Merge branch 'eu-energy-security' into eu-energy-security-conventional-attrs
This commit is contained in:
commit
e175d1aa0e
23
.github/workflows/ci.yaml
vendored
23
.github/workflows/ci.yaml
vendored
@ -13,12 +13,13 @@ on:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
branches:
|
||||
- master
|
||||
schedule:
|
||||
- cron: "0 5 * * TUE"
|
||||
|
||||
env:
|
||||
CONDA_CACHE_NUMBER: 1 # Change this value to manually reset the environment cache
|
||||
DATA_CACHE_NUMBER: 1
|
||||
CACHE_NUMBER: 1 # Change this value to manually reset the environment cache
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@ -65,26 +66,16 @@ jobs:
|
||||
miniforge-version: latest
|
||||
activate-environment: pypsa-eur
|
||||
use-mamba: true
|
||||
|
||||
- name: Set cache dates
|
||||
run: |
|
||||
echo "DATE=$(date +'%Y%m%d')" >> $GITHUB_ENV
|
||||
echo "WEEK=$(date +'%Y%U')" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache data and cutouts folders
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
path: |
|
||||
data
|
||||
cutouts
|
||||
key: data-cutouts-${{ env.WEEK }}-${{ env.DATA_CACHE_NUMBER }}
|
||||
|
||||
- name: Set cache date
|
||||
run: echo "DATE=$(date +'%Y%m%d')" >> $GITHUB_ENV
|
||||
|
||||
- name: Create environment cache
|
||||
uses: actions/cache@v2
|
||||
id: cache
|
||||
with:
|
||||
path: ${{ matrix.prefix }}
|
||||
key: ${{ matrix.label }}-conda-${{ hashFiles('envs/environment.yaml') }}-${{ env.DATE }}-${{ env.CONDA_CACHE_NUMBER }}
|
||||
key: ${{ matrix.label }}-conda-${{ hashFiles('envs/environment.yaml') }}-${{ env.DATE }}-${{ env.CACHE_NUMBER }}
|
||||
|
||||
- name: Update environment due to outdated or unavailable cache
|
||||
run: mamba env update -n pypsa-eur -f envs/environment.yaml
|
||||
|
25
Snakefile
25
Snakefile
@ -66,12 +66,6 @@ if config['enable'].get('retrieve_databundle', True):
|
||||
script: 'scripts/retrieve_databundle.py'
|
||||
|
||||
|
||||
rule retrieve_natura_data:
|
||||
input: HTTP.remote("sdi.eea.europa.eu/datashare/s/H6QGCybMdLLnywo/download", additional_request_string="?path=%2FNatura2000_end2020_gpkg&files=Natura2000_end2020.gpkg", static=True)
|
||||
output: "data/Natura2000_end2020.gpkg"
|
||||
run: move(input[0], output[0])
|
||||
|
||||
|
||||
rule retrieve_load_data:
|
||||
input: HTTP.remote("data.open-power-system-data.org/time_series/2019-06-05/time_series_60min_singleindex.csv", keep_local=True, static=True)
|
||||
output: "data/load_raw.csv"
|
||||
@ -170,11 +164,28 @@ if config['enable'].get('retrieve_cutout', True):
|
||||
run: move(input[0], output[0])
|
||||
|
||||
|
||||
if config['enable'].get('build_natura_raster', False):
|
||||
rule build_natura_raster:
|
||||
input:
|
||||
natura="data/bundle/natura/Natura2000_end2015.shp",
|
||||
cutouts=expand("cutouts/{cutouts}.nc", **config['atlite'])
|
||||
output: "resources/natura.tiff"
|
||||
log: "logs/build_natura_raster.log"
|
||||
script: "scripts/build_natura_raster.py"
|
||||
|
||||
|
||||
if config['enable'].get('retrieve_natura_raster', True):
|
||||
rule retrieve_natura_raster:
|
||||
input: HTTP.remote("zenodo.org/record/4706686/files/natura.tiff", keep_local=True, static=True)
|
||||
output: "resources/natura.tiff"
|
||||
run: move(input[0], output[0])
|
||||
|
||||
|
||||
rule build_renewable_profiles:
|
||||
input:
|
||||
base_network="networks/base.nc",
|
||||
corine="data/bundle/corine/g250_clc06_V18_5.tif",
|
||||
natura=lambda w: ("data/Natura2000_end2020.gpkg"
|
||||
natura=lambda w: ("resources/natura.tiff"
|
||||
if config["renewable"][w.technology]["natura"]
|
||||
else []),
|
||||
gebco=lambda w: ("data/bundle/GEBCO_2014_2D.nc"
|
||||
|
@ -18,8 +18,23 @@ scenario:
|
||||
countries: ['AL', 'AT', 'BA', 'BE', 'BG', 'CH', 'CZ', 'DE', 'DK', 'EE', 'ES', 'FI', 'FR', 'GB', 'GR', 'HR', 'HU', 'IE', 'IT', 'LT', 'LU', 'LV', 'ME', 'MK', 'NL', 'NO', 'PL', 'PT', 'RO', 'RS', 'SE', 'SI', 'SK']
|
||||
|
||||
clustering:
|
||||
simplify:
|
||||
simplify_network:
|
||||
to_substations: false # network is simplified to nodes with positive or negative power injection (i.e. substations or offwind connections)
|
||||
algorithm: kmeans # choose from: [hac, kmeans]
|
||||
feature: solar+onwind-time # only for hac. choose from: [solar+onwind-time, solar+onwind-cap, solar-time, solar-cap, solar+offwind-cap] etc.
