymatrix(regions, excluder, **kwargs)
|
||||
duration = time.time() - start
|
||||
logger.info(f"Completed availability calculation ({duration:2.2f}s)")
|
||||
else:
|
||||
availability = cutout.availabilitymatrix(regions, excluder, **kwargs)
|
||||
availability = cutout.availabilitymatrix(regions, excluder, **kwargs)
|
||||
|
||||
duration = time.time() - start
|
||||
logger.info(f"Completed landuse availability calculation ({duration:2.2f}s)")
|
||||
|
||||
# For Moldova and Ukraine: Overwrite parts not covered by Corine with
|
||||
# externally determined available areas
|
||||
@ -305,8 +313,19 @@ if __name__ == "__main__":
|
||||
func = getattr(cutout, resource.pop("method"))
|
||||
if client is not None:
|
||||
resource["dask_kwargs"] = {"scheduler": client}
|
||||
|
||||
logger.info("Calculate average capacity factor...")
|
||||
start = time.time()
|
||||
|
||||
capacity_factor = correction_factor * func(capacity_factor=True, **resource)
|
||||
layout = capacity_factor * area * capacity_per_sqkm
|
||||
|
||||
duration = time.time() - start
|
||||
logger.info(f"Completed average capacity factor calculation ({duration:2.2f}s)")
|
||||
|
||||
logger.info("Calculate weighted capacity factor time series...")
|
||||
start = time.time()
|
||||
|
||||
profile, capacities = func(
|
||||
matrix=availability.stack(spatial=["y", "x"]),
|
||||
layout=layout,
|
||||
@ -316,17 +335,13 @@ if __name__ == "__main__":
|
||||
**resource,
|
||||
)
|
||||
|
||||
logger.info(f"Calculating maximal capacity per bus (method '{p_nom_max_meth}')")
|
||||
if p_nom_max_meth == "simple":
|
||||
p_nom_max = capacity_per_sqkm * availability @ area
|
||||
elif p_nom_max_meth == "conservative":
|
||||
max_cap_factor = capacity_factor.where(availability != 0).max(["x", "y"])
|
||||
p_nom_max = capacities / max_cap_factor
|
||||
else:
|
||||
raise AssertionError(
|
||||
'Config key `potential` should be one of "simple" '
|
||||
f'(default) or "conservative", not "{p_nom_max_meth}"'
|
||||
)
|
||||
duration = time.time() - start
|
||||
logger.info(
|
||||
f"Completed weighted capacity factor time series calculation ({duration:2.2f}s)"
|
||||
)
|
||||
|
||||
logger.info(f"Calculating maximal capacity per bus")
|
||||
p_nom_max = capacity_per_sqkm * availability @ area
|
||||
|
||||
logger.info("Calculate average distances.")
|
||||
layoutmatrix = (layout * availability).stack(spatial=["y", "x"])
|
||||
|
@ -42,8 +42,8 @@ Description
|
||||
"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
|
||||
import rioxarray
|
||||
from _helpers import configure_logging
|
||||
@ -62,11 +62,13 @@ if __name__ == "__main__":
|
||||
xs, Xs, ys, Ys = zip(*(determine_cutout_xXyY(cutout) for cutout in cutouts))
|
||||
|
||||
with zipfile.ZipFile(snakemake.input.ship_density) as zip_f:
|
||||
zip_f.extract("shipdensity_global.tif")
|
||||
with rioxarray.open_rasterio("shipdensity_global.tif") as ship_density:
|
||||
ship_density = ship_density.drop_vars(["band"]).sel(
|
||||
x=slice(min(xs), max(Xs)), y=slice(max(Ys), min(ys))
|
||||
)
|
||||
ship_density.rio.to_raster(snakemake.output[0])
|
||||
resources = Path(snakemake.output[0]).parent
|
||||
fn = "shipdensity_global.tif"
|
||||
zip_f.extract(fn, resources)
|
||||
with rioxarray.open_rasterio(resources / fn) as ship_density:
|
||||
ship_density = ship_density.drop_vars(["band"]).sel(
|
||||
x=slice(min(xs), max(Xs)), y=slice(max(Ys), min(ys))
|
||||
)
|
||||
ship_density.rio.to_raster(snakemake.output[0])
|
||||
|
||||
os.remove("shipdensity_global.tif")
|
||||
(resources / fn).unlink()
|
||||
|
@ -33,10 +33,7 @@ if __name__ == "__main__":
|
||||
cutout = atlite.Cutout(snakemake.input.cutout).sel(time=time)
|
||||
|
||||
clustered_regions = (
|
||||
gpd.read_file(snakemake.input.regions_onshore)
|
||||
.set_index("name")
|
||||
.buffer(0)
|
||||
.squeeze()
|
||||
gpd.read_file(snakemake.input.regions_onshore).set_index("name").buffer(0)
|
||||
)
|
||||
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
@ -31,10 +31,7 @@ if __name__ == "__main__":
|
||||
cutout = atlite.Cutout(snakemake.input.cutout).sel(time=time)
|
||||
|
||||
clustered_regions = (
|
||||
gpd.read_file(snakemake.input.regions_onshore)
|
||||
.set_index("name")
|
||||
.buffer(0)
|
||||
.squeeze()
|
||||
gpd.read_file(snakemake.input.regions_onshore).set_index("name").buffer(0)
|
||||
)
|
||||
|
||||
I = cutout.indicatormatrix(clustered_regions)
|
||||
|
@ -31,7 +31,7 @@ def rename_techs_tyndp(tech):
|
||||
tech = rename_techs(tech)
|
||||
if "heat pump" in tech or "resistive heater" in tech:
|
||||
return "power-to-heat"
|
||||
elif tech in ["H2 Electrolysis", "methanation", "helmeth", "H2 liquefaction"]:
|
||||
elif tech in ["H2 Electrolysis", "methanation", "H2 liquefaction"]:
|
||||
return "power-to-gas"
|
||||
elif tech == "H2":
|
||||
return "H2 storage"
|
||||
@ -495,7 +495,7 @@ def plot_ch4_map(network):
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
