Merge remote-tracking branch 'origin/master' into update-district-heating-cops
This commit is contained in:
commit
e5152897e1
@ -852,7 +852,7 @@ if __name__ == "__main__":
|
|||||||
fuel_price = pd.read_csv(
|
fuel_price = pd.read_csv(
|
||||||
snakemake.input.fuel_price, index_col=0, header=0, parse_dates=True
|
snakemake.input.fuel_price, index_col=0, header=0, parse_dates=True
|
||||||
)
|
)
|
||||||
fuel_price = fuel_price.reindex(n.snapshots).fillna(method="ffill")
|
fuel_price = fuel_price.reindex(n.snapshots).ffill()
|
||||||
else:
|
else:
|
||||||
fuel_price = None
|
fuel_price = None
|
||||||
|
|
||||||
|
@ -890,7 +890,7 @@ def calculate_gain_utilisation_factor(heat_transfer_perm2, Q_ht, Q_gain):
|
|||||||
Calculates gain utilisation factor nu.
|
Calculates gain utilisation factor nu.
|
||||||
"""
|
"""
|
||||||
# time constant of the building tau [h] = c_m [Wh/(m^2K)] * 1 /(H_tr_e+H_tb*H_ve) [m^2 K /W]
|
# time constant of the building tau [h] = c_m [Wh/(m^2K)] * 1 /(H_tr_e+H_tb*H_ve) [m^2 K /W]
|
||||||
tau = c_m / heat_transfer_perm2.T.groupby(axis=1).sum().T
|
tau = c_m / heat_transfer_perm2.groupby().sum()
|
||||||
alpha = alpha_H_0 + (tau / tau_H_0)
|
alpha = alpha_H_0 + (tau / tau_H_0)
|
||||||
# heat balance ratio
|
# heat balance ratio
|
||||||
gamma = (1 / Q_ht).mul(Q_gain.sum(axis=1), axis=0)
|
gamma = (1 / Q_ht).mul(Q_gain.sum(axis=1), axis=0)
|
||||||
|
@ -58,6 +58,9 @@ def build_clustered_gas_network(df, bus_regions, length_factor=1.25):
|
|||||||
# drop pipes within the same region
|
# drop pipes within the same region
|
||||||
df = df.loc[df.bus1 != df.bus0]
|
df = df.loc[df.bus1 != df.bus0]
|
||||||
|
|
||||||
|
if df.empty:
|
||||||
|
return df
|
||||||
|
|
||||||
# recalculate lengths as center to center * length factor
|
# recalculate lengths as center to center * length factor
|
||||||
df["length"] = df.apply(
|
df["length"] = df.apply(
|
||||||
lambda p: length_factor
|
lambda p: length_factor
|
||||||
|
@ -631,7 +631,7 @@ def calculate_co2_emissions(n, label, df):
|
|||||||
weightings = n.snapshot_weightings.generators.mul(
|
weightings = n.snapshot_weightings.generators.mul(
|
||||||
n.investment_period_weightings["years"]
|
n.investment_period_weightings["years"]
|
||||||
.reindex(n.snapshots)
|
.reindex(n.snapshots)
|
||||||
.fillna(method="bfill")
|
.bfill()
|
||||||
.fillna(1.0),
|
.fillna(1.0),
|
||||||
axis=0,
|
axis=0,
|
||||||
)
|
)
|
||||||
|
@ -70,7 +70,7 @@ if __name__ == "__main__":
|
|||||||
optimized = optimized[["Generator", "StorageUnit"]].droplevel(0, axis=1)
|
optimized = optimized[["Generator", "StorageUnit"]].droplevel(0, axis=1)
|
||||||
optimized = optimized.rename(columns=n.buses.country, level=0)
|
optimized = optimized.rename(columns=n.buses.country, level=0)
|
||||||
optimized = optimized.rename(columns=carrier_groups, level=1)
|
optimized = optimized.rename(columns=carrier_groups, level=1)
|
||||||
optimized = optimized.groupby(axis=1, level=[0, 1]).sum()
|
optimized = optimized.T.groupby(level=[0, 1]).sum().T
|
||||||
|
|
||||||
data = pd.concat([historic, optimized], keys=["Historic", "Optimized"], axis=1)
|
data = pd.concat([historic, optimized], keys=["Historic", "Optimized"], axis=1)
|
||||||
data.columns.names = ["Kind", "Country", "Carrier"]
|
data.columns.names = ["Kind", "Country", "Carrier"]
|
||||||
|
@ -137,9 +137,7 @@ def add_emission_prices(n, emission_prices={"co2": 0.0}, exclude_co2=False):
|
|||||||
def add_dynamic_emission_prices(n):
|
def add_dynamic_emission_prices(n):
|
||||||
co2_price = pd.read_csv(snakemake.input.co2_price, index_col=0, parse_dates=True)
|
co2_price = pd.read_csv(snakemake.input.co2_price, index_col=0, parse_dates=True)
|
||||||
co2_price = co2_price[~co2_price.index.duplicated()]
|
co2_price = co2_price[~co2_price.index.duplicated()]
|
||||||
co2_price = (
|
co2_price = co2_price.reindex(n.snapshots).ffill().bfill()
|
||||||
co2_price.reindex(n.snapshots).fillna(method="ffill").fillna(method="bfill")
|
|
||||||
)
|
|
||||||
|
|
||||||
emissions = (
|
emissions = (
|
||||||
n.generators.carrier.map(n.carriers.co2_emissions) / n.generators.efficiency
|
n.generators.carrier.map(n.carriers.co2_emissions) / n.generators.efficiency
|
||||||
|
@ -2748,10 +2748,11 @@ def add_industry(n, costs):
|
|||||||
)
|
)
|
||||||
|
|
||||||
domestic_navigation = pop_weighted_energy_totals.loc[
|
domestic_navigation = pop_weighted_energy_totals.loc[
|
||||||
nodes, "total domestic navigation"
|
nodes, ["total domestic navigation"]
|
||||||
].squeeze()
|
].squeeze()
|
||||||
international_navigation = (
|
international_navigation = (
|
||||||
pd.read_csv(snakemake.input.shipping_demand, index_col=0).squeeze() * nyears
|
pd.read_csv(snakemake.input.shipping_demand, index_col=0).squeeze(axis=1)
|
||||||
|
* nyears
|
||||||
)
|
)
|
||||||
all_navigation = domestic_navigation + international_navigation
|
all_navigation = domestic_navigation + international_navigation
|
||||||
p_set = all_navigation * 1e6 / nhours
|
p_set = all_navigation * 1e6 / nhours
|
||||||
@ -3919,12 +3920,11 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
snakemake = mock_snakemake(
|
snakemake = mock_snakemake(
|
||||||
"prepare_sector_network",
|
"prepare_sector_network",
|
||||||
# configfiles="test/config.overnight.yaml",
|
|
||||||
simpl="",
|
simpl="",
|
||||||
opts="",
|
opts="",
|
||||||
clusters="37",
|
clusters="1",
|
||||||
ll="v1.0",
|
ll="vopt",
|
||||||
sector_opts="730H-T-H-B-I-A-dist1",
|
sector_opts="",
|
||||||
planning_horizons="2050",
|
planning_horizons="2050",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user