industry: separate code for distribution key from nodal production

This allows us to reuse the key for today's nodal energy demand from
industry.
This commit is contained in:
Tom Brown 2020-10-12 12:07:49 +02:00
parent 90f5349b7d
commit f0937e203b
3 changed files with 178 additions and 139 deletions

View File

@ -199,12 +199,25 @@ rule build_industrial_production_per_country_tomorrow:
script: 'scripts/build_industrial_production_per_country_tomorrow.py'
rule build_industrial_production_per_node:
rule build_industrial_distribution_key:
input:
clustered_pop_layout="resources/pop_layout_{network}_s{simpl}_{clusters}.csv",
europe_shape=pypsaeur('resources/europe_shape.geojson'),
hotmaps_industrial_database="data/Industrial_Database.csv",
network=pypsaeur('networks/{network}_s{simpl}_{clusters}.nc'),
network=pypsaeur('networks/{network}_s{simpl}_{clusters}.nc')
output:
industrial_distribution_key="resources/industrial_distribution_key_{network}_s{simpl}_{clusters}.csv"
threads: 1
resources: mem_mb=1000
script: 'scripts/build_industrial_distribution_key.py'
rule build_industrial_production_per_node:
input:
industrial_distribution_key="resources/industrial_distribution_key_{network}_s{simpl}_{clusters}.csv",
industrial_production_per_country_tomorrow="resources/industrial_production_per_country_tomorrow.csv"
output:
industrial_production_per_node="resources/industrial_production_{network}_s{simpl}_{clusters}.csv"

View File

@ -0,0 +1,153 @@
import pypsa
import pandas as pd
import geopandas as gpd
from shapely import wkt, prepared
from scipy.spatial import cKDTree as KDTree
def prepare_hotmaps_database():
df = pd.read_csv(snakemake.input.hotmaps_industrial_database,
sep=";",
index_col=0)
#remove those sites without valid geometries
df.drop(df.index[df.geom.isna()],
inplace=True)
#parse geometry
#https://geopandas.org/gallery/create_geopandas_from_pandas.html?highlight=parse#from-wkt-format
df["Coordinates"] = df.geom.apply(lambda x : wkt.loads(x[x.find(";POINT")+1:]))
gdf = gpd.GeoDataFrame(df, geometry='Coordinates')
europe_shape = gpd.read_file(snakemake.input.europe_shape).loc[0, 'geometry']
europe_shape_prepped = prepared.prep(europe_shape)
not_in_europe = gdf.index[~gdf.geometry.apply(europe_shape_prepped.contains)]
print("Removing the following industrial facilities since they are not in European area:")
print(gdf.loc[not_in_europe])
gdf.drop(not_in_europe,
inplace=True)
country_to_code = {
'Belgium' : 'BE',
'Bulgaria' : 'BG',
'Czech Republic' : 'CZ',
'Denmark' : 'DK',
'Germany' : 'DE',
'Estonia' : 'EE',
'Ireland' : 'IE',
'Greece' : 'GR',
'Spain' : 'ES',
'France' : 'FR',
'Croatia' : 'HR',
'Italy' : 'IT',
'Cyprus' : 'CY',
'Latvia' : 'LV',
'Lithuania' : 'LT',
'Luxembourg' : 'LU',
'Hungary' : 'HU',
'Malta' : 'MA',
'Netherland' : 'NL',