fossil_gas.index = pd.MultiIndex.from_product([fossil_gas.index, ["fossil gas"]])
|
||||
|
||||
methanation_i = n.links[n.links.carrier.isin(["helmeth", "Sabatier"])].index
|
||||
methanation_i = n.links.query("carrier == 'Sabatier'").index
|
||||
methanation = (
|
||||
abs(
|
||||
n.links_t.p1.loc[:, methanation_i].mul(
|
||||
|
@ -121,7 +121,6 @@ preferred_order = pd.Index(
|
||||
"gas boiler",
|
||||
"gas",
|
||||
"natural gas",
|
||||
"helmeth",
|
||||
"methanation",
|
||||
"ammonia",
|
||||
"hydrogen storage",
|
||||
|
@ -102,7 +102,10 @@ def define_spatial(nodes, options):
|
||||
spatial.gas.biogas = ["EU biogas"]
|
||||
spatial.gas.industry = ["gas for industry"]
|
||||
spatial.gas.biogas_to_gas = ["EU biogas to gas"]
|
||||
spatial.gas.biogas_to_gas_cc = ["EU biogas to gas CC"]
|
||||
if options.get("biomass_spatial", options["biomass_transport"]):
|
||||
spatial.gas.biogas_to_gas_cc = nodes + " biogas to gas CC"
|
||||
else:
|
||||
spatial.gas.biogas_to_gas_cc = ["EU biogas to gas CC"]
|
||||
if options.get("co2_spatial", options["co2network"]):
|
||||
spatial.gas.industry_cc = nodes + " gas for industry CC"
|
||||
else:
|
||||
@ -129,15 +132,43 @@ def define_spatial(nodes, options):
|
||||
spatial.h2.locations = nodes
|
||||
|
||||
# methanol
|
||||
|
||||
# beware: unlike other carriers, uses locations rather than locations+carriername
|
||||
# this allows to avoid separation between nodes and locations
|
||||
|
||||
spatial.methanol = SimpleNamespace()
|
||||
|
||||
spatial.methanol.nodes = ["EU methanol"]
|
||||
spatial.methanol.locations = ["EU"]
|
||||
|
||||
if options["regional_methanol_demand"]:
|
||||
spatial.methanol.demand_locations = nodes
|
||||
spatial.methanol.shipping = nodes + " shipping methanol"
|
||||
else:
|
||||
spatial.methanol.demand_locations = ["EU"]
|
||||
spatial.methanol.shipping = ["EU shipping methanol"]
|
||||
|
||||
# oil
|
||||
spatial.oil = SimpleNamespace()
|
||||
|
||||
spatial.oil.nodes = ["EU oil"]
|
||||
spatial.oil.locations = ["EU"]
|
||||
|
||||
if options["regional_oil_demand"]:
|
||||
spatial.oil.demand_locations = nodes
|
||||
spatial.oil.naphtha = nodes + " naphtha for industry"
|
||||
spatial.oil.kerosene = nodes + " kerosene for aviation"
|
||||
spatial.oil.shipping = nodes + " shipping oil"
|
||||
spatial.oil.agriculture_machinery = nodes + " agriculture machinery oil"
|
||||
spatial.oil.land_transport = nodes + " land transport oil"
|
||||
else:
|
||||
spatial.oil.demand_locations = ["EU"]
|
||||
spatial.oil.naphtha = ["EU naphtha for industry"]
|
||||
spatial.oil.kerosene = ["EU kerosene for aviation"]
|
||||
spatial.oil.shipping = ["EU shipping oil"]
|
||||
spatial.oil.agriculture_machinery = ["EU agriculture machinery oil"]
|
||||
spatial.oil.land_transport = ["EU land transport oil"]
|
||||
|
||||
# uranium
|
||||
spatial.uranium = SimpleNamespace()
|
||||
spatial.uranium.nodes = ["EU uranium"]
|
||||
@ -258,6 +289,8 @@ def build_carbon_budget(o, input_eurostat, fn, emissions_scope, report_year):
|
||||
)
|
||||
|
||||
planning_horizons = snakemake.params.planning_horizons
|
||||
if not isinstance(planning_horizons, list):
|
||||
planning_horizons = [planning_horizons]
|
||||
t_0 = planning_horizons[0]
|
||||
|
||||
if "be" in o:
|
||||
@ -519,7 +552,7 @@ def patch_electricity_network(n):
|
||||
n.loads_t.p_set.rename(lambda x: x.strip(), axis=1, inplace=True)
|
||||
|
||||
|
||||
def add_co2_tracking(n, options):
|
||||
def add_co2_tracking(n, costs, options):
|
||||
# minus sign because opposite to how fossil fuels used:
|
||||
# CH4 burning puts CH4 down, atmosphere up
|
||||
n.add("Carrier", "co2", co2_emissions=-1.0)
|
||||
@ -537,7 +570,7 @@ def add_co2_tracking(n, options):
|
||||
bus="co2 atmosphere",
|
||||
)
|
||||
|
||||
# this tracks CO2 stored, e.g. underground
|
||||
# add CO2 tanks
|
||||
n.madd(
|
||||
"Bus",
|
||||
spatial.co2.nodes,
|
||||
@ -546,6 +579,39 @@ def add_co2_tracking(n, options):
|
||||
unit="t_co2",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Store",
|
||||
spatial.co2.nodes,
|
||||
e_nom_extendable=True,
|
||||
capital_cost=costs.at["CO2 storage tank", "fixed"],
|
||||
carrier="co2 stored",
|
||||
e_cyclic=True,
|
||||
bus=spatial.co2.nodes,
|
||||
)
|
||||
n.add("Carrier", "co2 stored")
|
||||
|
||||
# this tracks CO2 sequestered, e.g. underground
|
||||
sequestration_buses = pd.Index(spatial.co2.nodes).str.replace(
|
||||
" stored", " sequestered"
|
||||
)
|
||||
n.madd(
|
||||
"Bus",
|
||||
sequestration_buses,
|
||||
location=spatial.co2.locations,
|
||||
carrier="co2 sequestered",
|
||||
unit="t_co2",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
sequestration_buses,
|
||||
bus0=spatial.co2.nodes,
|
||||
bus1=sequestration_buses,
|
||||
carrier="co2 sequestered",
|
||||
efficiency=1.0,
|
||||
p_nom_extendable=True,
|
||||
)
|
||||
|
||||
if options["regional_co2_sequestration_potential"]["enable"]:
|
||||
