Merge pull request #1228 from PyPSA/co2-seq-per-period

Co2 sequestration potential depending on investment period
This commit is contained in:
lisazeyen 2024-08-20 15:33:18 +02:00 committed by GitHub
commit e273f4ec9d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 201 additions and 184 deletions

View File

@ -612,7 +612,14 @@ sector:
min_size: 3
max_size: 25
years_of_storage: 25
co2_sequestration_potential: 200
co2_sequestration_potential:
2020: 0
2025: 0
2030: 50
2035: 100
2040: 200
2045: 200
2050: 200
co2_sequestration_cost: 10
co2_sequestration_lifetime: 50
co2_spatial: false

View File

@ -1,175 +1,175 @@
,Unit,Values,Description
transport,--,"{true, false}",Flag to include transport sector.
heating,--,"{true, false}",Flag to include heating sector.
biomass,--,"{true, false}",Flag to include biomass sector.
industry,--,"{true, false}",Flag to include industry sector.
agriculture,--,"{true, false}",Flag to include agriculture sector.
fossil_fuels,--,"{true, false}","Flag to include imports of fossil fuels ( [""coal"", ""gas"", ""oil"", ""lignite""])"
district_heating,--,,`prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_
-- potential,--,float,maximum fraction of urban demand which can be supplied by district heating
-- progress,--,Dictionary with planning horizons as keys., Increase of today's district heating demand to potential maximum district heating share. Progress = 0 means today's district heating share. Progress = 1 means maximum fraction of urban demand is supplied by district heating
-- district_heating_loss,--,float,Share increase in district heat demand in urban central due to heat losses
-- forward_temperature,°C,Dictionary with country codes as keys. One key must be 'default'.,Forward temperature in district heating
-- return_temperature,°C,Dictionary with country codes as keys. One key must be 'default'.,Return temperature in district heating. Must be lower than forward temperature
-- heat_source_cooling,K,float,Cooling of heat source for heat pumps
-- heat_pump_cop_approximation,,,
-- -- refrigerant,--,"{ammonia, isobutane}",Heat pump refrigerant assumed for COP approximation
-- -- heat_exchanger_pinch_point_temperature_difference,K,float,Heat pump pinch point temperature difference in heat exchangers assumed for approximation.
-- -- isentropic_compressor_efficiency,--,float,Isentropic efficiency of heat pump compressor assumed for approximation. Must be between 0 and 1.
-- -- heat_loss,--,float,Heat pump heat loss assumed for approximation. Must be between 0 and 1.
-- heat_pump_sources,--,,
-- -- urban central,--,List of heat sources for heat pumps in urban central heating,
-- -- urban decentral,--,List of heat sources for heat pumps in urban decentral heating,
-- -- rural,--,List of heat sources for heat pumps in rural heating,
cluster_heat_buses,--,"{true, false}",Cluster residential and service heat buses in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_ to one to save memory.
,,,
bev_dsm_restriction _value,--,float,Adds a lower state of charge (SOC) limit for battery electric vehicles (BEV) to manage its own energy demand (DSM). Located in `build_transport_demand.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_transport_demand.py>`_. Set to 0 for no restriction on BEV DSM
bev_dsm_restriction _time,--,float,Time at which SOC of BEV has to be dsm_restriction_value
transport_heating _deadband_upper,°C,float,"The maximum temperature in the vehicle. At higher temperatures, the energy required for cooling in the vehicle increases."
transport_heating _deadband_lower,°C,float,"The minimum temperature in the vehicle. At lower temperatures, the energy required for heating in the vehicle increases."
,,,
ICE_lower_degree_factor,--,float,Share increase in energy demand in internal combustion engine (ICE) for each degree difference between the cold environment and the minimum temperature.
ICE_upper_degree_factor,--,float,Share increase in energy demand in internal combustion engine (ICE) for each degree difference between the hot environment and the maximum temperature.
EV_lower_degree_factor,--,float,Share increase in energy demand in electric vehicles (EV) for each degree difference between the cold environment and the minimum temperature.
EV_upper_degree_factor,--,float,Share increase in energy demand in electric vehicles (EV) for each degree difference between the hot environment and the maximum temperature.
bev_dsm,--,"{true, false}",Add the option for battery electric vehicles (BEV) to participate in demand-side management (DSM)
,,,
bev_availability,--,float,The share for battery electric vehicles (BEV) that are able to do demand side management (DSM)
bev_energy,--,float,The average size of battery electric vehicles (BEV) in MWh
bev_charge_efficiency,--,float,Battery electric vehicles (BEV) charge and discharge efficiency
bev_charge_rate,MWh,float,The power consumption for one electric vehicle (EV) in MWh. Value derived from 3-phase charger with 11 kW.
bev_avail_max,--,float,The maximum share plugged-in availability for passenger electric vehicles.
bev_avail_mean,--,float,The average share plugged-in availability for passenger electric vehicles.
v2g,--,"{true, false}",Allows feed-in to grid from EV battery
land_transport_fuel_cell _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses fuel cells in a given year
land_transport_electric _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses electric vehicles (EV) in a given year
land_transport_ice _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses internal combustion engines (ICE) in a given year. What is not EV or FCEV is oil-fuelled ICE.
transport_electric_efficiency,MWh/100km,float,The conversion efficiencies of electric vehicles in transport
transport_fuel_cell_efficiency,MWh/100km,float,The H2 conversion efficiencies of fuel cells in transport
transport_ice_efficiency,MWh/100km,float,The oil conversion efficiencies of internal combustion engine (ICE) in transport
agriculture_machinery _electric_share,--,float,The share for agricultural machinery that uses electricity
agriculture_machinery _oil_share,--,float,The share for agricultural machinery that uses oil
agriculture_machinery _fuel_efficiency,--,float,The efficiency of electric-powered machinery in the conversion of electricity to meet agricultural needs.
agriculture_machinery _electric_efficiency,--,float,The efficiency of oil-powered machinery in the conversion of oil to meet agricultural needs.
Mwh_MeOH_per_MWh_H2,LHV,float,"The energy amount of the produced methanol per energy amount of hydrogen. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
MWh_MeOH_per_tCO2,LHV,float,"The energy amount of the produced methanol per ton of CO2. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 66."
MWh_MeOH_per_MWh_e,LHV,float,"The energy amount of the produced methanol per energy amount of electricity. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
shipping_hydrogen _liquefaction,--,"{true, false}",Whether to include liquefaction costs for hydrogen demand in shipping.
