merge master?

This commit is contained in:
martacki 2021-05-19 10:04:44 +02:00
commit e2ed561938
24 changed files with 340 additions and 762 deletions

View File

@ -29,6 +29,9 @@ before_install:
# list packages for easier debugging
- conda list
before_script:
- 'echo -ne "url: ${CDSAPI_URL}\nkey: ${CDSAPI_TOKEN}\n" > ~/.cdsapirc'
script:
- cp ./test/config.test1.yaml ./config.yaml
- snakemake -j all solve_all_networks

View File

@ -5,6 +5,9 @@
from os.path import normpath, exists
from shutil import copyfile
from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider
HTTP = HTTPRemoteProvider()
if not exists("config.yaml"):
copyfile("config.default.yaml", "config.yaml")
@ -135,10 +138,12 @@ rule build_bus_regions:
resources: mem=1000
script: "scripts/build_bus_regions.py"
if config['enable'].get('build_cutout', False):
rule build_cutout:
output: directory("cutouts/{cutout}")
input:
regions_onshore="resources/regions_onshore.geojson",
regions_offshore="resources/regions_offshore.geojson"
output: "cutouts/{cutout}.nc"
log: "logs/build_cutout/{cutout}.log"
benchmark: "benchmarks/build_cutout_{cutout}"
threads: ATLITE_NPROCESSES
@ -148,16 +153,16 @@ if config['enable'].get('build_cutout', False):
if config['enable'].get('retrieve_cutout', True):
rule retrieve_cutout:
output: directory(expand("cutouts/{cutouts}", **config['atlite'])),
log: "logs/retrieve_cutout.log"
script: 'scripts/retrieve_cutout.py'
input: HTTP.remote("zenodo.org/record/4709858/files/{cutout}.nc", keep_local=True)
output: "cutouts/{cutout}.nc"
shell: "mv {input} {output}"
if config['enable'].get('build_natura_raster', False):
rule build_natura_raster:
input:
natura="data/bundle/natura/Natura2000_end2015.shp",
cutouts=expand("cutouts/{cutouts}", **config['atlite'])
cutouts=expand("cutouts/{cutouts}.nc", **config['atlite'])
output: "resources/natura.tiff"
log: "logs/build_natura_raster.log"
script: "scripts/build_natura_raster.py"
@ -165,9 +170,9 @@ if config['enable'].get('build_natura_raster', False):
if config['enable'].get('retrieve_natura_raster', True):
rule retrieve_natura_raster:
input: HTTP.remote("zenodo.org/record/4706686/files/natura.tiff", keep_local=True)
output: "resources/natura.tiff"
log: "logs/retrieve_natura_raster.log"
script: 'scripts/retrieve_natura_raster.py'
shell: "mv {input} {output}"
rule build_renewable_profiles:
@ -183,9 +188,8 @@ rule build_renewable_profiles:
regions=lambda w: ("resources/regions_onshore.geojson"
if w.technology in ('onwind', 'solar')
else "resources/regions_offshore.geojson"),
cutout=lambda w: "cutouts/" + config["renewable"][w.technology]['cutout']
output:
profile="resources/profile_{technology}.nc",
cutout=lambda w: "cutouts/" + config["renewable"][w.technology]['cutout'] + ".nc"
output: profile="resources/profile_{technology}.nc",
log: "logs/build_renewable_profile_{technology}.log"
benchmark: "benchmarks/build_renewable_profiles_{technology}"
threads: ATLITE_NPROCESSES
@ -198,7 +202,7 @@ if 'hydro' in config['renewable'].keys():
input:
country_shapes='resources/country_shapes.geojson',
eia_hydro_generation='data/bundle/EIA_hydro_generation_2000_2014.csv',
cutout="cutouts/" + config["renewable"]['hydro']['cutout']
cutout="cutouts/" + config["renewable"]['hydro']['cutout'] + ".nc"
output: 'resources/profile_hydro.nc'
log: "logs/build_hydro_profile.log"
resources: mem=5000
@ -388,29 +392,3 @@ rule plot_p_nom_max:
log: "logs/plot_p_nom_max/elec_s{simpl}_{clusts}_{techs}_{country}_{ext}.log"
script: "scripts/plot_p_nom_max.py"
rule build_country_flh:
input:
base_network="networks/base.nc",
corine="data/bundle/corine/g250_clc06_V18_5.tif",
natura="resources/natura.tiff",
gebco=lambda w: ("data/bundle/GEBCO_2014_2D.nc"
if "max_depth" in config["renewable"][w.technology].keys()
else []),
country_shapes='resources/country_shapes.geojson',
offshore_shapes='resources/offshore_shapes.geojson',
pietzker="data/pietzker2014.xlsx",
regions=lambda w: ("resources/country_shapes.geojson"
if w.technology in ('onwind', 'solar')
else "resources/offshore_shapes.geojson"),
cutout=lambda w: "cutouts/" + config["renewable"][w.technology]['cutout']
output:
area="resources/country_flh_area_{technology}.csv",
aggregated="resources/country_flh_aggregated_{technology}.csv",
uncorrected="resources/country_flh_uncorrected_{technology}.csv",
plot="resources/country_flh_{technology}.pdf",
exclusion=directory("resources/country_exclusion_{technology}")
log: "logs/build_country_flh_{technology}.log"
resources: mem=10000
benchmark: "benchmarks/build_country_flh_{technology}"
script: "scripts/build_country_flh.py"

View File

@ -36,7 +36,7 @@ enable:
electricity:
voltages: [220., 300., 380.]
co2limit: 7.75e+7 # 0.05 * 3.1e9*0.5
co2base: 3.1e+9 # 1 * 3.1e9*0.5
co2base: 1.487e9
agg_p_nom_limits: data/agg_p_nom_minmax.csv
extendable_carriers:
@ -62,17 +62,27 @@ electricity:
atlite:
nprocesses: 4
cutouts:
# use 'base' to determine geographical bounds and time span from config
# base:
# module: era5
europe-2013-era5:
module: era5
xs: [-12., 35.]
ys: [72., 33.]
years: [2013, 2013]
module: era5 # in priority order
x: [-12., 35.]
y: [33., 72]
dx: 0.3
dy: 0.3
time: ['2013', '2013']
europe-2013-sarah:
module: sarah
resolution: 0.2
xs: [-12., 42.]
ys: [65., 33.]
years: [2013, 2013]
module: [sarah, era5] # in priority order
x: [-12., 45.]
y: [33., 65]
dx: 0.2
dy: 0.2
time: ['2013', '2013']
sarah_interpolate: false
sarah_dir:
features: [influx, temperature]
renewable:
onwind:
@ -179,13 +189,16 @@ costs:
year: 2030
discountrate: 0.07 # From a Lion Hirth paper, also reflects average of Noothout et al 2016
USD2013_to_EUR2013: 0.7532 # [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html
marginal_cost:
marginal_cost: # EUR/MWh
solar: 0.01
onwind: 0.015
offwind: 0.015
hydro: 0.
H2: 0.
electrolysis: 0.
fuel cell: 0.
battery: 0.
battery inverter: 0.
emission_prices: # in currency per tonne emission, only used with the option Ep
co2: 0.

View File

@ -54,16 +54,15 @@ electricity:
atlite:
nprocesses: 4
cutouts:
europe-2013-era5:
europe-2013-era5-tutorial:
module: era5
xs: [4., 15.]
ys: [56., 46.]
months: [3, 3]
years: [2013, 2013]
x: [4., 15.]
y: [46., 56.]
time: ["2013-03", "2013-03"]
renewable:
onwind:
cutout: europe-2013-era5
cutout: europe-2013-era5-tutorial
resource:
method: wind
turbine: Vestas_V112_3MW
@ -80,7 +79,7 @@ renewable:
potential: simple # or conservative
clip_p_max_pu: 1.e-2
offwind-ac:
cutout: europe-2013-era5
cutout: europe-2013-era5-tutorial
resource:
method: wind
turbine: NREL_ReferenceTurbine_5MW_offshore
@ -92,7 +91,7 @@ renewable:
potential: simple # or conservative
clip_p_max_pu: 1.e-2
offwind-dc:
cutout: europe-2013-era5
cutout: europe-2013-era5-tutorial
resource:
method: wind
turbine: NREL_ReferenceTurbine_5MW_offshore
@ -105,7 +104,7 @@ renewable:
potential: simple # or conservative
clip_p_max_pu: 1.e-2
solar:
cutout: europe-2013-era5
cutout: europe-2013-era5-tutorial
resource:
method: pv
panel: CSi