upper_limit = (
|
||||
options["regional_co2_sequestration_potential"]["max_size"] * 1e3
|
||||
@ -561,22 +627,22 @@ def add_co2_tracking(n, options):
|
||||
.mul(1e6)
|
||||
/ annualiser
|
||||
) # t
|
||||
e_nom_max = e_nom_max.rename(index=lambda x: x + " co2 stored")
|
||||
e_nom_max = e_nom_max.rename(index=lambda x: x + " co2 sequestered")
|
||||
else:
|
||||
e_nom_max = np.inf
|
||||
|
||||
n.madd(
|
||||
"Store",
|
||||
spatial.co2.nodes,
|
||||
sequestration_buses,
|
||||
e_nom_extendable=True,
|
||||
e_nom_max=e_nom_max,
|
||||
capital_cost=options["co2_sequestration_cost"],
|
||||
carrier="co2 stored",
|
||||
bus=spatial.co2.nodes,
|
||||
bus=sequestration_buses,
|
||||
lifetime=options["co2_sequestration_lifetime"],
|
||||
carrier="co2 sequestered",
|
||||
)
|
||||
|
||||
n.add("Carrier", "co2 stored")
|
||||
n.add("Carrier", "co2 sequestered")
|
||||
|
||||
if options["co2_vent"]:
|
||||
n.madd(
|
||||
@ -605,6 +671,8 @@ def add_co2_network(n, costs):
|
||||
* co2_links.length
|
||||
)
|
||||
capital_cost = cost_onshore + cost_submarine
|
||||
cost_factor = snakemake.config["sector"]["co2_network_cost_factor"]
|
||||
capital_cost *= cost_factor
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
@ -1369,23 +1437,6 @@ def add_storage_and_grids(n, costs):
|
||||
lifetime=costs.at["methanation", "lifetime"],
|
||||
)
|
||||
|
||||
if options["helmeth"]:
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.nodes,
|
||||
suffix=" helmeth",
|
||||
bus0=nodes,
|
||||
bus1=spatial.gas.nodes,
|
||||
bus2=spatial.co2.nodes,
|
||||
carrier="helmeth",
|
||||
p_nom_extendable=True,
|
||||
efficiency=costs.at["helmeth", "efficiency"],
|
||||
efficiency2=-costs.at["helmeth", "efficiency"]
|
||||
* costs.at["gas", "CO2 intensity"],
|
||||
capital_cost=costs.at["helmeth", "fixed"],
|
||||
lifetime=costs.at["helmeth", "lifetime"],
|
||||
)
|
||||
|
||||
if options.get("coal_cc"):
|
||||
n.madd(
|
||||
"Link",
|
||||
@ -1485,8 +1536,8 @@ def add_land_transport(n, costs):
|
||||
n.madd(
|
||||
"Bus",
|
||||
nodes,
|
||||
location=nodes,
|
||||
suffix=" EV battery",
|
||||
location=nodes,
|
||||
carrier="Li ion",
|
||||
unit="MWh_el",
|
||||
)
|
||||
@ -1578,29 +1629,42 @@ def add_land_transport(n, costs):
|
||||
|
||||
ice_efficiency = options["transport_internal_combustion_efficiency"]
|
||||
|
||||
n.madd(
|
||||
"Load",
|
||||
nodes,
|
||||
suffix=" land transport oil",
|
||||
bus=spatial.oil.nodes,
|
||||
carrier="land transport oil",
|
||||
p_set=ice_share / ice_efficiency * transport[nodes],
|
||||
)
|
||||
|
||||
co2 = (
|
||||
p_set_land_transport_oil = (
|
||||
ice_share
|
||||
/ ice_efficiency
|
||||
* transport[nodes].sum().sum()
|
||||
/ nhours
|
||||
* costs.at["oil", "CO2 intensity"]
|
||||
* transport[nodes].rename(columns=lambda x: x + " land transport oil")
|
||||
)
|
||||
|
||||
n.add(
|
||||
if not options["regional_oil_demand"]:
|
||||
p_set_land_transport_oil = p_set_land_transport_oil.sum(axis=1).to_frame(
|
||||
name="EU land transport oil"
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
spatial.oil.land_transport,
|
||||
location=spatial.oil.demand_locations,
|
||||
carrier="land transport oil",
|
||||
unit="land transport",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Load",
|
||||
"land transport oil emissions",
|
||||
bus="co2 atmosphere",
|
||||
carrier="land transport oil emissions",
|
||||
p_set=-co2,
|
||||
spatial.oil.land_transport,
|
||||
bus=spatial.oil.land_transport,
|
||||
carrier="land transport oil",
|
||||
p_set=p_set_land_transport_oil,
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.oil.land_transport,
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=spatial.oil.land_transport,
|
||||
bus2="co2 atmosphere",
|
||||
carrier="land transport oil",
|
||||
efficiency2=costs.at["oil", "CO2 intensity"],
|
||||
p_nom_extendable=True,
|
||||
)
|
||||
|
||||
|
||||
@ -2198,13 +2262,12 @@ def add_biomass(n, costs):
|
||||
# Assuming for costs that the CO2 from upgrading is pure, such as in amine scrubbing. I.e., with and without CC is
|
||||
# equivalent. Adding biomass CHP capture because biogas is often small-scale and decentral so further
|
||||
# from e.g. CO2 grid or buyers. This is a proxy for the added cost for e.g. a raw biogas pipeline to a central upgrading facility
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.gas.biogas_to_gas_cc,
|
||||
bus0=spatial.gas.biogas,
|
||||
bus1=spatial.gas.nodes,
|
||||
bus2="co2 stored",
|
||||
bus2=spatial.co2.nodes,
|
||||
bus3="co2 atmosphere",
|
||||
carrier="biogas to gas CC",
|
||||
capital_cost=costs.at["biogas CC", "fixed"]
|
||||
@ -2271,6 +2334,14 @@ def add_biomass(n, costs):
|
||||
marginal_cost=costs.at["solid biomass", "fuel"]
|
||||
+ bus_transport_costs * average_distance,
|
||||
)
|
||||
n.add(
|
||||
"GlobalConstraint",
|
||||
"biomass limit",
|
||||
carrier_attribute="solid biomass",
|
||||
sense="<=",
|
||||