,,,
shipping_hydrogen_share,--,Dictionary with planning horizons as keys.,The share of ships powered by hydrogen in a given year
shipping_methanol_share,--,Dictionary with planning horizons as keys.,The share of ships powered by methanol in a given year
shipping_oil_share,--,Dictionary with planning horizons as keys.,The share of ships powered by oil in a given year
shipping_methanol _efficiency,--,float,The efficiency of methanol-powered ships in the conversion of methanol to meet shipping needs (propulsion). The efficiency increase from oil can be 10-15% higher according to the `IEA <https://www.iea-amf.org/app/webroot/files/file/Annex%20Reports/AMF_Annex_56.pdf>`_
,,,
shipping_oil_efficiency,--,float,The efficiency of oil-powered ships in the conversion of oil to meet shipping needs (propulsion). Base value derived from 2011
aviation_demand_factor,--,float,The proportion of demand for aviation compared to today's consumption
HVC_demand_factor,--,float,The proportion of demand for high-value chemicals compared to today's consumption
,,,
time_dep_hp_cop,--,"{true, false}",Consider the time dependent coefficient of performance (COP) of the heat pump
heat_pump_sink_T,°C,float,The temperature heat sink used in heat pumps based on DTU / large area radiators. The value is conservatively high to cover hot water and space heating in poorly-insulated buildings
reduce_space_heat _exogenously,--,"{true, false}",Influence on space heating demand by a certain factor (applied before losses in district heating).
reduce_space_heat _exogenously_factor,--,Dictionary with planning horizons as keys.,"A positive factor can mean renovation or demolition of a building. If the factor is negative, it can mean an increase in floor area, increased thermal comfort, population growth. The default factors are determined by the `Eurocalc Homes and buildings decarbonization scenario <http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221>`_"
retrofitting,,,
-- retro_endogen,--,"{true, false}",Add retrofitting as an endogenous system which co-optimise space heat savings.
-- cost_factor,--,float,Weight costs for building renovation
-- interest_rate,--,float,The interest rate for investment in building components
-- annualise_cost,--,"{true, false}",Annualise the investment costs of retrofitting
-- tax_weighting,--,"{true, false}",Weight the costs of retrofitting depending on taxes in countries
-- construction_index,--,"{true, false}",Weight the costs of retrofitting depending on labour/material costs per country
tes,--,"{true, false}",Add option for storing thermal energy in large water pits associated with district heating systems and individual thermal energy storage (TES)
tes_tau,,,The time constant used to calculate the decay of thermal energy in thermal energy storage (TES): 1- :math:`e^{-1/24τ}`.
-- decentral,days,float,The time constant in decentralized thermal energy storage (TES)
-- central,days,float,The time constant in centralized thermal energy storage (TES)
boilers,--,"{true, false}",Add option for transforming gas into heat using gas boilers
resistive_heaters,--,"{true, false}",Add option for transforming electricity into heat using resistive heaters (independently from gas boilers)
oil_boilers,--,"{true, false}",Add option for transforming oil into heat using boilers
biomass_boiler,--,"{true, false}",Add option for transforming biomass into heat using boilers
overdimension_individual_heating,--,float,Add option for overdimensioning individual heating systems by a certain factor. This allows them to cover heat demand peaks e.g. 10% higher than those in the data with a setting of 1.1.
chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP)
micro_chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP) for decentral areas.
solar_thermal,--,"{true, false}",Add option for using solar thermal to generate heat.
solar_cf_correction,--,float,The correction factor for the value provided by the solar thermal profile calculations
marginal_cost_storage,currency/MWh ,float,The marginal cost of discharging batteries in distributed grids
methanation,--,"{true, false}",Add option for transforming hydrogen and CO2 into methane using methanation.
coal_cc,--,"{true, false}",Add option for coal CHPs with carbon capture
dac,--,"{true, false}",Add option for Direct Air Capture (DAC)
co2_vent,--,"{true, false}",Add option for vent out CO2 from storages to the atmosphere.
allam_cycle,--,"{true, false}",Add option to include `Allam cycle gas power plants <https://en.wikipedia.org/wiki/Allam_power_cycle>`_
hydrogen_fuel_cell,--,"{true, false}",Add option to include hydrogen fuel cell for re-electrification. Assuming OCGT technology costs
hydrogen_turbine,--,"{true, false}",Add option to include hydrogen turbine for re-electrification. Assuming OCGT technology costs
SMR,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR)
SMR CC,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR) and Carbon Capture (CC)
regional_methanol_demand,--,"{true, false}",Spatially resolve methanol demand. Set to true if regional CO2 constraints needed.
regional_oil_demand,--,"{true, false}",Spatially resolve oil demand. Set to true if regional CO2 constraints needed.
regional_co2 _sequestration_potential,,,
-- enable,--,"{true, false}",Add option for regionally-resolved geological carbon dioxide sequestration potentials based on `CO2StoP <https://setis.ec.europa.eu/european-co2-storage-database_en>`_.
-- attribute,--,string or list,Name (or list of names) of the attribute(s) for the sequestration potential
-- include_onshore,--,"{true, false}",Add options for including onshore sequestration potentials
-- min_size,Gt ,float,Any sites with lower potential than this value will be excluded
-- max_size,Gt ,float,The maximum sequestration potential for any one site.
-- years_of_storage,years,float,The years until potential exhausted at optimised annual rate
co2_sequestration_potential,MtCO2/a,float,The potential of sequestering CO2 in Europe per year
co2_sequestration_cost,currency/tCO2,float,The cost of sequestering a ton of CO2
co2_sequestration_lifetime,years,int,The lifetime of a CO2 sequestration site
co2_spatial,--,"{true, false}","Add option to spatially resolve carrier representing stored carbon dioxide. This allows for more detailed modelling of CCUTS, e.g. regarding the capturing of industrial process emissions, usage as feedstock for electrofuels, transport of carbon dioxide, and geological sequestration sites."
,,,
co2network,--,"{true, false}",Add option for planning a new carbon dioxide transmission network
co2_network_cost_factor,p.u.,float,The cost factor for the capital cost of the carbon dioxide transmission network
,,,
cc_fraction,--,float,The default fraction of CO2 captured with post-combustion capture
hydrogen_underground _storage,--,"{true, false}",Add options for storing hydrogen underground. Storage potential depends regionally.
hydrogen_underground _storage_locations,,"{onshore, nearshore, offshore}","The location where hydrogen underground storage can be located. Onshore, nearshore, offshore means it must be located more than 50 km away from the sea, within 50 km of the sea, or within the sea itself respectively."
,,,
ammonia,--,"{true, false, regional}","Add ammonia as a carrrier. It can be either true (copperplated NH3), false (no NH3 carrier) or ""regional"" (regionalised NH3 without network)"
min_part_load_fischer _tropsch,per unit of p_nom ,float,The minimum unit dispatch (``p_min_pu``) for the Fischer-Tropsch process
min_part_load _methanolisation,per unit of p_nom ,float,The minimum unit dispatch (``p_min_pu``) for the methanolisation process
,,,
use_fischer_tropsch _waste_heat,--,"{true, false}",Add option for using waste heat of Fischer Tropsch in district heating networks
use_fuel_cell_waste_heat,--,"{true, false}",Add option for using waste heat of fuel cells in district heating networks
use_electrolysis_waste _heat,--,"{true, false}",Add option for using waste heat of electrolysis in district heating networks
electricity_transmission _grid,--,"{true, false}",Switch for enabling/disabling the electricity transmission grid.
electricity_distribution _grid,--,"{true, false}",Add a simplified representation of the exchange capacity between transmission and distribution grid level through a link.
electricity_distribution _grid_cost_factor,,,Multiplies the investment cost of the electricity distribution grid
,,,
electricity_grid _connection,--,"{true, false}",Add the cost of electricity grid connection for onshore wind and solar
transmission_efficiency,,,Section to specify transmission losses or compression energy demands of bidirectional links. Splits them into two capacity-linked unidirectional links.