View File

@ -1,8 +1,9 @@
,Unit,Values,Description
nprocesses,--,int,"Number of parallel processes in cutout preparation"
cutouts,,,
-- {name},--,"Convention is to name cutouts like ``<region>-<year>-<source>`` (e.g. ``europe-2013-era5``).","Directory to write cutout data to. The user may specify multiple cutouts under configuration ``atlite: cutouts:``. Reference is used in configuration ``renewable: {technology}: cutout:``"
-- -- module,--,"One of {'era5','sarah'}","Source of the reanalysis weather dataset (e.g. `ERA5 <https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5>`_ or `SARAH-2 <https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002>`_)"
-- -- xs,°,"Float interval within [-180, 180]","Range of longitudes to download weather data for."
-- -- ys,°,"Float interval within [-90, 90]","Range of latitudes to download weather data for."
-- -- years,--,"Integer interval within [1979,2018]","Range of years to download weather data for."
-- {name},--,"Convention is to name cutouts like ``<region>-<year>-<source>`` (e.g. ``europe-2013-era5``).","Name of the cutout netcdf file. The user may specify multiple cutouts under configuration ``atlite: cutouts:``. Reference is used in configuration ``renewable: {technology}: cutout:``. The cutout ``base`` may be used to automatically calculate temporal and spatial bounds of the network."
-- -- module,--,"Subset of {'era5','sarah'}","Source of the reanalysis weather dataset (e.g. `ERA5 <https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5>`_ or `SARAH-2 <https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002>`_)"
-- -- x,°,"Float interval within [-180, 180]","Range of longitudes to download weather data for. If not defined, it defaults to the spatial bounds of all bus shapes."
-- -- y,°,"Float interval within [-90, 90]","Range of latitudes to download weather data for. If not defined, it defaults to the spatial bounds of all bus shapes."
-- -- time,,"Time interval within ['1979', '2018'] (with valid pandas date time strings)","Time span to download weather data for. If not defined, it defaults to the time interval spanned by the snapshots."
-- -- features,,"String or list of strings with valid cutout features ('inlfux', 'wind').","When freshly building a cutout, retrieve data only for those features. If not defined, it defaults to all available features."

1 Unit Values Description
2 nprocesses -- int Number of parallel processes in cutout preparation
3 cutouts
4 -- {name} -- Convention is to name cutouts like ``<region>-<year>-<source>`` (e.g. ``europe-2013-era5``). Directory to write cutout data to. The user may specify multiple cutouts under configuration ``atlite: cutouts:``. Reference is used in configuration ``renewable: {technology}: cutout:`` Name of the cutout netcdf file. The user may specify multiple cutouts under configuration ``atlite: cutouts:``. Reference is used in configuration ``renewable: {technology}: cutout:``. The cutout ``base`` may be used to automatically calculate temporal and spatial bounds of the network.
5 -- -- module -- One of {'era5','sarah'} Subset of {'era5','sarah'} Source of the reanalysis weather dataset (e.g. `ERA5 <https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5>`_ or `SARAH-2 <https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002>`_)
6 -- -- xs -- -- x ° Float interval within [-180, 180] Range of longitudes to download weather data for. Range of longitudes to download weather data for. If not defined, it defaults to the spatial bounds of all bus shapes.
7 -- -- ys -- -- y ° Float interval within [-90, 90] Range of latitudes to download weather data for. Range of latitudes to download weather data for. If not defined, it defaults to the spatial bounds of all bus shapes.
8 -- -- years -- -- time -- Integer interval within [1979,2018] Time interval within ['1979', '2018'] (with valid pandas date time strings) Range of years to download weather data for. Time span to download weather data for. If not defined, it defaults to the time interval spanned by the snapshots.
9 -- -- features String or list of strings with valid cutout features ('inlfux', 'wind'). When freshly building a cutout, retrieve data only for those features. If not defined, it defaults to all available features.

View File

@ -2,19 +2,18 @@
voltages,kV,"Any subset of {220., 300., 380.}",Voltage levels to consider when,
co2limit,:math:`t_{CO_2-eq}/a`,float,Cap on total annual system carbon dioxide emissions,
co2base,:math:`t_{CO_2-eq}/a`,float,Reference value of total annual system carbon dioxide emissions if relative emission reduction target is specified in ``{opts}`` wildcard.,
agg_p_nom_limits,--,file,path,Reference to ``.csv`` file specifying per carrier generator nominal capacity constraints for individual countries if ``'CCL'`` is in ``{opts}`` wildcard. Defaults to ``data/agg_p_nom_minmax.csv``.
agg_p_nom_limits,file,path,Reference to ``.csv`` file specifying per carrier generator nominal capacity constraints for individual countries if ``'CCL'`` is in ``{opts}`` wildcard. Defaults to ``data/agg_p_nom_minmax.csv``.
extendable_carriers,,,,
--,Generator,--,"Any subset of {'OCGT','CCGT'}",Places extendable conventional power plants (OCGT and/or CCGT) where gas power plants are located today without capacity limits.
--,StorageUnit,--,"Any subset of {'battery','H2'}",Adds extendable storage units (battery and/or hydrogen) at every node/bus after clustering without capacity limits and with zero initial capacity.
--,Store,--,"Any subset of {'battery','H2'}",Adds extendable storage units (battery and/or hydrogen) at every node/bus after clustering without capacity limits and with zero initial capacity.
--,Link,--,Any subset of {'H2 pipeline'},Adds extendable links (H2 pipelines only) at every connection where there are lines or HVDC links without capacity limits and with zero initial capacity. Hydrogen pipelines require hydrogen storage to be modelled as ``Store``.
-- Generator,--,"Any subset of {'OCGT','CCGT'}",Places extendable conventional power plants (OCGT and/or CCGT) where gas power plants are located today without capacity limits.
-- StorageUnit,--,"Any subset of {'battery','H2'}",Adds extendable storage units (battery and/or hydrogen) at every node/bus after clustering without capacity limits and with zero initial capacity.
-- Store,--,"Any subset of {'battery','H2'}",Adds extendable storage units (battery and/or hydrogen) at every node/bus after clustering without capacity limits and with zero initial capacity.
-- Link,--,Any subset of {'H2 pipeline'},Adds extendable links (H2 pipelines only) at every connection where there are lines or HVDC links without capacity limits and with zero initial capacity. Hydrogen pipelines require hydrogen storage to be modelled as ``Store``.
max_hours,,,,
--,battery,h,float,Maximum state of charge capacity of the battery in terms of hours at full output capacity ``p_nom``. Cf. `PyPSA documentation <https://pypsa.readthedocs.io/en/latest/components.html#storage-unit>`_.
--,H2,h,float,Maximum state of charge capacity of the hydrogen storage in terms of hours at full output capacity ``p_nom``. Cf. `PyPSA documentation <https://pypsa.readthedocs.io/en/latest/components.html#storage-unit>`_.
-- battery,h,float,Maximum state of charge capacity of the battery in terms of hours at full output capacity ``p_nom``. Cf. `PyPSA documentation <https://pypsa.readthedocs.io/en/latest/components.html#storage-unit>`_.
-- H2,h,float,Maximum state of charge capacity of the hydrogen storage in terms of hours at full output capacity ``p_nom``. Cf. `PyPSA documentation <https://pypsa.readthedocs.io/en/latest/components.html#storage-unit>`_.
powerplants_filter,--,"use `pandas.query <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html>`_ strings here, e.g. Country not in ['Germany']",Filter query for the default powerplant database.,
custom_powerplants,--,"use `pandas.query <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html>`_ strings here, e.g. Country in ['Germany']",Filter query for the custom powerplant database.,
conventional_carriers,--,"Any subset of {nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass}",List of conventional power plants to include in the model from ``resources/powerplants.csv``.,
renewable_capacities_from_OPSD,,"[solar, onwind, offwind]",List of carriers (offwind-ac and offwind-dc are included in offwind) whose capacities 'p_nom' are aligned to the `OPSD renewable power plant list <https://data.open-power-system-data.org/renewable_power_plants/>`_,
,"Fueltype [ppm], e.g. “Wind”","list of fueltypes stings in PyPSA-EUR, eg. “[onwind, offwind-ac, offwind-dc]”",converts ppm Fueltype to PyPSA-EUR Fueltype,
estimate_renewable_capacities_from_capacitiy_stats,,,,
,"Fueltype [ppm], e.g. “Wind”","list of fueltypes stings in PyPSA-EUR, eg. “[onwind, offwind-ac, offwind-dc]”",converts ppm Fueltype to PyPSA-EUR Fueltype,
"-- Fueltype [ppm], e.g. Wind",,"list of fueltypes strings in PyPSA-Eur, e.g. [onwind, offwind-ac, offwind-dc]",converts ppm Fueltype to PyPSA-EUR Fueltype,

Can't render this file because it has a wrong number of fields in line 5.