constant=biomass_potentials["solid biomass"].sum(),
|
||||
type="operational_limit",
|
||||
)
|
||||
|
||||
# AC buses with district heating
|
||||
urban_central = n.buses.index[n.buses.carrier == "urban central heat"]
|
||||
@ -2483,9 +2554,14 @@ def add_industry(n, costs):
|
||||
efficiency=1.0,
|
||||
)
|
||||
|
||||
if len(spatial.biomass.industry_cc) <= 1 and len(spatial.co2.nodes) > 1:
|
||||
link_names = nodes + " " + spatial.biomass.industry_cc
|
||||
else:
|
||||
link_names = spatial.biomass.industry_cc
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.biomass.industry_cc,
|
||||
link_names,
|
||||
bus0=spatial.biomass.nodes,
|
||||
bus1=spatial.biomass.industry,
|
||||
bus2="co2 atmosphere",
|
||||
@ -2675,48 +2751,44 @@ def add_industry(n, costs):
|
||||
efficiency = (
|
||||
options["shipping_oil_efficiency"] / options["shipping_methanol_efficiency"]
|
||||
)
|
||||
p_set_methanol = shipping_methanol_share * p_set.sum() * efficiency
|
||||
|
||||
p_set_methanol = (
|
||||
shipping_methanol_share
|
||||
* p_set.rename(lambda x: x + " shipping methanol")
|
||||
* efficiency
|
||||
)
|
||||
|
||||
if not options["regional_methanol_demand"]:
|
||||
p_set_methanol = p_set_methanol.sum()
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
spatial.methanol.shipping,
|
||||
location=spatial.methanol.demand_locations,
|
||||
carrier="shipping methanol",
|
||||
unit="MWh_LHV",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Load",
|
||||
spatial.methanol.nodes,
|
||||
suffix=" shipping methanol",
|
||||
bus=spatial.methanol.nodes,
|
||||
spatial.methanol.shipping,
|
||||
bus=spatial.methanol.shipping,
|
||||
carrier="shipping methanol",
|
||||
p_set=p_set_methanol,
|
||||
)
|
||||
|
||||
# CO2 intensity methanol based on stoichiometric calculation with 22.7 GJ/t methanol (32 g/mol), CO2 (44 g/mol), 277.78 MWh/TJ = 0.218 t/MWh
|
||||
co2 = p_set_methanol / options["MWh_MeOH_per_tCO2"]
|
||||
|
||||
n.add(
|
||||
"Load",
|
||||
"shipping methanol emissions",
|
||||
bus="co2 atmosphere",
|
||||
carrier="shipping methanol emissions",
|
||||
p_set=-co2,
|
||||
)
|
||||
|
||||
if shipping_oil_share:
|
||||
p_set_oil = shipping_oil_share * p_set.sum()
|
||||
|
||||
n.madd(
|
||||
"Load",
|
||||
spatial.oil.nodes,
|
||||
suffix=" shipping oil",
|
||||
bus=spatial.oil.nodes,
|
||||
carrier="shipping oil",
|
||||
p_set=p_set_oil,
|
||||
)
|
||||
|
||||
co2 = p_set_oil * costs.at["oil", "CO2 intensity"]
|
||||
|
||||
n.add(
|
||||
"Load",
|
||||
"shipping oil emissions",
|
||||
bus="co2 atmosphere",
|
||||
carrier="shipping oil emissions",
|
||||
p_set=-co2,
|
||||
"Link",
|
||||
spatial.methanol.shipping,
|
||||
bus0=spatial.methanol.nodes,
|
||||
bus1=spatial.methanol.shipping,
|
||||
bus2="co2 atmosphere",
|
||||
carrier="shipping methanol",
|
||||
p_nom_extendable=True,
|
||||
efficiency2=1
|
||||
/ options[
|
||||
"MWh_MeOH_per_tCO2"
|
||||
], # CO2 intensity methanol based on stoichiometric calculation with 22.7 GJ/t methanol (32 g/mol), CO2 (44 g/mol), 277.78 MWh/TJ = 0.218 t/MWh
|
||||
)
|
||||
|
||||
if "oil" not in n.buses.carrier.unique():
|
||||
@ -2732,7 +2804,8 @@ def add_industry(n, costs):
|
||||
# could correct to e.g. 0.001 EUR/kWh * annuity and O&M
|
||||
n.madd(
|
||||
"Store",
|
||||
[oil_bus + " Store" for oil_bus in spatial.oil.nodes],
|
||||
spatial.oil.nodes,
|
||||
suffix=" Store",
|
||||
bus=spatial.oil.nodes,
|
||||
e_nom_extendable=True,
|
||||
e_cyclic=True,
|
||||
@ -2749,6 +2822,39 @@ def add_industry(n, costs):
|
||||
marginal_cost=costs.at["oil", "fuel"],
|
||||
)
|
||||
|
||||
if shipping_oil_share:
|
||||
p_set_oil = shipping_oil_share * p_set.rename(lambda x: x + " shipping oil")
|
||||
|
||||
if not options["regional_oil_demand"]:
|
||||
p_set_oil = p_set_oil.sum()
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
spatial.oil.shipping,
|
||||
location=spatial.oil.demand_locations,
|
||||
carrier="shipping oil",
|
||||
unit="MWh_LHV",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Load",
|
||||
spatial.oil.shipping,
|
||||
bus=spatial.oil.shipping,
|
||||
carrier="shipping oil",
|
||||
p_set=p_set_oil,
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.oil.shipping,
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=spatial.oil.shipping,
|
||||
bus2="co2 atmosphere",
|
||||
carrier="shipping oil",
|
||||
p_nom_extendable=True,
|
||||
efficiency2=costs.at["oil", "CO2 intensity"],
|
||||
)
|
||||
|
||||
if options["oil_boilers"]:
|
||||
nodes_heat = create_nodes_for_heat_sector()[0]
|
||||
|
||||
@ -2792,53 +2898,101 @@ def add_industry(n, costs):
|
||||
lifetime=costs.at["Fischer-Tropsch", "lifetime"],
|
||||
)
|
||||
|
||||
# naphtha
|
||||
demand_factor = options.get("HVC_demand_factor", 1)
|
||||
p_set = demand_factor * industrial_demand.loc[nodes, "naphtha"].sum() / nhours
|
||||
if demand_factor != 1:
|
||||
logger.warning(f"Changing HVC demand by {demand_factor*100-100:+.2f}%.")