-- {carrier},--,str,The carrier of the link.
-- -- efficiency_static,p.u.,float,Length-independent transmission efficiency.
-- -- efficiency_per_1000km,p.u. per 1000 km,float,Length-dependent transmission efficiency ($\eta^{\text{length}}$)
-- -- compression_per_1000km,p.u. per 1000 km,float,Length-dependent electricity demand for compression ($\eta \cdot \text{length}$) implemented as multi-link to local electricity bus.
H2_network,--,"{true, false}",Add option for new hydrogen pipelines
gas_network,--,"{true, false}","Add existing natural gas infrastructure, incl. LNG terminals, production and entry-points. The existing gas network is added with a lossless transport model. A length-weighted `k-edge augmentation algorithm <https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_ can be run to add new candidate gas pipelines such that all regions of the model can be connected to the gas network. When activated, all the gas demands are regionally disaggregated as well."
H2_retrofit,--,"{true, false}",Add option for retrofiting existing pipelines to transport hydrogen.
H2_retrofit_capacity _per_CH4,--,float,"The ratio for H2 capacity per original CH4 capacity of retrofitted pipelines. The `European Hydrogen Backbone (April, 2020) p.15 <https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf>`_ 60% of original natural gas capacity could be used in cost-optimal case as H2 capacity."
gas_network_connectivity _upgrade ,--,float,The number of desired edge connectivity (k) in the length-weighted `k-edge augmentation algorithm <https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_ used for the gas network
gas_distribution_grid,--,"{true, false}",Add a gas distribution grid
gas_distribution_grid _cost_factor,,,Multiplier for the investment cost of the gas distribution grid
,,,
biomass_spatial,--,"{true, false}",Add option for resolving biomass demand regionally
biomass_transport,--,"{true, false}",Add option for transporting solid biomass between nodes
biogas_upgrading_cc,--,"{true, false}",Add option to capture CO2 from biomass upgrading
conventional_generation,,,Add a more detailed description of conventional carriers. Any power generation requires the consumption of fuel from nodes representing that fuel.
biomass_to_liquid,--,"{true, false}",Add option for transforming solid biomass into liquid fuel with the same properties as oil
biosng,--,"{true, false}",Add option for transforming solid biomass into synthesis gas with the same properties as natural gas
bioH2,--,"{true, false}",Add option for transforming solid biomass into hydrogen with carbon capture
municipal_solid_waste,--,"{true, false}",Add option for municipal solid waste
limit_max_growth,,,
-- enable,--,"{true, false}",Add option to limit the maximum growth of a carrier
-- factor,p.u.,float,The maximum growth factor of a carrier (e.g. 1.3 allows 30% larger than max historic growth)
-- max_growth,,,
-- -- {carrier},GW,float,The historic maximum growth of a carrier
-- max_relative_growth,,,
-- -- {carrier},p.u.,float,The historic maximum relative growth of a carrier
,,,
enhanced_geothermal,,,
-- enable,--,"{true, false}",Add option to include Enhanced Geothermal Systems
-- flexible,--,"{true, false}",Add option for flexible operation (see Ricks et al. 2024)
-- max_hours,--,int,The maximum hours the reservoir can be charged under flexible operation
-- max_boost,--,float,The maximum boost in power output under flexible operation
-- var_cf,--,"{true, false}",Add option for variable capacity factor (see Ricks et al. 2024)
-- sustainability_factor,--,float,Share of sourced heat that is replenished by the earth's core (see details in `build_egs_potentials.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_egs_potentials.py>`_)
solid_biomass_import,,,
-- enable,--,"{true, false}",Add option to include solid biomass imports
-- price,currency/MWh,float,Price for importing solid biomass
-- max_amount,Twh,float,Maximum solid biomass import potential
-- upstream_emissions_factor,p.u.,float,Upstream emissions of solid biomass imports
,Unit,Values,Description
transport,--,"{true, false}",Flag to include transport sector.
heating,--,"{true, false}",Flag to include heating sector.
biomass,--,"{true, false}",Flag to include biomass sector.
industry,--,"{true, false}",Flag to include industry sector.
agriculture,--,"{true, false}",Flag to include agriculture sector.
fossil_fuels,--,"{true, false}","Flag to include imports of fossil fuels ( [""coal"", ""gas"", ""oil"", ""lignite""])"
district_heating,--,,`prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_
-- potential,--,float,maximum fraction of urban demand which can be supplied by district heating
-- progress,--,Dictionary with planning horizons as keys., Increase of today's district heating demand to potential maximum district heating share. Progress = 0 means today's district heating share. Progress = 1 means maximum fraction of urban demand is supplied by district heating
-- district_heating_loss,--,float,Share increase in district heat demand in urban central due to heat losses
-- forward_temperature,°C,Dictionary with country codes as keys. One key must be 'default'.,Forward temperature in district heating
-- return_temperature,°C,Dictionary with country codes as keys. One key must be 'default'.,Return temperature in district heating. Must be lower than forward temperature
-- heat_source_cooling,K,float,Cooling of heat source for heat pumps
-- heat_pump_cop_approximation,,,
-- -- refrigerant,--,"{ammonia, isobutane}",Heat pump refrigerant assumed for COP approximation
-- -- heat_exchanger_pinch_point_temperature_difference,K,float,Heat pump pinch point temperature difference in heat exchangers assumed for approximation.
-- -- isentropic_compressor_efficiency,--,float,Isentropic efficiency of heat pump compressor assumed for approximation. Must be between 0 and 1.
-- -- heat_loss,--,float,Heat pump heat loss assumed for approximation. Must be between 0 and 1.
-- heat_pump_sources,--,,
-- -- urban central,--,List of heat sources for heat pumps in urban central heating,
-- -- urban decentral,--,List of heat sources for heat pumps in urban decentral heating,
-- -- rural,--,List of heat sources for heat pumps in rural heating,
cluster_heat_buses,--,"{true, false}",Cluster residential and service heat buses in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_ to one to save memory.
,,,
bev_dsm_restriction _value,--,float,Adds a lower state of charge (SOC) limit for battery electric vehicles (BEV) to manage its own energy demand (DSM). Located in `build_transport_demand.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_transport_demand.py>`_. Set to 0 for no restriction on BEV DSM
bev_dsm_restriction _time,--,float,Time at which SOC of BEV has to be dsm_restriction_value
transport_heating _deadband_upper,°C,float,"The maximum temperature in the vehicle. At higher temperatures, the energy required for cooling in the vehicle increases."
transport_heating _deadband_lower,°C,float,"The minimum temperature in the vehicle. At lower temperatures, the energy required for heating in the vehicle increases."