View File

@ -95,9 +95,12 @@ Specifies the temporal range to build an energy system model for as arguments to
``atlite``
=============
Define and specify the ``atlite.Cutout`` used for calculating renewable potentials and time-series. All options except for ``features`` are directly used as `cutout parameters <https://atlite.readthedocs.io/en/latest/ref_api.html#cutout>`_.
.. literalinclude:: ../config.default.yaml
:language: yaml
:lines: 62-75
:start-at: atlite:
:end-before: renewable:
.. csv-table::
:header-rows: 1

View File

@ -9,50 +9,6 @@ Plotting and Summary
.. warning:: The corresponding code is currently under revision and has only minimal documentation.
.. _flh:
Rule ``build_country_flh``
=============================
.. graphviz::
:align: center
digraph snakemake_dag {
graph [bgcolor=white,
margin=0,
size="8,5"
];
node [fontname=sans,
fontsize=10,
penwidth=2,
shape=box,
style=rounded
];
edge [color=grey,
penwidth=2
];
0 [color="0.31 0.6 0.85",
fillcolor=gray,
label=build_country_flh,
style=filled];
1 [color="0.06 0.6 0.85",
label=base_network];
1 -> 0;
2 [color="0.42 0.6 0.85",
label=build_natura_raster];
2 -> 0;
3 [color="0.58 0.6 0.85",
label=build_shapes];
3 -> 0;
4 [color="0.14 0.6 0.85",
label=build_cutout];
4 -> 0;
}
|
.. automodule:: build_country_flh
.. _plot_potentials:
Rule ``plot_p_nom_max``

View File

@ -21,9 +21,59 @@ Rule ``retrieve_databundle``
Rule ``retrieve_cutout``
------------------------
.. automodule:: retrieve_cutout
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3517949.svg
:target: https://doi.org/10.5281/zenodo.3517949
Cutouts are spatio-temporal subsets of the European weather data from the `ECMWF ERA5 <https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation>`_ reanalysis dataset and the `CMSAF SARAH-2 <https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002>`_ solar surface radiation dataset for the year 2013.
They have been prepared by and are for use with the `atlite <https://github.com/PyPSA/atlite>`_ tool. You can either generate them yourself using the ``build_cutouts`` rule or retrieve them directly from `zenodo <https://doi.org/10.5281/zenodo.3517949>`_ through the rule ``retrieve_cutout``.
The :ref:`tutorial` uses a smaller cutout than required for the full model (30 MB), which is also automatically downloaded.
.. note::
To download cutouts yourself from the `ECMWF ERA5 <https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation>`_ you need to `set up the CDS API <https://cds.climate.copernicus.eu/api-how-to>`_.
**Relevant Settings**
.. code:: yaml
tutorial:
enable:
build_cutout:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`toplevel_cf`
**Outputs**
- ``cutouts/{cutout}``: weather data from either the `ERA5 <https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5>`_ reanalysis weather dataset or `SARAH-2 <https://wui.cmsaf.eu/safira/action/viewProduktSearch>`_ satellite-based historic weather data.
.. seealso::
For details see :mod:`build_cutout` and read the `atlite documentation <https://atlite.readthedocs.io>`_.
Rule ``retrieve_natura_raster``
-------------------------------
.. automodule:: retrieve_natura_raster
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.4706686.svg
:target: https://doi.org/10.5281/zenodo.4706686
This rule, as a substitute for :mod:`build_natura_raster`, downloads an already rasterized version (`natura.tiff <https://zenodo.org/record/4706686/files/natura.tiff>`_) of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas to reduce computation times. The file is placed into the ``resources`` sub-directory.
**Relevant Settings**
.. code:: yaml
enable:
build_natura_raster:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`toplevel_cf`
**Outputs**
- ``resources/natura.tiff``: Rasterized version of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas to reduce computation times.
.. seealso::
For details see :mod:`build_natura_raster`.

View File

@ -11,6 +11,14 @@ Release Notes
Upcoming Release
================
* Switch to new major release, ``>=v0.2.1`` of ``atlite``. The version upgrade comes along with significant speed up for the rule ``build_renewable_profiles.py`` (~factor 2). A lot of the code which calculated the landuse availability is now outsourced and does not rely on ``glaes``, ``geokit`` anymore. This facilitates the environment building and version compatibility of ``gdal``, ``libgdal`` with other packages.
* The minimum python version was set to ``3.8``.
* The rule and script ``build_country_flh`` are removed as they're no longer used or maintained.
* The flag ``keep_all_available_areas`` in the configuration for renewable potentials (config.yaml -> renewable -> {technology}) was deprecated and now defaults to ``True``.
* The tutorial cutout was renamed from ``cutouts/europe-2013-era5.nc`` to ``cutouts/europe-2013-era5-tutorial.nc`` to accomodate tutorial and productive cutouts side-by-side.
* Fix: Value for ``co2base`` in ``config.yaml`` adjusted to 1.487e9 t CO2-eq (from 3.1e9 t CO2-eq). The new value represents emissions related to the electricity sector for EU+UK. The old value was ~2x too high and used when the emissions wildcard in ``{opts}`` was used.
* Add option to include marginal costs of links representing fuel cells, electrolysis, and battery inverters
[`#232 <https://github.com/PyPSA/pypsa-eur/pull/232>`_].
PyPSA-Eur 0.3.0 (7th December 2020)
==================================

View File

@ -130,8 +130,7 @@ It can take the values ``onwind``, ``offwind-ac``, ``offwind-dc``, and ``solar``
The wildcard can moreover be used to create technology specific figures and summaries.
For instance ``{technology}`` can be used to plot regionally disaggregated potentials
with the rule :mod:`plot_p_nom_max` or to summarize a particular technology's
full load hours in various countries with the rule :mod:`build_country_flh`.
with the rule :mod:`plot_p_nom_max`.
.. _attr:

View File

@ -9,7 +9,8 @@ dependencies:
- python<=3.7
- pip
- pypsa>=0.17.1
- atlite=0.0.3
- atlite>=0.2.2
- dask<=2021.3.1 # until https://github.com/dask/dask/issues/7583 is solved
- pre-commit
# Dependencies of the workflow itself
@ -19,27 +20,13 @@ dependencies:
- memory_profiler
- yaml
- pytables
- powerplantmatching>=0.4.3
# Second order dependencies which should really be deps of atlite
- xarray
- progressbar2
- pyyaml>=5.1.0
- powerplantmatching>=0.4.8
# GIS dependencies have to come all from conda-forge
- cartopy
- fiona
- proj
- pyshp
- geopandas
- rasterio
- shapely
- libgdal
- descartes
- pip:
- vresutils==0.3.1
- git+https://github.com/PyPSA/glaes.git#egg=glaes
- git+https://github.com/PyPSA/geokit.git#egg=geokit
- cdsapi
- sphinx
- sphinx_rtd_theme

View File

@ -8,12 +8,13 @@ channels:
- bioconda
- http://conda.anaconda.org/gurobi
dependencies:
- python
- python>=3.8
- pip
- mamba # esp for windows build
- pypsa>=0.17.1
- atlite=0.0.3
- atlite>=0.2.2
- dask<=2021.3.1 # until https://github.com/dask/dask/issues/7583 is solved
# Dependencies of the workflow itself
- xlrd
@ -29,32 +30,14 @@ dependencies:
- powerplantmatching>=0.4.8
- numpy<=1.19.0 # otherwise macos fails
# Second order dependencies which should really be deps of atlite
- xarray
- netcdf4
- bottleneck
- toolz
- dask
- progressbar2
- pyyaml>=5.1.0
# Keep in conda environment when calling ipython
- ipython
# GIS dependencies:
- cartopy
- fiona
- proj
- pyshp
- geopandas
- rasterio
- shapely
- libgdal<=3.0.4
- descartes
- pip:
- vresutils==0.3.1
- tsam>=1.1.0
- git+https://github.com/PyPSA/glaes.git#egg=glaes
- git+https://github.com/PyPSA/geokit.git#egg=geokit
- cdsapi