|
||||
|
||||
n.madd(
|
||||
"Load",
|
||||
["naphtha for industry"],
|
||||
bus=spatial.oil.nodes,
|
||||
carrier="naphtha for industry",
|
||||
p_set=p_set,
|
||||
)
|
||||
|
||||
demand_factor = options.get("aviation_demand_factor", 1)
|
||||
all_aviation = ["total international aviation", "total domestic aviation"]
|
||||
p_set = (
|
||||
p_set_plastics = (
|
||||
demand_factor
|
||||
* pop_weighted_energy_totals.loc[nodes, all_aviation].sum(axis=1).sum()
|
||||
* 1e6
|
||||
* industrial_demand.loc[nodes, "naphtha"].rename(
|
||||
lambda x: x + " naphtha for industry"
|
||||
)
|
||||
/ nhours
|
||||
)
|
||||
|
||||
if not options["regional_oil_demand"]:
|
||||
p_set_plastics = p_set_plastics.sum()
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
spatial.oil.naphtha,
|
||||
location=spatial.oil.demand_locations,
|
||||
carrier="naphtha for industry",
|
||||
unit="MWh_LHV",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Load",
|
||||
spatial.oil.naphtha,
|
||||
bus=spatial.oil.naphtha,
|
||||
carrier="naphtha for industry",
|
||||
p_set=p_set_plastics,
|
||||
)
|
||||
|
||||
# some CO2 from naphtha are process emissions from steam cracker
|
||||
# rest of CO2 released to atmosphere either in waste-to-energy or decay
|
||||
process_co2_per_naphtha = (
|
||||
industrial_demand.loc[nodes, "process emission from feedstock"].sum()
|
||||
/ industrial_demand.loc[nodes, "naphtha"].sum()
|
||||
)
|
||||
emitted_co2_per_naphtha = costs.at["oil", "CO2 intensity"] - process_co2_per_naphtha
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.oil.naphtha,
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=spatial.oil.naphtha,
|
||||
bus2="co2 atmosphere",
|
||||
bus3=spatial.co2.process_emissions,
|
||||
carrier="naphtha for industry",
|
||||
p_nom_extendable=True,
|
||||
efficiency2=emitted_co2_per_naphtha,
|
||||
efficiency3=process_co2_per_naphtha,
|
||||
)
|
||||
|
||||
# aviation
|
||||
demand_factor = options.get("aviation_demand_factor", 1)
|
||||
if demand_factor != 1:
|
||||
logger.warning(f"Changing aviation demand by {demand_factor*100-100:+.2f}%.")
|
||||
|
||||
all_aviation = ["total international aviation", "total domestic aviation"]
|
||||
|
||||
p_set = (
|
||||
demand_factor
|
||||
* pop_weighted_energy_totals.loc[nodes, all_aviation].sum(axis=1)
|
||||
* 1e6
|
||||
/ nhours
|
||||
).rename(lambda x: x + " kerosene for aviation")
|
||||
|
||||
if not options["regional_oil_demand"]:
|
||||
p_set = p_set.sum()
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
spatial.oil.kerosene,
|
||||
location=spatial.oil.demand_locations,
|
||||
carrier="kerosene for aviation",
|
||||
unit="MWh_LHV",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Load",
|
||||
["kerosene for aviation"],
|
||||
bus=spatial.oil.nodes,
|
||||
spatial.oil.kerosene,
|
||||
bus=spatial.oil.kerosene,
|
||||
carrier="kerosene for aviation",
|
||||
p_set=p_set,
|
||||
)
|
||||
|
||||
# NB: CO2 gets released again to atmosphere when plastics decay or kerosene is burned
|
||||
# except for the process emissions when naphtha is used for petrochemicals, which can be captured with other industry process emissions
|
||||
# tco2 per hour
|
||||
co2_release = ["naphtha for industry", "kerosene for aviation"]
|
||||
co2 = (
|
||||
n.loads.loc[co2_release, "p_set"].sum() * costs.at["oil", "CO2 intensity"]
|
||||
- industrial_demand.loc[nodes, "process emission from feedstock"].sum() / nhours
|
||||
)
|
||||
|
||||
n.add(
|
||||
"Load",
|
||||
"oil emissions",
|
||||
bus="co2 atmosphere",
|
||||
carrier="oil emissions",
|
||||
p_set=-co2,
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.oil.kerosene,
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=spatial.oil.kerosene,
|
||||
bus2="co2 atmosphere",
|
||||
carrier="kerosene for aviation",
|
||||
p_nom_extendable=True,
|
||||
efficiency2=costs.at["oil", "CO2 intensity"],
|
||||
)
|
||||
|
||||
# TODO simplify bus expression
|
||||
@ -2889,19 +3043,16 @@ def add_industry(n, costs):
|
||||
unit="t_co2",
|
||||
)
|
||||
|
||||
sel = ["process emission", "process emission from feedstock"]
|
||||
if options["co2_spatial"] or options["co2network"]:
|
||||
p_set = (
|
||||
-industrial_demand.loc[nodes, sel]
|
||||
.sum(axis=1)
|
||||
.rename(index=lambda x: x + " process emissions")
|
||||
-industrial_demand.loc[nodes, "process emission"].rename(
|
||||
index=lambda x: x + " process emissions"
|
||||
)
|
||||
/ nhours
|
||||
)
|
||||
else:
|
||||
p_set = -industrial_demand.loc[nodes, sel].sum(axis=1).sum() / nhours
|
||||
p_set = -industrial_demand.loc[nodes, "process emission"].sum() / nhours
|
||||
|
||||
# this should be process emissions fossil+feedstock
|
||||
# then need load on atmosphere for feedstock emissions that are currently going to atmosphere via Link Fischer-Tropsch demand
|
||||
n.madd(
|
||||
"Load",
|
||||
spatial.co2.process_emissions,
|
||||
@ -3107,9 +3258,9 @@ def add_agriculture(n, costs):
|
||||
f"Total agriculture machinery shares sum up to {total_share:.2%}, corresponding to increased or decreased demand assumptions."