'Austria' : 'AT',
'Poland' : 'PL',
'Portugal' : 'PT',
'Romania' : 'RO',
'Slovenia' : 'SI',
'Slovakia' : 'SK',
'Finland' : 'FI',
'Sweden' : 'SE',
'United Kingdom' : 'GB',
'Iceland' : 'IS',
'Norway' : 'NO',
'Montenegro' : 'ME',
'FYR of Macedonia' : 'MK',
'Albania' : 'AL',
'Serbia' : 'RS',
'Turkey' : 'TU',
'Bosnia and Herzegovina' : 'BA',
'Switzerland' : 'CH',
'Liechtenstein' : 'AT',
}
gdf["country_code"] = gdf.Country.map(country_to_code)
if gdf["country_code"].isna().any():
print("Warning, some countries not assigned an ISO code")
gdf["x"] = gdf.geometry.x
gdf["y"] = gdf.geometry.y
return gdf
def assign_buses(gdf):
gdf["bus"] = ""
for c in n.buses.country.unique():
buses_i = n.buses.index[n.buses.country == c]
kdtree = KDTree(n.buses.loc[buses_i, ['x','y']].values)
industry_i = gdf.index[(gdf.country_code == c)]
if industry_i.empty:
print("Skipping country with no industry:",c)
else:
tree_i = kdtree.query(gdf.loc[industry_i, ['x','y']].values)[1]
gdf.loc[industry_i, 'bus'] = buses_i[tree_i]
if (gdf.bus == "").any():
print("Some industrial facilities have empty buses")
if gdf.bus.isna().any():
print("Some industrial facilities have NaN buses")
def build_nodal_distribution_key(gdf):
sectors = ['Iron and steel','Chemical industry','Cement','Non-metallic mineral products','Glass','Paper and printing','Non-ferrous metals']
distribution_keys = pd.DataFrame(index=n.buses.index,
columns=sectors,
dtype=float)
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,index_col=0)
pop_layout["ct"] = pop_layout.index.str[:2]
ct_total = pop_layout.total.groupby(pop_layout["ct"]).sum()
pop_layout["ct_total"] = pop_layout["ct"].map(ct_total)
distribution_keys["population"] = pop_layout["total"]/pop_layout["ct_total"]
for c in n.buses.country.unique():
buses = n.buses.index[n.buses.country == c]
for sector in sectors:
facilities = gdf.index[(gdf.country_code == c) & (gdf.Subsector == sector)]
if not facilities.empty:
emissions = gdf.loc[facilities,"Emissions_ETS_2014"]
if emissions.sum() == 0:
distribution_key = pd.Series(1/len(facilities),
facilities)
else:
#BEWARE: this is a strong assumption
emissions = emissions.fillna(emissions.mean())
distribution_key = emissions/emissions.sum()
distribution_key = distribution_key.groupby(gdf.loc[facilities,"bus"]).sum().reindex(buses,fill_value=0.)
else:
distribution_key = distribution_keys.loc[buses,"population"]
if abs(distribution_key.sum() - 1) > 1e-4:
print(c,sector,distribution_key)
distribution_keys.loc[buses,sector] = distribution_key
distribution_keys.to_csv(snakemake.output.industrial_distribution_key)
if __name__ == "__main__":
n = pypsa.Network(snakemake.input.network)
hotmaps_database = prepare_hotmaps_database()
assign_buses(hotmaps_database)
build_nodal_distribution_key(hotmaps_database)