,,,
ICE_lower_degree_factor,--,float,Share increase in energy demand in internal combustion engine (ICE) for each degree difference between the cold environment and the minimum temperature.
ICE_upper_degree_factor,--,float,Share increase in energy demand in internal combustion engine (ICE) for each degree difference between the hot environment and the maximum temperature.
EV_lower_degree_factor,--,float,Share increase in energy demand in electric vehicles (EV) for each degree difference between the cold environment and the minimum temperature.
EV_upper_degree_factor,--,float,Share increase in energy demand in electric vehicles (EV) for each degree difference between the hot environment and the maximum temperature.
bev_dsm,--,"{true, false}",Add the option for battery electric vehicles (BEV) to participate in demand-side management (DSM)
,,,
bev_availability,--,float,The share for battery electric vehicles (BEV) that are able to do demand side management (DSM)
bev_energy,--,float,The average size of battery electric vehicles (BEV) in MWh
bev_charge_efficiency,--,float,Battery electric vehicles (BEV) charge and discharge efficiency
bev_charge_rate,MWh,float,The power consumption for one electric vehicle (EV) in MWh. Value derived from 3-phase charger with 11 kW.
bev_avail_max,--,float,The maximum share plugged-in availability for passenger electric vehicles.
bev_avail_mean,--,float,The average share plugged-in availability for passenger electric vehicles.
v2g,--,"{true, false}",Allows feed-in to grid from EV battery
land_transport_fuel_cell _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses fuel cells in a given year
land_transport_electric _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses electric vehicles (EV) in a given year
land_transport_ice _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses internal combustion engines (ICE) in a given year. What is not EV or FCEV is oil-fuelled ICE.
transport_electric_efficiency,MWh/100km,float,The conversion efficiencies of electric vehicles in transport
transport_fuel_cell_efficiency,MWh/100km,float,The H2 conversion efficiencies of fuel cells in transport
transport_ice_efficiency,MWh/100km,float,The oil conversion efficiencies of internal combustion engine (ICE) in transport
agriculture_machinery _electric_share,--,float,The share for agricultural machinery that uses electricity
agriculture_machinery _oil_share,--,float,The share for agricultural machinery that uses oil
agriculture_machinery _fuel_efficiency,--,float,The efficiency of electric-powered machinery in the conversion of electricity to meet agricultural needs.
agriculture_machinery _electric_efficiency,--,float,The efficiency of oil-powered machinery in the conversion of oil to meet agricultural needs.
Mwh_MeOH_per_MWh_H2,LHV,float,"The energy amount of the produced methanol per energy amount of hydrogen. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
MWh_MeOH_per_tCO2,LHV,float,"The energy amount of the produced methanol per ton of CO2. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 66."
MWh_MeOH_per_MWh_e,LHV,float,"The energy amount of the produced methanol per energy amount of electricity. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
shipping_hydrogen _liquefaction,--,"{true, false}",Whether to include liquefaction costs for hydrogen demand in shipping.
,,,
shipping_hydrogen_share,--,Dictionary with planning horizons as keys.,The share of ships powered by hydrogen in a given year
shipping_methanol_share,--,Dictionary with planning horizons as keys.,The share of ships powered by methanol in a given year
shipping_oil_share,--,Dictionary with planning horizons as keys.,The share of ships powered by oil in a given year
shipping_methanol _efficiency,--,float,The efficiency of methanol-powered ships in the conversion of methanol to meet shipping needs (propulsion). The efficiency increase from oil can be 10-15% higher according to the `IEA <https://www.iea-amf.org/app/webroot/files/file/Annex%20Reports/AMF_Annex_56.pdf>`_
,,,
shipping_oil_efficiency,--,float,The efficiency of oil-powered ships in the conversion of oil to meet shipping needs (propulsion). Base value derived from 2011
aviation_demand_factor,--,float,The proportion of demand for aviation compared to today's consumption
HVC_demand_factor,--,float,The proportion of demand for high-value chemicals compared to today's consumption
,,,
time_dep_hp_cop,--,"{true, false}",Consider the time dependent coefficient of performance (COP) of the heat pump
heat_pump_sink_T,°C,float,The temperature heat sink used in heat pumps based on DTU / large area radiators. The value is conservatively high to cover hot water and space heating in poorly-insulated buildings
reduce_space_heat _exogenously,--,"{true, false}",Influence on space heating demand by a certain factor (applied before losses in district heating).
reduce_space_heat _exogenously_factor,--,Dictionary with planning horizons as keys.,"A positive factor can mean renovation or demolition of a building. If the factor is negative, it can mean an increase in floor area, increased thermal comfort, population growth. The default factors are determined by the `Eurocalc Homes and buildings decarbonization scenario <http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221>`_"
retrofitting,,,
-- retro_endogen,--,"{true, false}",Add retrofitting as an endogenous system which co-optimise space heat savings.
-- cost_factor,--,float,Weight costs for building renovation
-- interest_rate,--,float,The interest rate for investment in building components
-- annualise_cost,--,"{true, false}",Annualise the investment costs of retrofitting
-- tax_weighting,--,"{true, false}",Weight the costs of retrofitting depending on taxes in countries
-- construction_index,--,"{true, false}",Weight the costs of retrofitting depending on labour/material costs per country
tes,--,"{true, false}",Add option for storing thermal energy in large water pits associated with district heating systems and individual thermal energy storage (TES)
tes_tau,,,The time constant used to calculate the decay of thermal energy in thermal energy storage (TES): 1- :math:`e^{-1/24τ}`.
-- decentral,days,float,The time constant in decentralized thermal energy storage (TES)
-- central,days,float,The time constant in centralized thermal energy storage (TES)
boilers,--,"{true, false}",Add option for transforming gas into heat using gas boilers
resistive_heaters,--,"{true, false}",Add option for transforming electricity into heat using resistive heaters (independently from gas boilers)
oil_boilers,--,"{true, false}",Add option for transforming oil into heat using boilers
biomass_boiler,--,"{true, false}",Add option for transforming biomass into heat using boilers
overdimension_individual_heating,--,float,Add option for overdimensioning individual heating systems by a certain factor. This allows them to cover heat demand peaks e.g. 10% higher than those in the data with a setting of 1.1.
chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP)
micro_chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP) for decentral areas.
solar_thermal,--,"{true, false}",Add option for using solar thermal to generate heat.
solar_cf_correction,--,float,The correction factor for the value provided by the solar thermal profile calculations
marginal_cost_storage,currency/MWh ,float,The marginal cost of discharging batteries in distributed grids
methanation,--,"{true, false}",Add option for transforming hydrogen and CO2 into methane using methanation.
coal_cc,--,"{true, false}",Add option for coal CHPs with carbon capture
dac,--,"{true, false}",Add option for Direct Air Capture (DAC)
co2_vent,--,"{true, false}",Add option for vent out CO2 from storages to the atmosphere.