|
||||
)
|
||||
|
||||
machinery_nodal_energy = pop_weighted_energy_totals.loc[
|
||||
nodes, "total agriculture machinery"
|
||||
]
|
||||
machinery_nodal_energy = (
|
||||
pop_weighted_energy_totals.loc[nodes, "total agriculture machinery"] * 1e6
|
||||
)
|
||||
|
||||
if electric_share > 0:
|
||||
efficiency_gain = (
|
||||
@ -3123,36 +3274,44 @@ def add_agriculture(n, costs):
|
||||
suffix=" agriculture machinery electric",
|
||||
bus=nodes,
|
||||
carrier="agriculture machinery electric",
|
||||
p_set=electric_share
|
||||
/ efficiency_gain
|
||||
* machinery_nodal_energy
|
||||
* 1e6
|
||||
/ nhours,
|
||||
p_set=electric_share / efficiency_gain * machinery_nodal_energy / nhours,
|
||||
)
|
||||
|
||||
if oil_share > 0:
|
||||
p_set = (
|
||||
oil_share
|
||||
* machinery_nodal_energy.rename(lambda x: x + " agriculture machinery oil")
|
||||
/ nhours
|
||||
)
|
||||
|
||||
if not options["regional_oil_demand"]:
|
||||
p_set = p_set.sum()
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
spatial.oil.agriculture_machinery,
|
||||
location=spatial.oil.demand_locations,
|
||||
carrier="agriculture machinery oil",
|
||||
unit="MWh_LHV",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Load",
|
||||
["agriculture machinery oil"],
|
||||
bus=spatial.oil.nodes,
|
||||
spatial.oil.agriculture_machinery,
|
||||
bus=spatial.oil.agriculture_machinery,
|
||||
carrier="agriculture machinery oil",
|
||||
p_set=oil_share * machinery_nodal_energy.sum() * 1e6 / nhours,
|
||||
p_set=p_set,
|
||||
)
|
||||
|
||||
co2 = (
|
||||
oil_share
|
||||
* machinery_nodal_energy.sum()
|
||||
* 1e6
|
||||
/ nhours
|
||||
* costs.at["oil", "CO2 intensity"]
|
||||
)
|
||||
|
||||
n.add(
|
||||
"Load",
|
||||
"agriculture machinery oil emissions",
|
||||
bus="co2 atmosphere",
|
||||
carrier="agriculture machinery oil emissions",
|
||||
p_set=-co2,
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.oil.agriculture_machinery,
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=spatial.oil.agriculture_machinery,
|
||||
bus2="co2 atmosphere",
|
||||
carrier="agriculture machinery oil",
|
||||
p_nom_extendable=True,
|
||||
efficiency2=costs.at["oil", "CO2 intensity"],
|
||||
)
|
||||
|
||||
|
||||
@ -3175,7 +3334,8 @@ def remove_h2_network(n):
|
||||
|
||||
def maybe_adjust_costs_and_potentials(n, opts):
|
||||
for o in opts:
|
||||
if "+" not in o:
|
||||
flags = ["+e", "+p", "+m"]
|
||||
if all(flag not in o for flag in flags):
|
||||
continue
|
||||
oo = o.split("+")
|
||||
carrier_list = np.hstack(
|
||||
@ -3221,24 +3381,24 @@ def limit_individual_line_extension(n, maxext):
|
||||
|
||||
|
||||
aggregate_dict = {
|
||||
"p_nom": "sum",
|
||||
"s_nom": "sum",
|
||||
"p_nom": pd.Series.sum,
|
||||
"s_nom": pd.Series.sum,
|
||||
"v_nom": "max",
|
||||
"v_mag_pu_max": "min",
|
||||
"v_mag_pu_min": "max",
|
||||
"p_nom_max": "sum",
|
||||
"s_nom_max": "sum",
|
||||
"p_nom_min": "sum",
|
||||
"s_nom_min": "sum",
|
||||
"p_nom_max": pd.Series.sum,
|
||||
"s_nom_max": pd.Series.sum,
|
||||
"p_nom_min": pd.Series.sum,
|
||||
"s_nom_min": pd.Series.sum,
|
||||
"v_ang_min": "max",
|
||||
"v_ang_max": "min",
|
||||
"terrain_factor": "mean",
|
||||
"num_parallel": "sum",
|
||||
"p_set": "sum",
|
||||
"e_initial": "sum",
|
||||
"e_nom": "sum",
|
||||
"e_nom_max": "sum",
|
||||
"e_nom_min": "sum",
|
||||
"e_nom": pd.Series.sum,
|
||||
"e_nom_max": pd.Series.sum,
|
||||
"e_nom_min": pd.Series.sum,
|
||||
"state_of_charge_initial": "sum",
|
||||
"state_of_charge_set": "sum",
|
||||
"inflow": "sum",
|
||||
@ -3300,13 +3460,11 @@ def cluster_heat_buses(n):
|
||||
pnl = c.pnl
|
||||
agg = define_clustering(pd.Index(pnl.keys()), aggregate_dict)
|
||||
for k in pnl.keys():
|
||||
pnl[k].rename(
|
||||
columns=lambda x: x.replace("residential ", "").replace(
|
||||
"services ", ""
|
||||
),
|
||||
inplace=True,
|
||||
)
|
||||
pnl[k] = pnl[k].groupby(level=0, axis=1).agg(agg[k], **agg_group_kwargs)
|
||||
|
||||
def renamer(s):
|
||||
return s.replace("residential ", "").replace("services ", "")
|
||||
|
||||
pnl[k] = pnl[k].groupby(renamer, axis=1).agg(agg[k], **agg_group_kwargs)
|
||||
|
||||
# remove unclustered assets of service/residential
|
||||
to_drop = c.df.index.difference(df.index)
|
||||
@ -3370,6 +3528,7 @@ def apply_time_segmentation(
|
||||
sn_weightings = pd.Series(
|
||||
weightings, index=snapshots, name="weightings", dtype="float64"
|
||||
)
|
||||
logger.info(f"Distribution of snapshot durations:\n{weightings.value_counts()}")
|
||||
|
||||
n.set_snapshots(sn_weightings.index)
|
||||
n.snapshot_weightings = n.snapshot_weightings.mul(sn_weightings, axis=0)
|
||||
@ -3411,6 +3570,57 @@ def set_temporal_aggregation(n, opts, solver_name):
|
||||
return n
|
||||
|
||||
|
||||
def lossy_bidirectional_links(n, carrier, efficiencies={}):
|
||||
"Split bidirectional links into two unidirectional links to include transmission losses."
