doc: fix build warnings

This commit is contained in:
Fabian 2021-08-27 12:30:29 +02:00
parent f7d76659c5
commit ea50abab6d
14 changed files with 32 additions and 31 deletions

View File

@ -108,6 +108,7 @@ Make sure that your instance is operating for the next steps.
- Option 1. Click on the Tools button and "Install Public Key into Server..". Somewhere in your folder structure must be a public key. I found it with the following folder syntax on my local windows computer -> :\Users\...\.ssh (there should be a PKK file).
- Option 2. Click on the Tools button and "Generate new key pair...". Save the private key at a folder you remember and add it to the "private key file" field in WinSCP. Upload the public key to the metadeta of your instance.
- Click ok and save. Then click Login. If successfull WinSCP will open on the left side your local computer folder structure and on the right side the folder strucutre of your VM. (If you followed Option 2 and its not initially working. Stop your instance, refresh the website, reopen the WinSCP field. Afterwards your your Login should be successfull)
If you had struggle with the above steps, you could also try `this video <https://www.youtube.com/watch?v=lYx1oQkEF0E>`_.
.. note::

View File

@ -1,19 +1,19 @@
,Unit,Values,Description,
voltages,kV,"Any subset of {220., 300., 380.}",Voltage levels to consider when,
co2limit,:math:`t_{CO_2-eq}/a`,float,Cap on total annual system carbon dioxide emissions,
co2base,:math:`t_{CO_2-eq}/a`,float,Reference value of total annual system carbon dioxide emissions if relative emission reduction target is specified in ``{opts}`` wildcard.,
,Unit,Values,Description
voltages,kV,"Any subset of {220., 300., 380.}",Voltage levels to consider when
co2limit,:math:`t_{CO_2-eq}/a`,float,Cap on total annual system carbon dioxide emissions
co2base,:math:`t_{CO_2-eq}/a`,float,Reference value of total annual system carbon dioxide emissions if relative emission reduction target is specified in ``{opts}`` wildcard.
agg_p_nom_limits,file,path,Reference to ``.csv`` file specifying per carrier generator nominal capacity constraints for individual countries if ``'CCL'`` is in ``{opts}`` wildcard. Defaults to ``data/agg_p_nom_minmax.csv``.
extendable_carriers,,,,
extendable_carriers,,,
-- Generator,--,"Any subset of {'OCGT','CCGT'}",Places extendable conventional power plants (OCGT and/or CCGT) where gas power plants are located today without capacity limits.
-- StorageUnit,--,"Any subset of {'battery','H2'}",Adds extendable storage units (battery and/or hydrogen) at every node/bus after clustering without capacity limits and with zero initial capacity.
-- Store,--,"Any subset of {'battery','H2'}",Adds extendable storage units (battery and/or hydrogen) at every node/bus after clustering without capacity limits and with zero initial capacity.
-- Link,--,Any subset of {'H2 pipeline'},Adds extendable links (H2 pipelines only) at every connection where there are lines or HVDC links without capacity limits and with zero initial capacity. Hydrogen pipelines require hydrogen storage to be modelled as ``Store``.
max_hours,,,,
max_hours,,,
-- battery,h,float,Maximum state of charge capacity of the battery in terms of hours at full output capacity ``p_nom``. Cf. `PyPSA documentation <https://pypsa.readthedocs.io/en/latest/components.html#storage-unit>`_.
-- H2,h,float,Maximum state of charge capacity of the hydrogen storage in terms of hours at full output capacity ``p_nom``. Cf. `PyPSA documentation <https://pypsa.readthedocs.io/en/latest/components.html#storage-unit>`_.
powerplants_filter,--,"use `pandas.query <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html>`_ strings here, e.g. Country not in ['Germany']",Filter query for the default powerplant database.,
custom_powerplants,--,"use `pandas.query <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html>`_ strings here, e.g. Country in ['Germany']",Filter query for the custom powerplant database.,
conventional_carriers,--,"Any subset of {nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass}",List of conventional power plants to include in the model from ``resources/powerplants.csv``.,
renewable_capacities_from_OPSD,,"[solar, onwind, offwind]",List of carriers (offwind-ac and offwind-dc are included in offwind) whose capacities 'p_nom' are aligned to the `OPSD renewable power plant list <https://data.open-power-system-data.org/renewable_power_plants/>`_,
estimate_renewable_capacities_from_capacitiy_stats,,,,
"-- Fueltype [ppm], e.g. Wind",,"list of fueltypes strings in PyPSA-Eur, e.g. [onwind, offwind-ac, offwind-dc]",converts ppm Fueltype to PyPSA-EUR Fueltype,
powerplants_filter,--,"use `pandas.query <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html>`_ strings here, e.g. Country not in ['Germany']",Filter query for the default powerplant database.
custom_powerplants,--,"use `pandas.query <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html>`_ strings here, e.g. Country in ['Germany']",Filter query for the custom powerplant database.
conventional_carriers,--,"Any subset of {nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass}",List of conventional power plants to include in the model from ``resources/powerplants.csv``.
renewable_capacities_from_OPSD,,"[solar, onwind, offwind]",List of carriers (offwind-ac and offwind-dc are included in offwind) whose capacities 'p_nom' are aligned to the `OPSD renewable power plant list <https://data.open-power-system-data.org/renewable_power_plants/>`_
estimate_renewable_capacities_from_capacitiy_stats,,,
"-- Fueltype [ppm], e.g. Wind",,"list of fueltypes strings in PyPSA-Eur, e.g. [onwind, offwind-ac, offwind-dc]",converts ppm Fueltype to PyPSA-EUR Fueltype