allam_cycle,--,"{true, false}",Add option to include `Allam cycle gas power plants <https://en.wikipedia.org/wiki/Allam_power_cycle>`_
hydrogen_fuel_cell,--,"{true, false}",Add option to include hydrogen fuel cell for re-electrification. Assuming OCGT technology costs
hydrogen_turbine,--,"{true, false}",Add option to include hydrogen turbine for re-electrification. Assuming OCGT technology costs
SMR,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR)
SMR CC,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR) and Carbon Capture (CC)
regional_methanol_demand,--,"{true, false}",Spatially resolve methanol demand. Set to true if regional CO2 constraints needed.
regional_oil_demand,--,"{true, false}",Spatially resolve oil demand. Set to true if regional CO2 constraints needed.
regional_co2 _sequestration_potential,,,
-- enable,--,"{true, false}",Add option for regionally-resolved geological carbon dioxide sequestration potentials based on `CO2StoP <https://setis.ec.europa.eu/european-co2-storage-database_en>`_.
-- attribute,--,string or list,Name (or list of names) of the attribute(s) for the sequestration potential
-- include_onshore,--,"{true, false}",Add options for including onshore sequestration potentials
-- min_size,Gt ,float,Any sites with lower potential than this value will be excluded
-- max_size,Gt ,float,The maximum sequestration potential for any one site.
-- years_of_storage,years,float,The years until potential exhausted at optimised annual rate
co2_sequestration_potential,--,Dictionary with planning horizons as keys.,The potential of sequestering CO2 in Europe per year and investment period
co2_sequestration_cost,currency/tCO2,float,The cost of sequestering a ton of CO2
co2_sequestration_lifetime,years,int,The lifetime of a CO2 sequestration site
co2_spatial,--,"{true, false}","Add option to spatially resolve carrier representing stored carbon dioxide. This allows for more detailed modelling of CCUTS, e.g. regarding the capturing of industrial process emissions, usage as feedstock for electrofuels, transport of carbon dioxide, and geological sequestration sites."
,,,
co2network,--,"{true, false}",Add option for planning a new carbon dioxide transmission network
co2_network_cost_factor,p.u.,float,The cost factor for the capital cost of the carbon dioxide transmission network
,,,
cc_fraction,--,float,The default fraction of CO2 captured with post-combustion capture
hydrogen_underground _storage,--,"{true, false}",Add options for storing hydrogen underground. Storage potential depends regionally.
hydrogen_underground _storage_locations,,"{onshore, nearshore, offshore}","The location where hydrogen underground storage can be located. Onshore, nearshore, offshore means it must be located more than 50 km away from the sea, within 50 km of the sea, or within the sea itself respectively."
,,,
ammonia,--,"{true, false, regional}","Add ammonia as a carrrier. It can be either true (copperplated NH3), false (no NH3 carrier) or ""regional"" (regionalised NH3 without network)"
min_part_load_fischer _tropsch,per unit of p_nom ,float,The minimum unit dispatch (``p_min_pu``) for the Fischer-Tropsch process
min_part_load _methanolisation,per unit of p_nom ,float,The minimum unit dispatch (``p_min_pu``) for the methanolisation process
,,,
use_fischer_tropsch _waste_heat,--,"{true, false}",Add option for using waste heat of Fischer Tropsch in district heating networks
use_fuel_cell_waste_heat,--,"{true, false}",Add option for using waste heat of fuel cells in district heating networks
use_electrolysis_waste _heat,--,"{true, false}",Add option for using waste heat of electrolysis in district heating networks
electricity_transmission _grid,--,"{true, false}",Switch for enabling/disabling the electricity transmission grid.
electricity_distribution _grid,--,"{true, false}",Add a simplified representation of the exchange capacity between transmission and distribution grid level through a link.
electricity_distribution _grid_cost_factor,,,Multiplies the investment cost of the electricity distribution grid
,,,
electricity_grid _connection,--,"{true, false}",Add the cost of electricity grid connection for onshore wind and solar
transmission_efficiency,,,Section to specify transmission losses or compression energy demands of bidirectional links. Splits them into two capacity-linked unidirectional links.
-- {carrier},--,str,The carrier of the link.
-- -- efficiency_static,p.u.,float,Length-independent transmission efficiency.
-- -- efficiency_per_1000km,p.u. per 1000 km,float,Length-dependent transmission efficiency ($\eta^{\text{length}}$)
-- -- compression_per_1000km,p.u. per 1000 km,float,Length-dependent electricity demand for compression ($\eta \cdot \text{length}$) implemented as multi-link to local electricity bus.
H2_network,--,"{true, false}",Add option for new hydrogen pipelines
gas_network,--,"{true, false}","Add existing natural gas infrastructure, incl. LNG terminals, production and entry-points. The existing gas network is added with a lossless transport model. A length-weighted `k-edge augmentation algorithm <https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_ can be run to add new candidate gas pipelines such that all regions of the model can be connected to the gas network. When activated, all the gas demands are regionally disaggregated as well."
H2_retrofit,--,"{true, false}",Add option for retrofiting existing pipelines to transport hydrogen.
H2_retrofit_capacity _per_CH4,--,float,"The ratio for H2 capacity per original CH4 capacity of retrofitted pipelines. The `European Hydrogen Backbone (April, 2020) p.15 <https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf>`_ 60% of original natural gas capacity could be used in cost-optimal case as H2 capacity."
gas_network_connectivity _upgrade ,--,float,The number of desired edge connectivity (k) in the length-weighted `k-edge augmentation algorithm <https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_ used for the gas network
gas_distribution_grid,--,"{true, false}",Add a gas distribution grid
gas_distribution_grid _cost_factor,,,Multiplier for the investment cost of the gas distribution grid
,,,
biomass_spatial,--,"{true, false}",Add option for resolving biomass demand regionally
biomass_transport,--,"{true, false}",Add option for transporting solid biomass between nodes
biogas_upgrading_cc,--,"{true, false}",Add option to capture CO2 from biomass upgrading
conventional_generation,,,Add a more detailed description of conventional carriers. Any power generation requires the consumption of fuel from nodes representing that fuel.