View File

@ -114,7 +114,8 @@ def attach_stores(n, costs):
carrier='H2 electrolysis',
p_nom_extendable=True,
efficiency=costs.at["electrolysis", "efficiency"],
capital_cost=costs.at["electrolysis", "capital_cost"])
capital_cost=costs.at["electrolysis", "capital_cost"],
marginal_cost=costs.at["electrolysis", "marginal_cost"])
n.madd("Link", h2_buses_i + " Fuel Cell",
bus0=h2_buses_i,
@ -123,7 +124,8 @@ def attach_stores(n, costs):
p_nom_extendable=True,
efficiency=costs.at["fuel cell", "efficiency"],
#NB: fixed cost is per MWel
capital_cost=costs.at["fuel cell", "capital_cost"] * costs.at["fuel cell", "efficiency"])
capital_cost=costs.at["fuel cell", "capital_cost"] * costs.at["fuel cell", "efficiency"],
marginal_cost=costs.at["fuel cell", "marginal_cost"])
if 'battery' in carriers:
b_buses_i = n.madd("Bus", buses_i + " battery", carrier="battery", **bus_sub_dict)
@ -133,7 +135,8 @@ def attach_stores(n, costs):
carrier='battery',
e_cyclic=True,
e_nom_extendable=True,
capital_cost=costs.at['battery storage', 'capital_cost'])
capital_cost=costs.at['battery storage', 'capital_cost'],
marginal_cost=costs.at["battery", "marginal_cost"])
n.madd("Link", b_buses_i + " charger",
bus0=buses_i,
@ -141,15 +144,16 @@ def attach_stores(n, costs):
carrier='battery charger',
efficiency=costs.at['battery inverter', 'efficiency'],
capital_cost=costs.at['battery inverter', 'capital_cost'],
p_nom_extendable=True)
p_nom_extendable=True,
marginal_cost=costs.at["battery inverter", "marginal_cost"])
n.madd("Link", b_buses_i + " discharger",
bus0=b_buses_i,
bus1=buses_i,
carrier='battery discharger',
efficiency=costs.at['battery inverter','efficiency'],
capital_cost=costs.at['battery inverter', 'capital_cost'],
p_nom_extendable=True)
p_nom_extendable=True,
marginal_cost=costs.at["battery inverter", "marginal_cost"])
def attach_hydrogen_pipelines(n, costs):

View File

@ -1,243 +0,0 @@
#!/usr/bin/env python
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""
Create ``.csv`` files and plots for comparing per country full load hours of renewable time series.
Relevant Settings
-----------------
.. code:: yaml
snapshots:
renewable:
{technology}:
cutout:
resource:
correction_factor:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`snapshots_cf`, :ref:`renewable_cf`
Inputs
------
- ``data/bundle/corine/g250_clc06_V18_5.tif``: `CORINE Land Cover (CLC) <https://land.copernicus.eu/pan-european/corine-land-cover>`_ inventory on `44 classes <https://wiki.openstreetmap.org/wiki/Corine_Land_Cover#Tagging>`_ of land use (e.g. forests, arable land, industrial, urban areas).
.. image:: img/corine.png
:scale: 33 %
- ``data/bundle/GEBCO_2014_2D.nc``: A `bathymetric <https://en.wikipedia.org/wiki/Bathymetry>`_ data set with a global terrain model for ocean and land at 15 arc-second intervals by the `General Bathymetric Chart of the Oceans (GEBCO) <https://www.gebco.net/data_and_products/gridded_bathymetry_data/>`_.
.. image:: img/gebco_2019_grid_image.jpg
:scale: 50 %
**Source:** `GEBCO <https://www.gebco.net/data_and_products/images/gebco_2019_grid_image.jpg>`_
- ``data/pietzker2014.xlsx``: `Supplementary material 2 <https://ars.els-cdn.com/content/image/1-s2.0-S0306261914008149-mmc2.xlsx>`_ from `Pietzcker et al. <https://doi.org/10.1016/j.apenergy.2014.08.011>`_; not part of the data bundle; download and place here yourself.
- ``resources/natura.tiff``: confer :ref:`natura`
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
- ``resources/regions_onshore.geojson``: (if not offshore wind), confer :ref:`busregions`
- ``resources/regions_offshore.geojson``: (if offshore wind), :ref:`busregions`
- ``"cutouts/" + config["renewable"][{technology}]['cutout']``: :ref:`cutout`
- ``networks/base.nc``: :ref:`base`
Outputs
-------
- ``resources/country_flh_area_{technology}.csv``:
- ``resources/country_flh_aggregated_{technology}.csv``:
- ``resources/country_flh_uncorrected_{technology}.csv``:
- ``resources/country_flh_{technology}.pdf``:
- ``resources/country_exclusion_{technology}``:
Description
-----------
"""
import logging
from _helpers import configure_logging
import os
import atlite
import numpy as np
import xarray as xr
import pandas as pd
import geokit as gk
from scipy.sparse import vstack
import pycountry as pyc
import matplotlib.pyplot as plt
from vresutils import landuse as vlanduse
from vresutils.array import spdiag
import progressbar as pgb
from build_renewable_profiles import init_globals, calculate_potential
logger = logging.getLogger(__name__)
def build_area(flh, countries, areamatrix, breaks, fn):
area_unbinned = xr.DataArray(areamatrix.todense(), [countries, capacity_factor.coords['spatial']])
bins = xr.DataArray(pd.cut(flh.to_series(), bins=breaks), flh.coords, name="bins")
area = area_unbinned.groupby(bins).sum(dim="spatial").to_pandas()
area.loc[:,slice(*area.sum()[lambda s: s > 0].index[[0,-1]])].to_csv(fn)
area.columns = area.columns.map(lambda s: s.left)
return area
def plot_area_not_solar(area, countries):
# onshore wind/offshore wind
a = area.T
fig, axes = plt.subplots(nrows=len(countries), sharex=True)
for c, ax in zip(countries, axes):
d = a[[c]] / 1e3
d.plot.bar(ax=ax, legend=False, align='edge', width=1.)
ax.set_ylabel(f"Potential {c} / GW")
ax.set_title(c)
ax.legend()
ax.set_xlabel("Full-load hours")
fig.savefig(snakemake.output.plot, transparent=True, bbox_inches='tight')
def plot_area_solar(area, p_area, countries):
# onshore wind/offshore wind
p = p_area.T
a = area.T
fig, axes = plt.subplots(nrows=len(countries), sharex=True, squeeze=False)
for c, ax in zip(countries, axes.flat):
d = pd.concat([a[c], p[c]], keys=['PyPSA-Eur', 'Pietzker'], axis=1) / 1e3
d.plot.bar(ax=ax, legend=False, align='edge', width=1.)
# ax.set_ylabel(f"Potential {c} / GW")
ax.set_title(c)
ax.legend()
ax.set_xlabel("Full-load hours")
fig.savefig(snakemake.output.plot, transparent=True, bbox_inches='tight')
def build_aggregate(flh, countries, areamatrix, breaks, p_area, fn):
agg_a = pd.Series(np.ravel((areamatrix / areamatrix.sum(axis=1)).dot(flh.values)),
countries, name="PyPSA-Eur")
if p_area is None:
agg_a['Overall'] = float((np.asarray((areamatrix.sum(axis=0) / areamatrix.sum())
.dot(flh.values)).squeeze()))
agg = pd.DataFrame({'PyPSA-Eur': agg_a})
else:
# Determine indices of countries which are also in Pietzcker
inds = pd.Index(countries).get_indexer(p_area.index)
areamatrix = areamatrix[inds]
agg_a['Overall'] = float((np.asarray((areamatrix.sum(axis=0) / areamatrix.sum())
.dot(flh.values)).squeeze()))
midpoints = (breaks[1:] + breaks[:-1])/2.
p = p_area.T
# Per-country FLH comparison
agg_p = pd.Series((p / p.sum()).multiply(midpoints, axis=0).sum(), name="Pietzker")
agg_p['Overall'] = float((p.sum(axis=1) / p.sum().sum()).multiply(midpoints, axis=0).sum())
agg = pd.DataFrame({'PyPSA-Eur': agg_a, 'Pietzcker': agg_p, 'Ratio': agg_p / agg_a})
agg.to_csv(fn)
if __name__ == '__main__':
if 'snakemake' not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake('build_country_flh', technology='solar')
configure_logging(snakemake)
pgb.streams.wrap_stderr()
config = snakemake.config['renewable'][snakemake.wildcards.technology]
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
cutout = atlite.Cutout(config['cutout'],
cutout_dir=os.path.dirname(snakemake.input.cutout),
**params)
minx, maxx, miny, maxy = cutout.extent
dx = (maxx - minx) / (cutout.shape[1] - 1)
dy = (maxy - miny) / (cutout.shape[0] - 1)
bounds = gk.Extent.from_xXyY((minx - dx/2., maxx + dx/2.,
miny - dy/2., maxy + dy/2.))
# Use GLAES to compute available potentials and the transition matrix
paths = dict(snakemake.input)
init_globals(bounds.xXyY, dx, dy, config, paths)
regions = gk.vector.extractFeatures(paths["regions"], onlyAttr=True)
countries = pd.Index(regions["name"], name="country")
widgets = [
pgb.widgets.Percentage(),
' ', pgb.widgets.SimpleProgress(format='(%s)' % pgb.widgets.SimpleProgress.DEFAULT_FORMAT),
' ', pgb.widgets.Bar(),
' ', pgb.widgets.Timer(),
' ', pgb.widgets.ETA()
]
progressbar = pgb.ProgressBar(prefix='Compute GIS potentials: ', widgets=widgets, max_value=len(countries))
if not os.path.isdir(snakemake.output.exclusion):
os.makedirs(snakemake.output.exclusion)
matrix = vstack([calculate_potential(i, save_map=os.path.join(snakemake.output.exclusion, countries[i]))
for i in progressbar(regions.index)])
areamatrix = matrix * spdiag(vlanduse._cutout_cell_areas(cutout).ravel())
areamatrix.data[areamatrix.data < 1.] = 0 # ignore weather cells where only less than 1 km^2 can be installed
areamatrix.eliminate_zeros()
resource = config['resource']
func = getattr(cutout, resource.pop('method'))
correction_factor = config.get('correction_factor', 1.)
capacity_factor = func(capacity_factor=True, show_progress='Compute capacity factors: ', **resource).stack(spatial=('y', 'x'))
flh_uncorr = capacity_factor * 8760
flh_corr = correction_factor * flh_uncorr
if snakemake.wildcards.technology == 'solar':
pietzcker = pd.read_excel(snakemake.input.pietzker, sheet_name="PV on all area", skiprows=2, header=[0,1]).iloc[1:177]
p_area1_50 = pietzcker['Usable Area at given FLh in 1-50km distance to settlement '].dropna(axis=1)
p_area1_50.columns = p_area1_50.columns.str.split(' ').str[0]
p_area50_100 = pietzcker['Usable Area at given FLh in 50-100km distance to settlement ']
p_area = p_area1_50 + p_area50_100
cols = p_area.columns
breaks = cols.str.split('-').str[0].append(pd.Index([cols[-1].split('-')[1]])).astype(int)
p_area.columns = breaks[:-1]
p_area = p_area.reindex(countries.map(lambda c: pyc.countries.get(alpha_2=c).name))
p_area.index = countries
p_area = p_area.dropna() # Pietzcker does not have data for CZ and MK
else:
breaks = np.r_[0:8000:50]
p_area = None
area = build_area(flh_corr, countries, areamatrix, breaks, snakemake.output.area)
if snakemake.wildcards.technology == 'solar':
plot_area_solar(area, p_area, p_area.index)
else:
plot_area_not_solar(area, countries)
build_aggregate(flh_uncorr, countries, areamatrix, breaks, p_area, snakemake.output.uncorrected)
build_aggregate(flh_corr, countries, areamatrix, breaks, p_area, snakemake.output.aggregated)