Can't render this file because it has a wrong number of fields in line 5.

View File

@ -2,7 +2,7 @@
cutout,--,"Should be a folder listed in the configuration ``atlite: cutouts:`` (e.g. 'europe-2013-era5') or reference an existing folder in the directory ``cutouts``. Source module must be ERA5.","Specifies the directory where the relevant weather data ist stored."
resource,,,
-- method,--,"Must be 'wind'","A superordinate technology type."
-- turbine,--,"One of turbine types included in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/windturbine>`_","Specifies the turbine type and its characteristic power curve."
-- turbine,--,"One of turbine types included in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/windturbine>`__","Specifies the turbine type and its characteristic power curve."
capacity_per_sqkm,:math:`MW/km^2`,float,"Allowable density of wind turbine placement."
corine,--,"Any *realistic* subset of the `CORINE Land Cover code list <http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1/corine-land-cover-classes-and/clc_legend.csv/at_download/file>`_","Specifies areas according to CORINE Land Cover codes which are generally eligible for AC-connected offshore wind turbine placement."
natura,bool,"{true, false}","Switch to exclude `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas. Area is excluded if ``true``."

1 Unit Values Description
2 cutout -- Should be a folder listed in the configuration ``atlite: cutouts:`` (e.g. 'europe-2013-era5') or reference an existing folder in the directory ``cutouts``. Source module must be ERA5. Specifies the directory where the relevant weather data ist stored.
3 resource
4 -- method -- Must be 'wind' A superordinate technology type.
5 -- turbine -- One of turbine types included in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/windturbine>`_ One of turbine types included in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/windturbine>`__ Specifies the turbine type and its characteristic power curve.
6 capacity_per_sqkm :math:`MW/km^2` float Allowable density of wind turbine placement.
7 corine -- Any *realistic* subset of the `CORINE Land Cover code list <http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1/corine-land-cover-classes-and/clc_legend.csv/at_download/file>`_ Specifies areas according to CORINE Land Cover codes which are generally eligible for AC-connected offshore wind turbine placement.
8 natura bool {true, false} Switch to exclude `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas. Area is excluded if ``true``.