View File

@ -1,123 +1,19 @@
import pypsa
import pandas as pd
import geopandas as gpd
from shapely import wkt, prepared
from scipy.spatial import cKDTree as KDTree
def prepare_hotmaps_database():
df = pd.read_csv(snakemake.input.hotmaps_industrial_database,
sep=";",
index_col=0)
#remove those sites without valid geometries
df.drop(df.index[df.geom.isna()],
inplace=True)
#parse geometry
#https://geopandas.org/gallery/create_geopandas_from_pandas.html?highlight=parse#from-wkt-format
df["Coordinates"] = df.geom.apply(lambda x : wkt.loads(x[x.find(";POINT")+1:]))
gdf = gpd.GeoDataFrame(df, geometry='Coordinates')
europe_shape = gpd.read_file(snakemake.input.europe_shape).loc[0, 'geometry']
europe_shape_prepped = prepared.prep(europe_shape)
not_in_europe = gdf.index[~gdf.geometry.apply(europe_shape_prepped.contains)]
print("Removing the following industrial facilities since they are not in European area:")
print(gdf.loc[not_in_europe])
gdf.drop(not_in_europe,
inplace=True)
country_to_code = {
'Belgium' : 'BE',
'Bulgaria' : 'BG',
'Czech Republic' : 'CZ',
'Denmark' : 'DK',
'Germany' : 'DE',
'Estonia' : 'EE',
'Ireland' : 'IE',
'Greece' : 'GR',
'Spain' : 'ES',
'France' : 'FR',
'Croatia' : 'HR',
'Italy' : 'IT',
'Cyprus' : 'CY',
'Latvia' : 'LV',
'Lithuania' : 'LT',
'Luxembourg' : 'LU',
'Hungary' : 'HU',
'Malta' : 'MA',
'Netherland' : 'NL',
'Austria' : 'AT',
'Poland' : 'PL',
'Portugal' : 'PT',
'Romania' : 'RO',
'Slovenia' : 'SI',
'Slovakia' : 'SK',
'Finland' : 'FI',
'Sweden' : 'SE',
'United Kingdom' : 'GB',
'Iceland' : 'IS',
'Norway' : 'NO',
'Montenegro' : 'ME',
'FYR of Macedonia' : 'MK',
'Albania' : 'AL',
'Serbia' : 'RS',
'Turkey' : 'TU',
'Bosnia and Herzegovina' : 'BA',
'Switzerland' : 'CH',
'Liechtenstein' : 'AT',
}
gdf["country_code"] = gdf.Country.map(country_to_code)
if gdf["country_code"].isna().any():
print("Warning, some countries not assigned an ISO code")
gdf["x"] = gdf.geometry.x
gdf["y"] = gdf.geometry.y
return gdf
def assign_buses(gdf):
gdf["bus"] = ""
for c in n.buses.country.unique():
buses_i = n.buses.index[n.buses.country == c]
kdtree = KDTree(n.buses.loc[buses_i, ['x','y']].values)
industry_i = gdf.index[(gdf.country_code == c)]
if industry_i.empty:
print("Skipping country with no industry:",c)
else:
tree_i = kdtree.query(gdf.loc[industry_i, ['x','y']].values)[1]
gdf.loc[industry_i, 'bus'] = buses_i[tree_i]
if (gdf.bus == "").any():
print("Some industrial facilities have empty buses")
if gdf.bus.isna().any():
print("Some industrial facilities have NaN buses")
def build_nodal_industrial_production(gdf):
def build_nodal_industrial_production():
industrial_production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow,
index_col=0)
nodal_industrial_production = pd.DataFrame(index=n.buses.index,
distribution_keys = pd.read_csv(snakemake.input.industrial_distribution_key,
index_col=0)
distribution_keys["country"] = distribution_keys.index.str[:2]
nodal_industrial_production = pd.DataFrame(index=distribution_keys.index,
columns=industrial_production.columns,
dtype=float)
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,index_col=0)
pop_layout["ct"] = pop_layout.index.str[:2]
ct_total = pop_layout.total.groupby(pop_layout["ct"]).sum()
pop_layout["ct_total"] = pop_layout["ct"].map(ct_total)
pop_layout["fraction"] = pop_layout["total"]/pop_layout["ct_total"]
#map JRC/our sectors to hotmaps sector, where mapping exist
sector_mapping = {'Electric arc' : 'Iron and steel',
'Integrated steelworks' : 'Iron and steel',
@ -138,37 +34,14 @@ def build_nodal_industrial_production(gdf):
'Other non-ferrous metals' : 'Non-ferrous metals',
}
for c in n.buses.country.unique():
buses = n.buses.index[n.buses.country == c]
for c in distribution_keys.country.unique():
buses = distribution_keys.index[distribution_keys.country == c]
for sector in industrial_production.columns:
facilities = gdf.index[(gdf.country_code == c) & (gdf.Subsector == sector_mapping.get(sector,"None"))]
if (sector in sector_mapping) and not facilities.empty:
emissions = gdf.loc[facilities,"Emissions_ETS_2014"]
if emissions.sum() == 0:
distribution_key = pd.Series(1/len(facilities),
facilities)
else:
#BEWARE: this is a strong assumption
emissions = emissions.fillna(emissions.mean())
distribution_key = emissions/emissions.sum()
distribution_key = distribution_key.groupby(gdf.loc[facilities,"bus"]).sum().reindex(buses,fill_value=0.)
else:
distribution_key = pop_layout.loc[buses,"fraction"]
if abs(distribution_key.sum() - 1) > 1e-4:
print(c,sector,distribution_key)
distribution_key = distribution_keys.loc[buses,sector_mapping.get(sector,"population")]
nodal_industrial_production.loc[buses,sector] = industrial_production.at[c,sector]*distribution_key
nodal_industrial_production.to_csv(snakemake.output.industrial_production_per_node)
if __name__ == "__main__":
n = pypsa.Network(snakemake.input.network)
hotmaps_database = prepare_hotmaps_database()
assign_buses(hotmaps_database)
build_nodal_industrial_production(hotmaps_database)
build_nodal_industrial_production()