View File

@ -1,4 +1,4 @@
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
# SPDX-FileCopyrightText: : 2017-2021 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: GPL-3.0-or-later
@ -92,10 +92,11 @@ Description
"""
import logging
import atlite
import geopandas as gpd
import pandas as pd
from _helpers import configure_logging
import os
import atlite
logger = logging.getLogger(__name__)
@ -106,14 +107,24 @@ if __name__ == "__main__":
configure_logging(snakemake)
cutout_params = snakemake.config['atlite']['cutouts'][snakemake.wildcards.cutout]
for p in ('xs', 'ys', 'years', 'months'):
if p in cutout_params:
cutout_params[p] = slice(*cutout_params[p])
cutout = atlite.Cutout(snakemake.wildcards.cutout,
cutout_dir=os.path.dirname(snakemake.output[0]),
**cutout_params)
snapshots = pd.date_range(freq='h', **snakemake.config['snapshots'])
time = [snapshots[0], snapshots[-1]]
cutout_params['time'] = slice(*cutout_params.get('time', time))
nprocesses = snakemake.config['atlite'].get('nprocesses', 4)
if {'x', 'y', 'bounds'}.isdisjoint(cutout_params):
# Determine the bounds from bus regions with a buffer of two grid cells
onshore = gpd.read_file(snakemake.input.regions_onshore)
offshore = gpd.read_file(snakemake.input.regions_offshore)
regions = onshore.append(offshore)
d = max(cutout_params.get('dx', 0.25), cutout_params.get('dy', 0.25))*2
cutout_params['bounds'] = regions.total_bounds + [-d, -d, d, d]
elif {'x', 'y'}.issubset(cutout_params):
cutout_params['x'] = slice(*cutout_params['x'])
cutout_params['y'] = slice(*cutout_params['y'])
cutout.prepare(nprocesses=nprocesses)
logging.info(f"Preparing cutout with parameters {cutout_params}.")
features = cutout_params.pop('features', None)
cutout = atlite.Cutout(snakemake.output[0], **cutout_params)
cutout.prepare(features=features)

View File

@ -62,7 +62,6 @@ Description
import logging
from _helpers import configure_logging
import os
import atlite
import geopandas as gpd
from vresutils import hydro as vhydro
@ -76,20 +75,21 @@ if __name__ == "__main__":
configure_logging(snakemake)
config = snakemake.config['renewable']['hydro']
cutout_dir = os.path.dirname(snakemake.input.cutout)
cutout = atlite.Cutout(config['cutout'], cutout_dir=cutout_dir)
cutout = atlite.Cutout(snakemake.input.cutout)
countries = snakemake.config['countries']
country_shapes = gpd.read_file(snakemake.input.country_shapes).set_index('name')['geometry'].reindex(countries)
country_shapes = (gpd.read_file(snakemake.input.country_shapes)
.set_index('name')['geometry'].reindex(countries))
country_shapes.index.name = 'countries'
eia_stats = vhydro.get_eia_annual_hydro_generation(snakemake.input.eia_hydro_generation).reindex(columns=countries)
eia_stats = vhydro.get_eia_annual_hydro_generation(
snakemake.input.eia_hydro_generation).reindex(columns=countries)
inflow = cutout.runoff(shapes=country_shapes,
smooth=True,
lower_threshold_quantile=True,
normalize_using_yearly=eia_stats)
if 'clip_min_inflow' in config:
inflow.values[inflow.values < config['clip_min_inflow']] = 0.
inflow = inflow.where(inflow > config['clip_min_inflow'], 0)
inflow.to_netcdf(snakemake.output[0])