View File

@ -2,7 +2,7 @@
cutout,--,"Should be a folder listed in the configuration ``atlite: cutouts:`` (e.g. 'europe-2013-era5') or reference an existing folder in the directory ``cutouts``. Source module must be ERA5.","Specifies the directory where the relevant weather data ist stored."
resource,,,
-- method,--,"Must be 'wind'","A superordinate technology type."
-- turbine,--,"One of turbine types included in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/windturbine>`_","Specifies the turbine type and its characteristic power curve."
-- turbine,--,"One of turbine types included in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/windturbine>`__","Specifies the turbine type and its characteristic power curve."
capacity_per_sqkm,:math:`MW/km^2`,float,"Allowable density of wind turbine placement."
corine,,,
-- grid_codes,--,"Any subset of the `CORINE Land Cover code list <http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1/corine-land-cover-classes-and/clc_legend.csv/at_download/file>`_","Specifies areas according to CORINE Land Cover codes which are generally eligible for wind turbine placement."

1 Unit Values Description
2 cutout -- Should be a folder listed in the configuration ``atlite: cutouts:`` (e.g. 'europe-2013-era5') or reference an existing folder in the directory ``cutouts``. Source module must be ERA5. Specifies the directory where the relevant weather data ist stored.
3 resource
4 -- method -- Must be 'wind' A superordinate technology type.
5 -- turbine -- One of turbine types included in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/windturbine>`_ One of turbine types included in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/windturbine>`__ Specifies the turbine type and its characteristic power curve.
6 capacity_per_sqkm :math:`MW/km^2` float Allowable density of wind turbine placement.
7 corine
8 -- grid_codes -- Any subset of the `CORINE Land Cover code list <http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1/corine-land-cover-classes-and/clc_legend.csv/at_download/file>`_ Specifies areas according to CORINE Land Cover codes which are generally eligible for wind turbine placement.

View File

@ -1,11 +1,11 @@
Trigger, Description, Definition, Status
``nH``; i.e. ``2H``-``6H``, Resample the time-resolution by averaging over every ``n`` snapshots, ``prepare_network``: `average_every_nhours() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L110>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L146>`_), In active use
``nH``; i.e. ``2H``-``6H``, Resample the time-resolution by averaging over every ``n`` snapshots, ``prepare_network``: `average_every_nhours() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L110>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L146>`__), In active use
``nSEG``; e.g. ``4380SEG``, "Apply time series segmentation with `tsam <https://tsam.readthedocs.io/en/latest/index.html>`_ package to ``n`` adjacent snapshots of varying lengths based on capacity factors of varying renewables, hydro inflow and load.", ``prepare_network``: apply_time_segmentation(), In active use
``Co2L``, Add an overall absolute carbon-dioxide emissions limit configured in ``electricity: co2limit``. If a float is appended an overall emission limit relative to the emission level given in ``electricity: co2base`` is added (e.g. ``Co2L0.05`` limits emissisions to 5% of what is given in ``electricity: co2base``), ``prepare_network``: `add_co2limit() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L19>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L154>`_, In active use
``Ep``, Add cost for a carbon-dioxide price configured in ``costs: emission_prices: co2`` to ``marginal_cost`` of generators (other emission types listed in ``network.carriers`` possible as well), ``prepare_network``: `add_emission_prices() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L24>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L158>`_, In active use
``Co2L``, Add an overall absolute carbon-dioxide emissions limit configured in ``electricity: co2limit``. If a float is appended an overall emission limit relative to the emission level given in ``electricity: co2base`` is added (e.g. ``Co2L0.05`` limits emissisions to 5% of what is given in ``electricity: co2base``), ``prepare_network``: `add_co2limit() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L19>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L154>`__, In active use
``Ep``, Add cost for a carbon-dioxide price configured in ``costs: emission_prices: co2`` to ``marginal_cost`` of generators (other emission types listed in ``network.carriers`` possible as well), ``prepare_network``: `add_emission_prices() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L24>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L158>`__, In active use
``CCL``, Add minimum and maximum levels of generator nominal capacity per carrier for individual countries. These can be specified in the file linked at ``electricity: agg_p_nom_limits`` in the configuration. File defaults to ``data/agg_p_nom_minmax.csv``., ``solve_network``, In active use
``EQ``, "Require each country or node to on average produce a minimal share of its total consumption itself. Example: ``EQ0.5c`` demands each country to produce on average at least 50% of its consumption; ``EQ0.5`` demands each node to produce on average at least 50% of its consumption.", ``solve_network``, In active use
``ATK``, "Require each node to be autarkic. Example: ``ATK`` removes all lines and links. ``ATKc`` removes all cross-border lines and links.", ``prepare_network``, In active use
``BAU``, Add a per-``carrier`` minimal overall capacity; i.e. at least ``40GW`` of ``OCGT`` in Europe; configured in ``electricity: BAU_mincapacities``, ``solve_network``: `add_opts_constraints() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/solve_network.py#L66>`_, Untested
``SAFE``, Add a capacity reserve margin of a certain fraction above the peak demand to which renewable generators and storage do *not* contribute. Ignores network., ``solve_network`` `add_opts_constraints() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/solve_network.py#L73>`_, Untested
``BAU``, Add a per-``carrier`` minimal overall capacity; i.e. at least ``40GW`` of ``OCGT`` in Europe; configured in ``electricity: BAU_mincapacities``, ``solve_network``: `add_opts_constraints() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/solve_network.py#L66>`__, Untested
``SAFE``, Add a capacity reserve margin of a certain fraction above the peak demand to which renewable generators and storage do *not* contribute. Ignores network., ``solve_network`` `add_opts_constraints() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/solve_network.py#L73>`__, Untested
``carrier+{c|p}factor``, "Alter the capital cost (``c``) or installable potential (``p``) of a carrier by a factor. Example: ``solar+c0.5`` reduces the capital cost of solar to 50\% of original values.", ``prepare_network``, In active use