biomass_to_liquid,--,"{true, false}",Add option for transforming solid biomass into liquid fuel with the same properties as oil
biosng,--,"{true, false}",Add option for transforming solid biomass into synthesis gas with the same properties as natural gas
bioH2,--,"{true, false}",Add option for transforming solid biomass into hydrogen with carbon capture
municipal_solid_waste,--,"{true, false}",Add option for municipal solid waste
limit_max_growth,,,
-- enable,--,"{true, false}",Add option to limit the maximum growth of a carrier
-- factor,p.u.,float,The maximum growth factor of a carrier (e.g. 1.3 allows 30% larger than max historic growth)
-- max_growth,,,
-- -- {carrier},GW,float,The historic maximum growth of a carrier
-- max_relative_growth,,,
-- -- {carrier},p.u.,float,The historic maximum relative growth of a carrier
,,,
enhanced_geothermal,,,
-- enable,--,"{true, false}",Add option to include Enhanced Geothermal Systems
-- flexible,--,"{true, false}",Add option for flexible operation (see Ricks et al. 2024)
-- max_hours,--,int,The maximum hours the reservoir can be charged under flexible operation
-- max_boost,--,float,The maximum boost in power output under flexible operation
-- var_cf,--,"{true, false}",Add option for variable capacity factor (see Ricks et al. 2024)
-- sustainability_factor,--,float,Share of sourced heat that is replenished by the earth's core (see details in `build_egs_potentials.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_egs_potentials.py>`_)
solid_biomass_import,,,
-- enable,--,"{true, false}",Add option to include solid biomass imports
-- price,currency/MWh,float,Price for importing solid biomass
-- max_amount,Twh,float,Maximum solid biomass import potential
-- upstream_emissions_factor,p.u.,float,Upstream emissions of solid biomass imports

1 Unit Values Description
2 transport -- {true, false} Flag to include transport sector.
3 heating -- {true, false} Flag to include heating sector.
4 biomass -- {true, false} Flag to include biomass sector.
5 industry -- {true, false} Flag to include industry sector.
6 agriculture -- {true, false} Flag to include agriculture sector.
7 fossil_fuels -- {true, false} Flag to include imports of fossil fuels ( ["coal", "gas", "oil", "lignite"])
8 district_heating -- `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_
9 -- potential -- float maximum fraction of urban demand which can be supplied by district heating
10 -- progress -- Dictionary with planning horizons as keys. Increase of today's district heating demand to potential maximum district heating share. Progress = 0 means today's district heating share. Progress = 1 means maximum fraction of urban demand is supplied by district heating
11 -- district_heating_loss -- float Share increase in district heat demand in urban central due to heat losses
12 -- forward_temperature °C Dictionary with country codes as keys. One key must be 'default'. Forward temperature in district heating
13 -- return_temperature °C Dictionary with country codes as keys. One key must be 'default'. Return temperature in district heating. Must be lower than forward temperature
14 -- heat_source_cooling K float Cooling of heat source for heat pumps
15 -- heat_pump_cop_approximation
16 -- -- refrigerant -- {ammonia, isobutane} Heat pump refrigerant assumed for COP approximation
17 -- -- heat_exchanger_pinch_point_temperature_difference K float Heat pump pinch point temperature difference in heat exchangers assumed for approximation.
18 -- -- isentropic_compressor_efficiency -- float Isentropic efficiency of heat pump compressor assumed for approximation. Must be between 0 and 1.
19 -- -- heat_loss -- float Heat pump heat loss assumed for approximation. Must be between 0 and 1.
20 -- heat_pump_sources --
21 -- -- urban central -- List of heat sources for heat pumps in urban central heating
22 -- -- urban decentral -- List of heat sources for heat pumps in urban decentral heating
23 -- -- rural -- List of heat sources for heat pumps in rural heating
24 cluster_heat_buses -- {true, false} Cluster residential and service heat buses in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_ to one to save memory.
25
26 bev_dsm_restriction _value -- float Adds a lower state of charge (SOC) limit for battery electric vehicles (BEV) to manage its own energy demand (DSM). Located in `build_transport_demand.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_transport_demand.py>`_. Set to 0 for no restriction on BEV DSM
27 bev_dsm_restriction _time -- float Time at which SOC of BEV has to be dsm_restriction_value
28 transport_heating _deadband_upper °C float The maximum temperature in the vehicle. At higher temperatures, the energy required for cooling in the vehicle increases.
29 transport_heating _deadband_lower °C float The minimum temperature in the vehicle. At lower temperatures, the energy required for heating in the vehicle increases.
30
31 ICE_lower_degree_factor -- float Share increase in energy demand in internal combustion engine (ICE) for each degree difference between the cold environment and the minimum temperature.
32 ICE_upper_degree_factor -- float Share increase in energy demand in internal combustion engine (ICE) for each degree difference between the hot environment and the maximum temperature.
33 EV_lower_degree_factor -- float Share increase in energy demand in electric vehicles (EV) for each degree difference between the cold environment and the minimum temperature.
34 EV_upper_degree_factor -- float Share increase in energy demand in electric vehicles (EV) for each degree difference between the hot environment and the maximum temperature.
35 bev_dsm -- {true, false} Add the option for battery electric vehicles (BEV) to participate in demand-side management (DSM)
36
37 bev_availability -- float The share for battery electric vehicles (BEV) that are able to do demand side management (DSM)
38 bev_energy -- float The average size of battery electric vehicles (BEV) in MWh
39 bev_charge_efficiency -- float Battery electric vehicles (BEV) charge and discharge efficiency
40 bev_charge_rate MWh float The power consumption for one electric vehicle (EV) in MWh. Value derived from 3-phase charger with 11 kW.
41 bev_avail_max -- float The maximum share plugged-in availability for passenger electric vehicles.
42 bev_avail_mean -- float The average share plugged-in availability for passenger electric vehicles.
43 v2g -- {true, false} Allows feed-in to grid from EV battery
44 land_transport_fuel_cell _share -- Dictionary with planning horizons as keys. The share of vehicles that uses fuel cells in a given year
45 land_transport_electric _share -- Dictionary with planning horizons as keys. The share of vehicles that uses electric vehicles (EV) in a given year
46 land_transport_ice _share -- Dictionary with planning horizons as keys. The share of vehicles that uses internal combustion engines (ICE) in a given year. What is not EV or FCEV is oil-fuelled ICE.
47 transport_electric_efficiency MWh/100km float The conversion efficiencies of electric vehicles in transport
48 transport_fuel_cell_efficiency MWh/100km float The H2 conversion efficiencies of fuel cells in transport
49 transport_ice_efficiency MWh/100km float The oil conversion efficiencies of internal combustion engine (ICE) in transport
50 agriculture_machinery _electric_share -- float The share for agricultural machinery that uses electricity
51 agriculture_machinery _oil_share -- float The share for agricultural machinery that uses oil
52 agriculture_machinery _fuel_efficiency -- float The efficiency of electric-powered machinery in the conversion of electricity to meet agricultural needs.
53 agriculture_machinery _electric_efficiency -- float The efficiency of oil-powered machinery in the conversion of oil to meet agricultural needs.
54 Mwh_MeOH_per_MWh_H2 LHV float The energy amount of the produced methanol per energy amount of hydrogen. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64.
55 MWh_MeOH_per_tCO2 LHV float The energy amount of the produced methanol per ton of CO2. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 66.
56 MWh_MeOH_per_MWh_e LHV float The energy amount of the produced methanol per energy amount of electricity. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64.
57 shipping_hydrogen _liquefaction -- {true, false} Whether to include liquefaction costs for hydrogen demand in shipping.