View File

@ -43,30 +43,49 @@ import logging
from _helpers import configure_logging
import atlite
import geokit as gk
from pathlib import Path
import geopandas as gpd
import rasterio as rio
from rasterio.features import geometry_mask
from rasterio.warp import transform_bounds
logger = logging.getLogger(__name__)
def determine_cutout_xXyY(cutout_name):
cutout = atlite.Cutout(cutout_name, cutout_dir=cutout_dir)
cutout = atlite.Cutout(cutout_name)
assert cutout.crs.to_epsg() == 4326
x, X, y, Y = cutout.extent
dx = (X - x) / (cutout.shape[1] - 1)
dy = (Y - y) / (cutout.shape[0] - 1)
dx, dy = cutout.dx, cutout.dy
return [x - dx/2., X + dx/2., y - dy/2., Y + dy/2.]
def get_transform_and_shape(bounds, res):
left, bottom = [(b // res)* res for b in bounds[:2]]
right, top = [(b // res + 1) * res for b in bounds[2:]]
shape = int((top - bottom) // res), int((right - left) / res)
transform = rio.Affine(res, 0, left, 0, -res, top)
return transform, shape
if __name__ == "__main__":
if 'snakemake' not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake('build_natura_raster')
configure_logging(snakemake)
cutout_dir = Path(snakemake.input.cutouts[0]).parent.resolve()
cutout_names = {res['cutout'] for res in snakemake.config['renewable'].values()}
xs, Xs, ys, Ys = zip(*(determine_cutout_xXyY(cutout) for cutout in cutout_names))
xXyY = min(xs), max(Xs), min(ys), max(Ys)
natura = gk.vector.loadVector(snakemake.input.natura)
extent = gk.Extent.from_xXyY(xXyY).castTo(3035).fit(100)
extent.rasterize(natura, pixelWidth=100, pixelHeight=100, output=snakemake.output[0])
cutouts = snakemake.input.cutouts
xs, Xs, ys, Ys = zip(*(determine_cutout_xXyY(cutout) for cutout in cutouts))
bounds = transform_bounds(4326, 3035, min(xs), min(ys), max(Xs), max(Ys))
transform, out_shape = get_transform_and_shape(bounds, res=100)
# adjusted boundaries
shapes = gpd.read_file(snakemake.input.natura).to_crs(3035)
raster = ~geometry_mask(shapes.geometry, out_shape[::-1], transform)
raster = raster.astype(rio.uint8)
with rio.open(snakemake.output[0], 'w', driver='GTiff', dtype=rio.uint8,
count=1, transform=transform, crs=3035, compress='lzw',
width=raster.shape[1], height=raster.shape[0]) as dst:
dst.write(raster, indexes=1)