1 Trigger Description Definition Status
2 ``nH``; i.e. ``2H``-``6H`` Resample the time-resolution by averaging over every ``n`` snapshots ``prepare_network``: `average_every_nhours() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L110>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L146>`_) ``prepare_network``: `average_every_nhours() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L110>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L146>`__) In active use
3 ``nSEG``; e.g. ``4380SEG`` Apply time series segmentation with `tsam <https://tsam.readthedocs.io/en/latest/index.html>`_ package to ``n`` adjacent snapshots of varying lengths based on capacity factors of varying renewables, hydro inflow and load. ``prepare_network``: apply_time_segmentation() In active use
4 ``Co2L`` Add an overall absolute carbon-dioxide emissions limit configured in ``electricity: co2limit``. If a float is appended an overall emission limit relative to the emission level given in ``electricity: co2base`` is added (e.g. ``Co2L0.05`` limits emissisions to 5% of what is given in ``electricity: co2base``) ``prepare_network``: `add_co2limit() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L19>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L154>`_ ``prepare_network``: `add_co2limit() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L19>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L154>`__ In active use
5 ``Ep`` Add cost for a carbon-dioxide price configured in ``costs: emission_prices: co2`` to ``marginal_cost`` of generators (other emission types listed in ``network.carriers`` possible as well) ``prepare_network``: `add_emission_prices() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L24>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L158>`_ ``prepare_network``: `add_emission_prices() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L24>`_ and its `caller <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/prepare_network.py#L158>`__ In active use
6 ``CCL`` Add minimum and maximum levels of generator nominal capacity per carrier for individual countries. These can be specified in the file linked at ``electricity: agg_p_nom_limits`` in the configuration. File defaults to ``data/agg_p_nom_minmax.csv``. ``solve_network`` In active use
7 ``EQ`` Require each country or node to on average produce a minimal share of its total consumption itself. Example: ``EQ0.5c`` demands each country to produce on average at least 50% of its consumption; ``EQ0.5`` demands each node to produce on average at least 50% of its consumption. ``solve_network`` In active use
8 ``ATK`` Require each node to be autarkic. Example: ``ATK`` removes all lines and links. ``ATKc`` removes all cross-border lines and links. ``prepare_network`` In active use
9 ``BAU`` Add a per-``carrier`` minimal overall capacity; i.e. at least ``40GW`` of ``OCGT`` in Europe; configured in ``electricity: BAU_mincapacities`` ``solve_network``: `add_opts_constraints() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/solve_network.py#L66>`_ ``solve_network``: `add_opts_constraints() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/solve_network.py#L66>`__ Untested
10 ``SAFE`` Add a capacity reserve margin of a certain fraction above the peak demand to which renewable generators and storage do *not* contribute. Ignores network. ``solve_network`` `add_opts_constraints() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/solve_network.py#L73>`_ ``solve_network`` `add_opts_constraints() <https://github.com/PyPSA/pypsa-eur/blob/6b964540ed39d44079cdabddee8333f486d0cd63/scripts/solve_network.py#L73>`__ Untested
11 ``carrier+{c|p}factor`` Alter the capital cost (``c``) or installable potential (``p``) of a carrier by a factor. Example: ``solar+c0.5`` reduces the capital cost of solar to 50\% of original values. ``prepare_network`` In active use