58
59 shipping_hydrogen_share -- Dictionary with planning horizons as keys. The share of ships powered by hydrogen in a given year
60 shipping_methanol_share -- Dictionary with planning horizons as keys. The share of ships powered by methanol in a given year
61 shipping_oil_share -- Dictionary with planning horizons as keys. The share of ships powered by oil in a given year
62 shipping_methanol _efficiency -- float The efficiency of methanol-powered ships in the conversion of methanol to meet shipping needs (propulsion). The efficiency increase from oil can be 10-15% higher according to the `IEA <https://www.iea-amf.org/app/webroot/files/file/Annex%20Reports/AMF_Annex_56.pdf>`_
63
64 shipping_oil_efficiency -- float The efficiency of oil-powered ships in the conversion of oil to meet shipping needs (propulsion). Base value derived from 2011
65 aviation_demand_factor -- float The proportion of demand for aviation compared to today's consumption
66 HVC_demand_factor -- float The proportion of demand for high-value chemicals compared to today's consumption
67
68 time_dep_hp_cop -- {true, false} Consider the time dependent coefficient of performance (COP) of the heat pump
69 heat_pump_sink_T °C float The temperature heat sink used in heat pumps based on DTU / large area radiators. The value is conservatively high to cover hot water and space heating in poorly-insulated buildings
70 reduce_space_heat _exogenously -- {true, false} Influence on space heating demand by a certain factor (applied before losses in district heating).
71 reduce_space_heat _exogenously_factor -- Dictionary with planning horizons as keys. A positive factor can mean renovation or demolition of a building. If the factor is negative, it can mean an increase in floor area, increased thermal comfort, population growth. The default factors are determined by the `Eurocalc Homes and buildings decarbonization scenario <http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221>`_
72 retrofitting
73 -- retro_endogen -- {true, false} Add retrofitting as an endogenous system which co-optimise space heat savings.
74 -- cost_factor -- float Weight costs for building renovation
75 -- interest_rate -- float The interest rate for investment in building components
76 -- annualise_cost -- {true, false} Annualise the investment costs of retrofitting
77 -- tax_weighting -- {true, false} Weight the costs of retrofitting depending on taxes in countries
78 -- construction_index -- {true, false} Weight the costs of retrofitting depending on labour/material costs per country
79 tes -- {true, false} Add option for storing thermal energy in large water pits associated with district heating systems and individual thermal energy storage (TES)
80 tes_tau The time constant used to calculate the decay of thermal energy in thermal energy storage (TES): 1- :math:`e^{-1/24τ}`.
81 -- decentral days float The time constant in decentralized thermal energy storage (TES)
82 -- central days float The time constant in centralized thermal energy storage (TES)
83 boilers -- {true, false} Add option for transforming gas into heat using gas boilers
84 resistive_heaters -- {true, false} Add option for transforming electricity into heat using resistive heaters (independently from gas boilers)
85 oil_boilers -- {true, false} Add option for transforming oil into heat using boilers
86 biomass_boiler -- {true, false} Add option for transforming biomass into heat using boilers
87 overdimension_individual_heating -- float Add option for overdimensioning individual heating systems by a certain factor. This allows them to cover heat demand peaks e.g. 10% higher than those in the data with a setting of 1.1.
88 chp -- {true, false} Add option for using Combined Heat and Power (CHP)
89 micro_chp -- {true, false} Add option for using Combined Heat and Power (CHP) for decentral areas.
90 solar_thermal -- {true, false} Add option for using solar thermal to generate heat.
91 solar_cf_correction -- float The correction factor for the value provided by the solar thermal profile calculations
92 marginal_cost_storage currency/MWh float The marginal cost of discharging batteries in distributed grids
93 methanation -- {true, false} Add option for transforming hydrogen and CO2 into methane using methanation.
94 coal_cc -- {true, false} Add option for coal CHPs with carbon capture
95 dac -- {true, false} Add option for Direct Air Capture (DAC)
96 co2_vent -- {true, false} Add option for vent out CO2 from storages to the atmosphere.
97 allam_cycle -- {true, false} Add option to include `Allam cycle gas power plants <https://en.wikipedia.org/wiki/Allam_power_cycle>`_
98 hydrogen_fuel_cell -- {true, false} Add option to include hydrogen fuel cell for re-electrification. Assuming OCGT technology costs
99 hydrogen_turbine -- {true, false} Add option to include hydrogen turbine for re-electrification. Assuming OCGT technology costs
100 SMR -- {true, false} Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR)
101 SMR CC -- {true, false} Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR) and Carbon Capture (CC)
102 regional_methanol_demand -- {true, false} Spatially resolve methanol demand. Set to true if regional CO2 constraints needed.
103 regional_oil_demand -- {true, false} Spatially resolve oil demand. Set to true if regional CO2 constraints needed.
104 regional_co2 _sequestration_potential
105 -- enable -- {true, false} Add option for regionally-resolved geological carbon dioxide sequestration potentials based on `CO2StoP <https://setis.ec.europa.eu/european-co2-storage-database_en>`_.
106 -- attribute -- string or list Name (or list of names) of the attribute(s) for the sequestration potential
107 -- include_onshore -- {true, false} Add options for including onshore sequestration potentials
108 -- min_size Gt float Any sites with lower potential than this value will be excluded
109 -- max_size Gt float The maximum sequestration potential for any one site.
110 -- years_of_storage years float The years until potential exhausted at optimised annual rate
111 co2_sequestration_potential MtCO2/a -- float Dictionary with planning horizons as keys. The potential of sequestering CO2 in Europe per year The potential of sequestering CO2 in Europe per year and investment period
112 co2_sequestration_cost currency/tCO2 float The cost of sequestering a ton of CO2
113 co2_sequestration_lifetime years int The lifetime of a CO2 sequestration site
114 co2_spatial -- {true, false} Add option to spatially resolve carrier representing stored carbon dioxide. This allows for more detailed modelling of CCUTS, e.g. regarding the capturing of industrial process emissions, usage as feedstock for electrofuels, transport of carbon dioxide, and geological sequestration sites.
115
116 co2network -- {true, false} Add option for planning a new carbon dioxide transmission network
117 co2_network_cost_factor p.u. float The cost factor for the capital cost of the carbon dioxide transmission network
118
119 cc_fraction -- float The default fraction of CO2 captured with post-combustion capture
120 hydrogen_underground _storage -- {true, false} Add options for storing hydrogen underground. Storage potential depends regionally.
121 hydrogen_underground _storage_locations {onshore, nearshore, offshore} The location where hydrogen underground storage can be located. Onshore, nearshore, offshore means it must be located more than 50 km away from the sea, within 50 km of the sea, or within the sea itself respectively.