View File

@ -60,7 +60,6 @@ Inputs
**Source:** `GEBCO <https://www.gebco.net/data_and_products/images/gebco_2019_grid_image.jpg>`_
- ``resources/natura.tiff``: confer :ref:`natura`
- ``resources/country_shapes.geojson``: confer :ref:`shapes`
- ``resources/offshore_shapes.geojson``: confer :ref:`shapes`
- ``resources/regions_onshore.geojson``: (if not offshore wind), confer :ref:`busregions`
- ``resources/regions_offshore.geojson``: (if offshore wind), :ref:`busregions`
@ -180,212 +179,145 @@ node (`p_nom_max`): ``simple`` and ``conservative``:
reached.
"""
import progressbar as pgb
import geopandas as gpd
import xarray as xr
import numpy as np
import atlite
import logging
from pypsa.geo import haversine
from shapely.geometry import LineString
import time
from _helpers import configure_logging
import os
import atlite
import numpy as np
import xarray as xr
import pandas as pd
import multiprocessing as mp
import matplotlib.pyplot as plt
import progressbar as pgb
from scipy.sparse import csr_matrix, vstack
from pypsa.geo import haversine
from vresutils import landuse as vlanduse
from vresutils.array import spdiag
logger = logging.getLogger(__name__)
bounds = dx = dy = config = paths = gebco = clc = natura = None
def init_globals(bounds_xXyY, n_dx, n_dy, n_config, n_paths):
# Late import so that the GDAL Context is only created in the new processes
global gl, gk, gdal
import glaes as gl
import geokit as gk
from osgeo import gdal as gdal
# global in each process of the multiprocessing.Pool
global bounds, dx, dy, config, paths, gebco, clc, natura
bounds = gk.Extent.from_xXyY(bounds_xXyY)
dx = n_dx
dy = n_dy
config = n_config
paths = n_paths
if "max_depth" in config:
gebco = gk.raster.loadRaster(paths["gebco"])
gebco.SetProjection(gk.srs.loadSRS(4326).ExportToWkt())
clc = gk.raster.loadRaster(paths["corine"])
clc.SetProjection(gk.srs.loadSRS(3035).ExportToWkt())
natura = gk.raster.loadRaster(paths["natura"])
def downsample_to_coarse_grid(bounds, dx, dy, mask, data):
# The GDAL warp function with the 'average' resample algorithm needs a band of zero values of at least
# the size of one coarse cell around the original raster or it produces erroneous results
orig = mask.createRaster(data=data)
padded_extent = mask.extent.castTo(bounds.srs).pad(max(dx, dy)).castTo(mask.srs)
padded = padded_extent.fit((mask.pixelWidth, mask.pixelHeight)).warp(orig, mask.pixelWidth, mask.pixelHeight)
orig = None # free original raster
average = bounds.createRaster(dx, dy, dtype=gdal.GDT_Float32)
assert gdal.Warp(average, padded, resampleAlg='average') == 1, "gdal warp failed: %s" % gdal.GetLastErrorMsg()
return average
def calculate_potential(gid, save_map=None):
feature = gk.vector.extractFeature(paths["regions"], where=gid)
ec = gl.ExclusionCalculator(feature.geom)
corine = config.get("corine", {})
if isinstance(corine, list):
corine = {'grid_codes': corine}
if "grid_codes" in corine:
ec.excludeRasterType(clc, value=corine["grid_codes"], invert=True)
if corine.get("distance", 0.) > 0.:
ec.excludeRasterType(clc, value=corine["distance_grid_codes"], buffer=corine["distance"])
if config.get("natura", False):
ec.excludeRasterType(natura, value=1)
if "max_depth" in config:
ec.excludeRasterType(gebco, (None, -config["max_depth"]))
# TODO compute a distance field as a raster beforehand
if 'max_shore_distance' in config:
ec.excludeVectorType(paths["country_shapes"], buffer=config['max_shore_distance'], invert=True)
if 'min_shore_distance' in config:
ec.excludeVectorType(paths["country_shapes"], buffer=config['min_shore_distance'])
if save_map is not None:
ec.draw()
plt.savefig(save_map, transparent=True)
plt.close()
availability = downsample_to_coarse_grid(bounds, dx, dy, ec.region, np.where(ec.region.mask, ec._availability, 0))
return csr_matrix(gk.raster.extractMatrix(availability).flatten() / 100.)
if __name__ == '__main__':
if 'snakemake' not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake('build_renewable_profiles', technology='solar')
configure_logging(snakemake)
pgb.streams.wrap_stderr()
paths = snakemake.input
nprocesses = snakemake.config['atlite'].get('nprocesses')
noprogress = not snakemake.config['atlite'].get('show_progress', True)
config = snakemake.config['renewable'][snakemake.wildcards.technology]
time = pd.date_range(freq='m', **snakemake.config['snapshots'])
params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]]))
cutout = atlite.Cutout(config['cutout'],
cutout_dir=os.path.dirname(snakemake.input.cutout),
**params)
minx, maxx, miny, maxy = cutout.extent
dx = (maxx - minx) / (cutout.shape[1] - 1)
dy = (maxy - miny) / (cutout.shape[0] - 1)
bounds_xXyY = (minx - dx/2., maxx + dx/2., miny - dy/2., maxy + dy/2.)
# Use GLAES to compute available potentials and the transition matrix
paths = dict(snakemake.input)
# Use the following for testing the default windows method on linux
# mp.set_start_method('spawn')
with mp.Pool(initializer=init_globals, initargs=(bounds_xXyY, dx, dy, config, paths),
maxtasksperchild=20, processes=snakemake.config['atlite'].get('nprocesses', 2)) as pool:
# The GDAL library creates a GDAL context on module import, which may not be shared over multiple
# processes or the PROJ4 library has a hickup, so we import only after forking.
import geokit as gk
regions = gk.vector.extractFeatures(paths["regions"], onlyAttr=True)
buses = pd.Index(regions['name'], name="bus")
widgets = [
pgb.widgets.Percentage(),
' ', pgb.widgets.SimpleProgress(format='(%s)' % pgb.widgets.SimpleProgress.DEFAULT_FORMAT),
' ', pgb.widgets.Bar(),
' ', pgb.widgets.Timer(),
' ', pgb.widgets.ETA()
]
progressbar = pgb.ProgressBar(prefix='Compute GIS potentials: ', widgets=widgets, max_value=len(regions))
matrix = vstack(list(progressbar(pool.imap(calculate_potential, regions.index))))
potentials = config['capacity_per_sqkm'] * vlanduse._cutout_cell_areas(cutout)
potmatrix = matrix * spdiag(potentials.ravel())
if not config.get('keep_all_available_areas', False):
potmatrix.data[potmatrix.data < 1.] = 0 # ignore weather cells where only less than 1 MW can be installed
potmatrix.eliminate_zeros()
resource = config['resource']
func = getattr(cutout, resource.pop('method'))
resource = config['resource'] # pv panel config / wind turbine config
correction_factor = config.get('correction_factor', 1.)
if correction_factor != 1.:
logger.warning('correction_factor is set as {}'.format(correction_factor))
capacity_factor = correction_factor * func(capacity_factor=True, show_progress='Compute capacity factors: ', **resource).stack(spatial=('y', 'x')).values
layoutmatrix = potmatrix * spdiag(capacity_factor)
profile, capacities = func(matrix=layoutmatrix, index=buses, per_unit=True,
return_capacity=True, show_progress='Compute profiles: ',
**resource)
capacity_per_sqkm = config['capacity_per_sqkm']
p_nom_max_meth = config.get('potential', 'conservative')
if p_nom_max_meth == 'simple':
p_nom_max = xr.DataArray(np.asarray(potmatrix.sum(axis=1)).squeeze(), [buses])
elif p_nom_max_meth == 'conservative':
# p_nom_max has to be calculated for each bus and is the minimal ratio
# (min over all weather grid cells of the bus region) between the available
# potential (potmatrix) and the used normalised layout (layoutmatrix /
# capacities), so we would like to calculate i.e. potmatrix / (layoutmatrix /
# capacities). Since layoutmatrix = potmatrix * capacity_factor, this
# corresponds to capacities/max(capacity factor in the voronoi cell)
p_nom_max = xr.DataArray([1./np.max(capacity_factor[inds]) if len(inds) else 0.
for inds in np.split(potmatrix.indices, potmatrix.indptr[1:-1])], [buses]) * capacities
if isinstance(config.get("corine", {}), list):
config['corine'] = {'grid_codes': config['corine']}
if correction_factor != 1.:
logger.info(f'correction_factor is set as {correction_factor}')
cutout = atlite.Cutout(paths['cutout'])
regions = gpd.read_file(paths.regions).set_index('name').rename_axis('bus')
buses = regions.index
excluder = atlite.ExclusionContainer(crs=3035, res=100)
if config['natura']:
excluder.add_raster(paths.natura, nodata=0, allow_no_overlap=True)
corine = config.get("corine", {})
if "grid_codes" in corine:
codes = corine["grid_codes"]
excluder.add_raster(paths.corine, codes=codes, invert=True, crs=3035)
if corine.get("distance", 0.) > 0.:
codes = corine["distance_grid_codes"]
buffer = corine["distance"]
excluder.add_raster(paths.corine, codes=codes, buffer=buffer, crs=3035)
if "max_depth" in config:
func = lambda v: v <= -config['max_depth']
excluder.add_raster(paths.gebco, codes=func, crs=4236, nodata=-1000)
if 'min_shore_distance' in config:
buffer = config['min_shore_distance']
excluder.add_geometry(paths.country_shapes, buffer=buffer)
if 'max_shore_distance' in config:
buffer = config['max_shore_distance']
excluder.add_geometry(paths.country_shapes, buffer=buffer, invert=True)
kwargs = dict(nprocesses=nprocesses, disable_progressbar=noprogress)
if noprogress:
logger.info('Calculate landuse availabilities...')
start = time.time()
availability = cutout.availabilitymatrix(regions, excluder, **kwargs)
duration = time.time() - start
logger.info(f'Completed availability calculation ({duration:2.2f}s)')
else:
raise AssertionError('Config key `potential` should be one of "simple" (default) or "conservative",'
' not "{}"'.format(p_nom_max_meth))
availability = cutout.availabilitymatrix(regions, excluder, **kwargs)
layout = xr.DataArray(np.asarray(potmatrix.sum(axis=0)).reshape(cutout.shape),
[cutout.meta.indexes[ax] for ax in ['y', 'x']])
area = cutout.grid.to_crs(3035).area / 1e6
area = xr.DataArray(area.values.reshape(cutout.shape),
[cutout.coords['y'], cutout.coords['x']])
# Determine weighted average distance from substation
cell_coords = cutout.grid_coordinates()
potential = capacity_per_sqkm * availability.sum('bus') * area
func = getattr(cutout, resource.pop('method'))
resource['dask_kwargs'] = {'num_workers': nprocesses}
capacity_factor = correction_factor * func(capacity_factor=True, **resource)
layout = capacity_factor * area * capacity_per_sqkm
profile, capacities = func(matrix=availability.stack(spatial=['y','x']),
layout=layout, index=buses,
per_unit=True, return_capacity=True, **resource)
logger.info(f"Calculating maximal capacity per bus (method '{p_nom_max_meth}')")
if p_nom_max_meth == 'simple':
p_nom_max = capacity_per_sqkm * availability @ area
elif p_nom_max_meth == 'conservative':
max_cap_factor = capacity_factor.where(availability!=0).max(['x', 'y'])
p_nom_max = capacities / max_cap_factor
else:
raise AssertionError('Config key `potential` should be one of "simple" '
f'(default) or "conservative", not "{p_nom_max_meth}"')
logger.info('Calculate average distances.')
layoutmatrix = (layout * availability).stack(spatial=['y','x'])
coords = cutout.grid[['x', 'y']]
bus_coords = regions[['x', 'y']]
average_distance = []
for i in regions.index:
row = layoutmatrix[i]
distances = haversine(regions.loc[i, ['x', 'y']], cell_coords[row.indices])[0]
average_distance.append((distances * (row.data / row.data.sum())).sum())
centre_of_mass = []
for bus in buses:
row = layoutmatrix.sel(bus=bus).data
nz_b = row != 0
row = row[nz_b]
co = coords[nz_b]
distances = haversine(bus_coords.loc[bus], co)
average_distance.append((distances * (row / row.sum())).sum())
centre_of_mass.append(co.values.T @ (row / row.sum()))
average_distance = xr.DataArray(average_distance, [buses])
centre_of_mass = xr.DataArray(centre_of_mass, [buses, ('spatial', ['x', 'y'])])
ds = xr.merge([(correction_factor * profile).rename('profile'),
capacities.rename('weight'),
p_nom_max.rename('p_nom_max'),
layout.rename('potential'),
potential.rename('potential'),
average_distance.rename('average_distance')])
if snakemake.wildcards.technology.startswith("offwind"):
import geopandas as gpd
from shapely.geometry import LineString
offshore_shape = gpd.read_file(snakemake.input.offshore_shapes).unary_union
if snakemake.wildcards.technology.startswith("offwind"):
logger.info('Calculate underwater fraction of connections.')
offshore_shape = gpd.read_file(paths['offshore_shapes']).unary_union
underwater_fraction = []
for i in regions.index:
row = layoutmatrix[i]
centre_of_mass = (cell_coords[row.indices] * (row.data / row.data.sum())[:,np.newaxis]).sum(axis=0)
line = LineString([centre_of_mass, regions.loc[i, ['x', 'y']]])
underwater_fraction.append(line.intersection(offshore_shape).length / line.length)
for bus in buses:
p = centre_of_mass.sel(bus=bus).data
line = LineString([p, regions.loc[bus, ['x', 'y']]])
frac = line.intersection(offshore_shape).length/line.length
underwater_fraction.append(frac)
ds['underwater_fraction'] = xr.DataArray(underwater_fraction, [buses])
@ -394,6 +326,7 @@ if __name__ == '__main__':
(ds['p_nom_max'] > config.get('min_p_nom_max', 0.))))
if 'clip_p_max_pu' in config:
ds['profile'].values[ds['profile'].values < config['clip_p_max_pu']] = 0.
min_p_max_pu = config['clip_p_max_pu']
ds['profile'] = ds['profile'].where(ds['profile'] >= min_p_max_pu, 0)
ds.to_netcdf(snakemake.output.profile)