View File

@ -2,7 +2,7 @@
cutout,--,"Should be a folder listed in the configuration ``atlite: cutouts:`` (e.g. 'europe-2013-era5') or reference an existing folder in the directory ``cutouts``. Source module can be ERA5 or SARAH-2.","Specifies the directory where the relevant weather data ist stored that is specified at ``atlite/cutouts`` configuration. Both ``sarah`` and ``era5`` work."
resource,,,
-- method,--,"Must be 'pv'","A superordinate technology type."
-- panel,--,"One of {'Csi', 'CdTe', 'KANENA'} as defined in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/solarpanel>`_","Specifies the solar panel technology and its characteristic attributes."
-- panel,--,"One of {'Csi', 'CdTe', 'KANENA'} as defined in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/solarpanel>`__","Specifies the solar panel technology and its characteristic attributes."
-- orientation,,,
-- -- slope,°,"Realistically any angle in [0., 90.]","Specifies the tilt angle (or slope) of the solar panel. A slope of zero corresponds to the face of the panel aiming directly overhead. A positive tilt angle steers the panel towards the equator."
-- -- azimuth,°,"Any angle in [0., 360.]","Specifies the `azimuth <https://en.wikipedia.org/wiki/Azimuth>`_ orientation of the solar panel. South corresponds to 180.°."

1 Unit Values Description
2 cutout -- Should be a folder listed in the configuration ``atlite: cutouts:`` (e.g. 'europe-2013-era5') or reference an existing folder in the directory ``cutouts``. Source module can be ERA5 or SARAH-2. Specifies the directory where the relevant weather data ist stored that is specified at ``atlite/cutouts`` configuration. Both ``sarah`` and ``era5`` work.
3 resource
4 -- method -- Must be 'pv' A superordinate technology type.
5 -- panel -- One of {'Csi', 'CdTe', 'KANENA'} as defined in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/solarpanel>`_ One of {'Csi', 'CdTe', 'KANENA'} as defined in `atlite <https://github.com/PyPSA/atlite/tree/master/atlite/resources/solarpanel>`__ Specifies the solar panel technology and its characteristic attributes.
6 -- orientation
7 -- -- slope ° Realistically any angle in [0., 90.] Specifies the tilt angle (or slope) of the solar panel. A slope of zero corresponds to the face of the panel aiming directly overhead. A positive tilt angle steers the panel towards the equator.
8 -- -- azimuth ° Any angle in [0., 360.] Specifies the `azimuth <https://en.wikipedia.org/wiki/Azimuth>`_ orientation of the solar panel. South corresponds to 180.°.

View File

@ -18,7 +18,8 @@ Top-level configuration
.. literalinclude:: ../config.default.yaml
:language: yaml
:lines: 5-12,20,27-34
:lines: 5-12,20,31-38
.. csv-table::
:header-rows: 1
@ -96,7 +97,7 @@ Specifies the temporal range to build an energy system model for as arguments to
.. _atlite_cf:
``atlite``
=============
==========
Define and specify the ``atlite.Cutout`` used for calculating renewable potentials and time-series. All options except for ``features`` are directly used as `cutout parameters <https://atlite.readthedocs.io/en/latest/ref_api.html#cutout>`_.