122
123 ammonia -- {true, false, regional} Add ammonia as a carrrier. It can be either true (copperplated NH3), false (no NH3 carrier) or "regional" (regionalised NH3 without network)
124 min_part_load_fischer _tropsch per unit of p_nom float The minimum unit dispatch (``p_min_pu``) for the Fischer-Tropsch process
125 min_part_load _methanolisation per unit of p_nom float The minimum unit dispatch (``p_min_pu``) for the methanolisation process
126
127 use_fischer_tropsch _waste_heat -- {true, false} Add option for using waste heat of Fischer Tropsch in district heating networks
128 use_fuel_cell_waste_heat -- {true, false} Add option for using waste heat of fuel cells in district heating networks
129 use_electrolysis_waste _heat -- {true, false} Add option for using waste heat of electrolysis in district heating networks
130 electricity_transmission _grid -- {true, false} Switch for enabling/disabling the electricity transmission grid.
131 electricity_distribution _grid -- {true, false} Add a simplified representation of the exchange capacity between transmission and distribution grid level through a link.
132 electricity_distribution _grid_cost_factor Multiplies the investment cost of the electricity distribution grid
133
134 electricity_grid _connection -- {true, false} Add the cost of electricity grid connection for onshore wind and solar
135 transmission_efficiency Section to specify transmission losses or compression energy demands of bidirectional links. Splits them into two capacity-linked unidirectional links.
136 -- {carrier} -- str The carrier of the link.
137 -- -- efficiency_static p.u. float Length-independent transmission efficiency.
138 -- -- efficiency_per_1000km p.u. per 1000 km float Length-dependent transmission efficiency ($\eta^{\text{length}}$)
139 -- -- compression_per_1000km p.u. per 1000 km float Length-dependent electricity demand for compression ($\eta \cdot \text{length}$) implemented as multi-link to local electricity bus.
140 H2_network -- {true, false} Add option for new hydrogen pipelines
141 gas_network -- {true, false} Add existing natural gas infrastructure, incl. LNG terminals, production and entry-points. The existing gas network is added with a lossless transport model. A length-weighted `k-edge augmentation algorithm <https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_ can be run to add new candidate gas pipelines such that all regions of the model can be connected to the gas network. When activated, all the gas demands are regionally disaggregated as well.
142 H2_retrofit -- {true, false} Add option for retrofiting existing pipelines to transport hydrogen.
143 H2_retrofit_capacity _per_CH4 -- float The ratio for H2 capacity per original CH4 capacity of retrofitted pipelines. The `European Hydrogen Backbone (April, 2020) p.15 <https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf>`_ 60% of original natural gas capacity could be used in cost-optimal case as H2 capacity.
144 gas_network_connectivity _upgrade -- float The number of desired edge connectivity (k) in the length-weighted `k-edge augmentation algorithm <https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_ used for the gas network
145 gas_distribution_grid -- {true, false} Add a gas distribution grid
146 gas_distribution_grid _cost_factor Multiplier for the investment cost of the gas distribution grid
147
148 biomass_spatial -- {true, false} Add option for resolving biomass demand regionally
149 biomass_transport -- {true, false} Add option for transporting solid biomass between nodes
150 biogas_upgrading_cc -- {true, false} Add option to capture CO2 from biomass upgrading
151 conventional_generation Add a more detailed description of conventional carriers. Any power generation requires the consumption of fuel from nodes representing that fuel.
152 biomass_to_liquid -- {true, false} Add option for transforming solid biomass into liquid fuel with the same properties as oil
153 biosng -- {true, false} Add option for transforming solid biomass into synthesis gas with the same properties as natural gas
154 bioH2 -- {true, false} Add option for transforming solid biomass into hydrogen with carbon capture
155 municipal_solid_waste -- {true, false} Add option for municipal solid waste
156 limit_max_growth
157 -- enable -- {true, false} Add option to limit the maximum growth of a carrier
158 -- factor p.u. float The maximum growth factor of a carrier (e.g. 1.3 allows 30% larger than max historic growth)
159 -- max_growth
160 -- -- {carrier} GW float The historic maximum growth of a carrier
161 -- max_relative_growth
162 -- -- {carrier} p.u. float The historic maximum relative growth of a carrier
163
164 enhanced_geothermal
165 -- enable -- {true, false} Add option to include Enhanced Geothermal Systems
166 -- flexible -- {true, false} Add option for flexible operation (see Ricks et al. 2024)
167 -- max_hours -- int The maximum hours the reservoir can be charged under flexible operation
168 -- max_boost -- float The maximum boost in power output under flexible operation
169 -- var_cf -- {true, false} Add option for variable capacity factor (see Ricks et al. 2024)
170 -- sustainability_factor -- float Share of sourced heat that is replenished by the earth's core (see details in `build_egs_potentials.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_egs_potentials.py>`_)
171 solid_biomass_import
172 -- enable -- {true, false} Add option to include solid biomass imports
173 -- price currency/MWh float Price for importing solid biomass
174 -- max_amount Twh float Maximum solid biomass import potential
175 -- upstream_emissions_factor p.u. float Upstream emissions of solid biomass imports

View File

@ -9,6 +9,7 @@ Release Notes
Upcoming Release
================
* Add investment period dependent CO2 sequestration potentials
* Add option to produce hydrogen from solid biomass (flag ``solid biomass to hydrogen``), combined with carbon capture

View File

@ -43,6 +43,7 @@ from _helpers import (
set_scenario_config,
update_config_from_wildcards,
)
from prepare_sector_network import get
from pypsa.descriptors import get_activity_mask
from pypsa.descriptors import get_switchable_as_dense as get_as_dense
@ -287,15 +288,22 @@ def add_solar_potential_constraints(n, config):
n.model.add_constraints(lhs <= rhs, name="solar_potential")
def add_co2_sequestration_limit(n, limit=200):
def add_co2_sequestration_limit(n, limit_dict):
"""
Add a global constraint on the amount of Mt CO2 that can be sequestered.
"""
if not n.investment_periods.empty:
periods = n.investment_periods
names = pd.Index([f"co2_sequestration_limit-{period}" for period in periods])
limit = pd.Series(
{
f"co2_sequestration_limit-{period}": limit_dict.get(period, 200)
for period in periods
}
)
names = limit.index
else:
limit = get(limit_dict, int(snakemake.wildcards.planning_horizons))
periods = [np.nan]
names = pd.Index(["co2_sequestration_limit"])
@ -515,8 +523,8 @@ def prepare_network(
n = add_max_growth(n)
if n.stores.carrier.eq("co2 sequestered").any():
limit = co2_sequestration_potential
add_co2_sequestration_limit(n, limit=limit)
limit_dict = co2_sequestration_potential
add_co2_sequestration_limit(n, limit_dict=limit_dict)
return n
@ -1117,19 +1125,20 @@ def solve_network(n, config, solving, **kwargs):
return n
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"solve_sector_network",
"solve_sector_network_perfect",
configfiles="../config/test/config.perfect.yaml",
simpl="",
opts="",
clusters="37",
clusters="5",
ll="v1.0",
sector_opts="CO2L0-1H-T-H-B-I-A-dist1",
planning_horizons="2030",
sector_opts="",
# planning_horizons="2030",
)
configure_logging(snakemake)
set_scenario_config(snakemake)