View File

@ -71,7 +71,7 @@ opt_name = {"Store": "e", "Line" : "s", "Transformer" : "s"}
def _add_indexed_rows(df, raw_index):
new_index = df.index|pd.MultiIndex.from_product(raw_index)
new_index = df.index.union(pd.MultiIndex.from_product(raw_index))
if isinstance(new_index, pd.Index):
new_index = pd.MultiIndex.from_tuples(new_index)
@ -126,7 +126,7 @@ def calculate_costs(n, label, costs):
marginal_costs_grouped = marginal_costs.groupby(c.df.carrier).sum()
costs = costs.reindex(costs.index|pd.MultiIndex.from_product([[c.list_name],["marginal"],marginal_costs_grouped.index]))
costs = costs.reindex(costs.index.union(pd.MultiIndex.from_product([[c.list_name],["marginal"],marginal_costs_grouped.index])))
costs.loc[idx[c.list_name,"marginal",list(marginal_costs_grouped.index)],label] = marginal_costs_grouped.values
@ -222,7 +222,7 @@ def calculate_supply(n, label, supply):
#lots of sign compensation for direction and to do maximums
s = (-1)**(1-int(end))*((-1)**int(end)*c.pnl["p"+end][items]).max().groupby(c.df.loc[items,'carrier']).sum()
supply = supply.reindex(supply.index|pd.MultiIndex.from_product([[i],[c.list_name],s.index]))
supply = supply.reindex(supply.index.union(pd.MultiIndex.from_product([[i],[c.list_name],s.index])))
supply.loc[idx[i,c.list_name,list(s.index)],label] = s.values
return supply
@ -268,7 +268,7 @@ def calculate_supply_energy(n, label, supply_energy):
s = (-1)*c.pnl["p"+end][items].sum().groupby(c.df.loc[items,'carrier']).sum()
supply_energy = supply_energy.reindex(supply_energy.index|pd.MultiIndex.from_product([[i],[c.list_name],s.index]))
supply_energy = supply_energy.reindex(supply_energy.index.union(pd.MultiIndex.from_product([[i],[c.list_name],s.index])))
supply_energy.loc[idx[i,c.list_name,list(s.index)],label] = s.values
return supply_energy
@ -276,7 +276,7 @@ def calculate_supply_energy(n, label, supply_energy):
def calculate_metrics(n,label,metrics):
metrics = metrics.reindex(metrics.index|pd.Index(["line_volume","line_volume_limit","line_volume_AC","line_volume_DC","line_volume_shadow","co2_shadow"]))
metrics = metrics.reindex(metrics.index.union(pd.Index(["line_volume","line_volume_limit","line_volume_AC","line_volume_DC","line_volume_shadow","co2_shadow"])))
metrics.at["line_volume_DC",label] = (n.links.length*n.links.p_nom_opt)[n.links.carrier == "DC"].sum()
metrics.at["line_volume_AC",label] = (n.lines.length*n.lines.s_nom_opt).sum()
@ -298,7 +298,7 @@ def calculate_prices(n,label,prices):
bus_type = pd.Series(n.buses.index.str[3:],n.buses.index).replace("","electricity")
prices = prices.reindex(prices.index|bus_type.value_counts().index)
prices = prices.reindex(prices.index.union(bus_type.value_counts().index))
logger.warning("Prices are time-averaged, not load-weighted")
prices[label] = n.buses_t.marginal_price.mean().groupby(bus_type).mean()

View File

@ -164,7 +164,7 @@ def plot_map(n, ax=None, attribute='p_nom', opts={}):
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l2)
techs = (bus_sizes.index.levels[1]) & pd.Index(opts['vre_techs'] + opts['conv_techs'] + opts['storage_techs'])
techs = (bus_sizes.index.levels[1]).intersection(pd.Index(opts['vre_techs'] + opts['conv_techs'] + opts['storage_techs']))
handles = []
labels = []
for t in techs:

View File

@ -1,75 +0,0 @@
# SPDX-FileCopyrightText: 2019-2020 Fabian Hofmann (FIAS)
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3517949.svg
:target: https://doi.org/10.5281/zenodo.3517949
Cutouts are spatiotemporal subsets of the European weather data from the `ECMWF ERA5 <https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation>`_ reanalysis dataset and the `CMSAF SARAH-2 <https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002>`_ solar surface radiation dataset for the year 2013 (3.9 GB).
They have been prepared by and are for use with the `atlite <https://github.com/PyPSA/atlite>`_ tool. You can either generate them yourself using the ``build_cutouts`` rule or retrieve them directly from `zenodo <https://doi.org/10.5281/zenodo.3517949>`_ through the rule ``retrieve_cutout`` described here.
.. note::
To download cutouts yourself from the `ECMWF ERA5 <https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation>`_ you need to `set up the CDS API <https://cds.climate.copernicus.eu/api-how-to>`_.
The :ref:`tutorial` uses smaller `cutouts <https://zenodo.org/record/3518020/files/pypsa-eur-tutorial-cutouts.tar.xz>`_ than required for the full model (19 MB)
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3518020.svg
:target: https://doi.org/10.5281/zenodo.3518020
**Relevant Settings**
.. code:: yaml
tutorial:
enable:
build_cutout:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`toplevel_cf`
**Outputs**
- ``cutouts/{cutout}``: weather data from either the `ERA5 <https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5>`_ reanalysis weather dataset or `SARAH-2 <https://wui.cmsaf.eu/safira/action/viewProduktSearch>`_ satellite-based historic weather data.
.. seealso::
For details see :mod:`build_cutout` and read the `atlite documentation <https://atlite.readthedocs.io>`_.
"""
import logging
logger = logging.getLogger(__name__)
from pathlib import Path
import tarfile
from _helpers import progress_retrieve, configure_logging
if __name__ == "__main__":
if 'snakemake' not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake('retrieve_cutout')
rootpath = '..'
else:
rootpath = '.'
configure_logging(snakemake) # TODO Make logging compatible with progressbar (see PR #102)
if snakemake.config['tutorial']:
url = "https://zenodo.org/record/3518020/files/pypsa-eur-tutorial-cutouts.tar.xz"
else:
url = "https://zenodo.org/record/3517949/files/pypsa-eur-cutouts.tar.xz"
# Save location
tarball_fn = Path(f"{rootpath}/cutouts.tar.xz")
logger.info(f"Downloading cutouts from '{url}'.")
progress_retrieve(url, tarball_fn)
logger.info(f"Extracting cutouts.")
tarfile.open(tarball_fn).extractall(path=rootpath)
tarball_fn.unlink()
logger.info(f"Cutouts available in '{Path(tarball_fn.stem).stem}'.")

View File

@ -1,49 +0,0 @@
# Copyright 2019-2020 Fabian Hofmann (FIAS)
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3518215.svg
:target: https://doi.org/10.5281/zenodo.3518215
This rule, as a substitute for :mod:`build_natura_raster`, downloads an already rasterized version (`natura.tiff <https://zenodo.org/record/3518215/files/natura.tiff>`_) of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas to reduce computation times. The file is placed into the ``resources`` sub-directory.
**Relevant Settings**
.. code:: yaml
enable:
build_natura_raster:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`toplevel_cf`
**Outputs**
- ``resources/natura.tiff``: Rasterized version of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas to reduce computation times.
.. seealso::
For details see :mod:`build_natura_raster`.
"""
import logging
from _helpers import progress_retrieve, configure_logging
logger = logging.getLogger(__name__)
if __name__ == "__main__":
if 'snakemake' not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake('retrieve_natura_raster')
configure_logging(snakemake) # TODO Make logging compatible with progressbar (see PR #102)
url = "https://zenodo.org/record/3518215/files/natura.tiff"
logger.info(f"Downloading natura raster from '{url}'.")
progress_retrieve(url, snakemake.output[0])
logger.info(f"Natura raster available as '{snakemake.output[0]}'.")

View File

@ -53,16 +53,15 @@ electricity:
atlite:
nprocesses: 4
cutouts:
europe-2013-era5:
europe-2013-era5-tutorial:
module: era5
xs: [4., 15.]
ys: [56., 46.]
months: [3, 3]
years: [2013, 2013]
x: [4., 15.]
y: [46., 56.]
time: ["2013-03", "2013-03"]
renewable:
onwind:
cutout: europe-2013-era5
cutout: europe-2013-era5-tutorial
resource:
method: wind
turbine: Vestas_V112_3MW
@ -79,7 +78,7 @@ renewable:
potential: simple # or conservative
clip_p_max_pu: 1.e-2
offwind-ac:
cutout: europe-2013-era5
cutout: europe-2013-era5-tutorial
resource:
method: wind
turbine: NREL_ReferenceTurbine_5MW_offshore
@ -91,7 +90,7 @@ renewable:
potential: simple # or conservative
clip_p_max_pu: 1.e-2
offwind-dc:
cutout: europe-2013-era5
cutout: europe-2013-era5-tutorial
resource:
method: wind
turbine: NREL_ReferenceTurbine_5MW_offshore
@ -104,7 +103,7 @@ renewable:
potential: simple # or conservative
clip_p_max_pu: 1.e-2
solar:
cutout: europe-2013-era5
cutout: europe-2013-era5-tutorial
resource:
method: pv
panel: CSi