|
||||
|
||||
carrier_i = n.links.query("carrier == @carrier").index
|
||||
|
||||
if (
|
||||
not any((v != 1.0) or (v >= 0) for v in efficiencies.values())
|
||||
or carrier_i.empty
|
||||
):
|
||||
return
|
||||
|
||||
efficiency_static = efficiencies.get("efficiency_static", 1)
|
||||
efficiency_per_1000km = efficiencies.get("efficiency_per_1000km", 1)
|
||||
compression_per_1000km = efficiencies.get("compression_per_1000km", 0)
|
||||
|
||||
logger.info(
|
||||
f"Specified losses for {carrier} transmission "
|
||||
f"(static: {efficiency_static}, per 1000km: {efficiency_per_1000km}, compression per 1000km: {compression_per_1000km}). "
|
||||
"Splitting bidirectional links."
|
||||
)
|
||||
|
||||
n.links.loc[carrier_i, "p_min_pu"] = 0
|
||||
n.links.loc[
|
||||
carrier_i, "efficiency"
|
||||
] = efficiency_static * efficiency_per_1000km ** (
|
||||
n.links.loc[carrier_i, "length"] / 1e3
|
||||
)
|
||||
rev_links = (
|
||||
n.links.loc[carrier_i].copy().rename({"bus0": "bus1", "bus1": "bus0"}, axis=1)
|
||||
)
|
||||
rev_links["length_original"] = rev_links["length"]
|
||||
rev_links["capital_cost"] = 0
|
||||
rev_links["length"] = 0
|
||||
rev_links["reversed"] = True
|
||||
rev_links.index = rev_links.index.map(lambda x: x + "-reversed")
|
||||
|
||||
n.links = pd.concat([n.links, rev_links], sort=False)
|
||||
n.links["reversed"] = n.links["reversed"].fillna(False)
|
||||
n.links["length_original"] = n.links["length_original"].fillna(n.links.length)
|
||||
|
||||
# do compression losses after concatenation to take electricity consumption at bus0 in either direction
|
||||
carrier_i = n.links.query("carrier == @carrier").index
|
||||
if compression_per_1000km > 0:
|
||||
n.links.loc[carrier_i, "bus2"] = n.links.loc[carrier_i, "bus0"].map(
|
||||
n.buses.location
|
||||
) # electricity
|
||||
n.links.loc[carrier_i, "efficiency2"] = (
|
||||
-compression_per_1000km * n.links.loc[carrier_i, "length_original"] / 1e3
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
@ -3463,7 +3673,7 @@ if __name__ == "__main__":
|
||||
for carrier in conventional:
|
||||
add_carrier_buses(n, carrier)
|
||||
|
||||
add_co2_tracking(n, options)
|
||||
add_co2_tracking(n, costs, options)
|
||||
|
||||
add_generation(n, costs)
|
||||
|
||||
@ -3586,6 +3796,18 @@ if __name__ == "__main__":
|
||||
if options["electricity_grid_connection"]:
|
||||
add_electricity_grid_connection(n, costs)
|
||||
|
||||
for k, v in options["transmission_efficiency"].items():
|
||||
lossy_bidirectional_links(n, k, v)
|
||||
|
||||
# Workaround: Remove lines with conflicting (and unrealistic) properties
|
||||
# cf. https://github.com/PyPSA/pypsa-eur/issues/444
|
||||
if snakemake.config["solving"]["options"]["transmission_losses"]:
|
||||
idx = n.lines.query("num_parallel == 0").index
|
||||
logger.info(
|
||||
f"Removing {len(idx)} line(s) with properties conflicting with transmission losses functionality."
|
||||
)
|
||||
n.mremove("Line", idx)
|
||||
|
||||
first_year_myopic = (snakemake.params.foresight in ["myopic", "perfect"]) and (
|
||||
snakemake.params.planning_horizons[0] == investment_year
|
||||
)
|
||||
|
@ -26,8 +26,11 @@ Additionally, some extra constraints specified in :mod:`solve_network` are added
|
||||
the workflow for all scenarios in the configuration file (``scenario:``)
|
||||
based on the rule :mod:`solve_network`.
|
||||
"""
|
||||
import importlib
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@ -179,9 +182,6 @@ def add_co2_sequestration_limit(n, config, limit=200):
|
||||
"""
|
||||
Add a global constraint on the amount of Mt CO2 that can be sequestered.