View File

@ -141,7 +141,7 @@ If you are (relatively) new to energy system modelling and optimisation
and plan to use PyPSA-Eur, the following resources are *one way* to get started
in addition to reading this documentation.
- Documentation of `PyPSA <https://pypsa.readthedocs.io>`_, the package for
- Documentation of `PyPSA <https://pypsa.readthedocs.io>`__, the package for
simulating and optimising modern power systems which PyPSA-Eur uses under the hood.
- Course on `Energy System Modelling <https://nworbmot.org/courses/esm-2019/>`_,
Karlsruhe Institute of Technology (KIT), `Dr. Tom Brown <https://nworbmot.org>`_

View File

@ -84,8 +84,8 @@ Rule ``make_summary``
Rule ``plot_summary``
========================
.. graphviz::
:align: center
.. .. graphviz::
.. :align: center

View File

@ -45,7 +45,6 @@ together into a detailed PyPSA network stored in ``networks/elec.nc``.
preparation/prepare_links_p_nom
preparation/base_network
preparation/build_bus_regions
preparation/build_natura_raster
preparation/build_powerplants
preparation/build_renewable_profiles
preparation/build_hydro_profile

View File

@ -25,7 +25,7 @@ Rule ``retrieve_cutout``
:target: https://doi.org/10.5281/zenodo.3517949
Cutouts are spatio-temporal subsets of the European weather data from the `ECMWF ERA5 <https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation>`_ reanalysis dataset and the `CMSAF SARAH-2 <https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002>`_ solar surface radiation dataset for the year 2013.
They have been prepared by and are for use with the `atlite <https://github.com/PyPSA/atlite>`_ tool. You can either generate them yourself using the ``build_cutouts`` rule or retrieve them directly from `zenodo <https://doi.org/10.5281/zenodo.3517949>`_ through the rule ``retrieve_cutout``.
They have been prepared by and are for use with the `atlite <https://github.com/PyPSA/atlite>`_ tool. You can either generate them yourself using the ``build_cutouts`` rule or retrieve them directly from `zenodo <https://doi.org/10.5281/zenodo.3517949>`__ through the rule ``retrieve_cutout``.
The :ref:`tutorial` uses a smaller cutout than required for the full model (30 MB), which is also automatically downloaded.
.. note::

View File

@ -31,7 +31,7 @@ Upcoming Release
* Bugfix: With ``load_shedding: true`` in the solving options of ``config.yaml`` load shedding generators are only added at the AC buses, excluding buses for H2 and battery stores.
PyPSA-Eur 0.3.0 (7th December 2020)
==================================
===================================
**New Features**

View File

@ -14,7 +14,7 @@ Tutorial
<iframe width="832" height="468" src="https://www.youtube.com/embed/mAwhQnNRIvs" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
Before getting started with **PyPSA-Eur** it makes sense to be familiar
with its general modelling framework `PyPSA <https://pypsa.readthedocs.io>`_.
with its general modelling framework `PyPSA <https://pypsa.readthedocs.io>`__.
Running the tutorial requires limited computational resources compared to the full model,
which allows the user to explore most of its functionalities on a local machine.

View File

@ -34,8 +34,8 @@ Inputs
.. image:: ../img/nuts3.png
:scale: 33 %
- ``data/bundle/nama_10r_3popgdp.tsv.gz``: Average annual population by NUTS3 region (`eurostat <http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3popgdp&lang=en>`_)
- ``data/bundle/nama_10r_3gdp.tsv.gz``: Gross domestic product (GDP) by NUTS 3 regions (`eurostat <http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3gdp&lang=en>`_)
- ``data/bundle/nama_10r_3popgdp.tsv.gz``: Average annual population by NUTS3 region (`eurostat <http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3popgdp&lang=en>`__)
- ``data/bundle/nama_10r_3gdp.tsv.gz``: Gross domestic product (GDP) by NUTS 3 regions (`eurostat <http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_3gdp&lang=en>`__)
- ``data/bundle/ch_cantons.csv``: Mapping between Swiss Cantons and NUTS3 regions
- ``data/bundle/je-e-21.03.02.xls``: Population and GDP data per Canton (`BFS - Swiss Federal Statistical Office <https://www.bfs.admin.ch/bfs/en/home/news/whats-new.assetdetail.7786557.html>`_ )