|
||||
"""
|
||||
n.carriers.loc["co2 stored", "co2_absorptions"] = -1
|
||||
n.carriers.co2_absorptions = n.carriers.co2_absorptions.fillna(0)
|
||||
|
||||
limit = limit * 1e6
|
||||
for o in opts:
|
||||
if "seq" not in o:
|
||||
@ -199,10 +199,10 @@ def add_co2_sequestration_limit(n, config, limit=200):
|
||||
n.madd(
|
||||
"GlobalConstraint",
|
||||
names,
|
||||
sense="<=",
|
||||
constant=limit,
|
||||
type="primary_energy",
|
||||
carrier_attribute="co2_absorptions",
|
||||
sense=">=",
|
||||
constant=-limit,
|
||||
type="operational_limit",
|
||||
carrier_attribute="co2 sequestered",
|
||||
investment_period=periods,
|
||||
)
|
||||
|
||||
@ -393,7 +393,7 @@ def prepare_network(
|
||||
if snakemake.params["sector"]["limit_max_growth"]["enable"]:
|
||||
n = add_max_growth(n, config)
|
||||
|
||||
if n.stores.carrier.eq("co2 stored").any():
|
||||
if n.stores.carrier.eq("co2 sequestered").any():
|
||||
limit = co2_sequestration_potential
|
||||
add_co2_sequestration_limit(n, config, limit=limit)
|
||||
|
||||
@ -687,6 +687,35 @@ def add_battery_constraints(n):
|
||||
n.model.add_constraints(lhs == 0, name="Link-charger_ratio")
|
||||
|
||||
|
||||
def add_lossy_bidirectional_link_constraints(n):
|
||||
if not n.links.p_nom_extendable.any() or not "reversed" in n.links.columns:
|
||||
return
|
||||
|
||||
n.links["reversed"] = n.links.reversed.fillna(0).astype(bool)
|
||||
carriers = n.links.loc[n.links.reversed, "carrier"].unique()
|
||||
|
||||
forward_i = n.links.query(
|
||||
"carrier in @carriers and ~reversed and p_nom_extendable"
|
||||
).index
|
||||
|
||||
def get_backward_i(forward_i):
|
||||
return pd.Index(
|
||||
[
|
||||
re.sub(r"-(\d{4})$", r"-reversed-\1", s)
|
||||
if re.search(r"-\d{4}$", s)
|
||||
else s + "-reversed"
|
||||
for s in forward_i
|
||||
]
|
||||
)
|
||||
|
||||
backward_i = get_backward_i(forward_i)
|
||||
|
||||
lhs = n.model["Link-p_nom"].loc[backward_i]
|
||||
rhs = n.model["Link-p_nom"].loc[forward_i]
|
||||
|
||||
n.model.add_constraints(lhs == rhs, name="Link-bidirectional_sync")
|
||||
|
||||
|
||||
def add_chp_constraints(n):
|
||||
electric = (
|
||||
n.links.index.str.contains("urban central")
|
||||
@ -745,9 +774,13 @@ def add_pipe_retrofit_constraint(n):
|
||||
"""
|
||||
Add constraint for retrofitting existing CH4 pipelines to H2 pipelines.
|
||||
"""
|
||||
gas_pipes_i = n.links.query("carrier == 'gas pipeline' and p_nom_extendable").index
|
||||
if "reversed" not in n.links.columns:
|
||||
n.links["reversed"] = False
|
||||
gas_pipes_i = n.links.query(
|
||||
"carrier == 'gas pipeline' and p_nom_extendable and ~reversed"
|
||||
).index
|
||||
h2_retrofitted_i = n.links.query(
|
||||
"carrier == 'H2 pipeline retrofitted' and p_nom_extendable"
|
||||
"carrier == 'H2 pipeline retrofitted' and p_nom_extendable and ~reversed"
|
||||
).index
|
||||
|
||||
if h2_retrofitted_i.empty or gas_pipes_i.empty:
|
||||
@ -798,12 +831,22 @@ def extra_functionality(n, snapshots):
|
||||
add_EQ_constraints(n, EQ_o.replace("EQ", ""))
|
||||
|
||||
add_battery_constraints(n)
|
||||
add_lossy_bidirectional_link_constraints(n)
|
||||
add_pipe_retrofit_constraint(n)
|
||||
if n._multi_invest:
|
||||
add_carbon_constraint(n, snapshots)
|
||||
add_carbon_budget_constraint(n, snapshots)
|
||||
add_retrofit_gas_boiler_constraint(n, snapshots)
|
||||
|
||||
if snakemake.params.custom_extra_functionality:
|
||||
source_path = snakemake.params.custom_extra_functionality
|
||||
assert os.path.exists(source_path), f"{source_path} does not exist"
|
||||
sys.path.append(os.path.dirname(source_path))
|
||||
module_name = os.path.splitext(os.path.basename(source_path))[0]
|
||||
module = importlib.import_module(module_name)
|
||||
custom_extra_functionality = getattr(module, module_name)
|
||||
custom_extra_functionality(n, snapshots, snakemake)
|
||||
|
||||
|
||||
def solve_network(n, config, solving, opts="", **kwargs):
|
||||
set_of_options = solving["solver"]["options"]
|
||||
@ -821,6 +864,9 @@ def solve_network(n, config, solving, opts="", **kwargs):
|
||||
)
|
||||
kwargs["assign_all_duals"] = cf_solving.get("assign_all_duals", False)
|
||||
|
||||
if kwargs["solver_name"] == "gurobi":
|
||||
logging.getLogger("gurobipy").setLevel(logging.CRITICAL)
|
||||
|
||||
rolling_horizon = cf_solving.pop("rolling_horizon", False)
|
||||
skip_iterations = cf_solving.pop("skip_iterations", False)
|
||||
if not n.lines.s_nom_extendable.any():
|
||||
@ -851,6 +897,9 @@ def solve_network(n, config, solving, opts="", **kwargs):
|
||||
f"Solving status '{status}' with termination condition '{condition}'"
|
||||
)
|
||||
if "infeasible" in condition:
|
||||
labels = n.model.compute_infeasibilities()
|
||||
logger.info("Labels:\n" + labels)
|
||||
n.model.print_infeasibilities()
|
||||
raise RuntimeError("Solving status 'infeasible'")
|
||||
|
||||
return n
|
||||
|
Loading…
Reference in New Issue
Block a user