|
||||
cluster_network:
|
||||
algorithm: kmeans
|
||||
feature: solar+onwind-time
|
||||
aggregation_strategies:
|
||||
generators:
|
||||
p_nom_max: sum # use "min" for more conservative assumptions
|
||||
p_nom_min: sum
|
||||
p_min_pu: mean
|
||||
marginal_cost: mean
|
||||
committable: any
|
||||
ramp_limit_up: max
|
||||
ramp_limit_down: max
|
||||
efficiency: mean
|
||||
|
||||
snapshots:
|
||||
start: "2013-01-01"
|
||||
@ -31,6 +46,8 @@ enable:
|
||||
retrieve_databundle: true
|
||||
build_cutout: false
|
||||
retrieve_cutout: true
|
||||
build_natura_raster: false
|
||||
retrieve_natura_raster: true
|
||||
custom_busmap: false
|
||||
|
||||
electricity:
|
||||
|
@ -19,8 +19,23 @@ scenario:
|
||||
countries: ['BE']
|
||||
|
||||
clustering:
|
||||
simplify:
|
||||
simplify_network:
|
||||
to_substations: false # network is simplified to nodes with positive or negative power injection (i.e. substations or offwind connections)
|
||||
algorithm: kmeans # choose from: [hac, kmeans]
|
||||
feature: solar+onwind-time # only for hac. choose from: [solar+onwind-time, solar+onwind-cap, solar-time, solar-cap, solar+offwind-cap] etc.
|
||||
cluster_network:
|
||||
algorithm: kmeans
|
||||
feature: solar+onwind-time
|
||||
aggregation_strategies:
|
||||
generators:
|
||||
p_nom_max: sum # use "min" for more conservative assumptions
|
||||
p_nom_min: sum
|
||||
p_min_pu: mean
|
||||
marginal_cost: mean
|
||||
committable: any
|
||||
ramp_limit_up: max
|
||||
ramp_limit_down: max
|
||||
efficiency: mean
|
||||
|
||||
snapshots:
|
||||
start: "2013-03-01"
|
||||
@ -32,6 +47,8 @@ enable:
|
||||
retrieve_databundle: true
|
||||
build_cutout: false
|
||||
retrieve_cutout: true
|
||||
build_natura_raster: false
|
||||
retrieve_natura_raster: true
|
||||
custom_busmap: false
|
||||
|
||||
electricity:
|
||||
@ -76,7 +93,7 @@ renewable:
|
||||
24, 25, 26, 27, 28, 29, 31, 32]
|
||||
distance: 1000
|
||||
distance_grid_codes: [1, 2, 3, 4, 5, 6]
|
||||
natura: false
|
||||
natura: true
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
offwind-ac:
|
||||
@ -87,7 +104,7 @@ renewable:
|
||||
capacity_per_sqkm: 3
|
||||
# correction_factor: 0.93
|
||||
corine: [44, 255]
|
||||
natura: false
|
||||
natura: true
|
||||
max_shore_distance: 30000
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
@ -100,7 +117,7 @@ renewable:
|
||||
capacity_per_sqkm: 3
|
||||
# correction_factor: 0.93
|
||||
corine: [44, 255]
|
||||
natura: false
|
||||
natura: true
|
||||
min_shore_distance: 30000
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
@ -122,7 +139,7 @@ renewable:
|
||||
# correction_factor: 0.854337
|
||||
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
|
||||
14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
|
||||
natura: false
|
||||
natura: true
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
|
||||
|
@ -1,3 +1,13 @@
|
||||
,Unit,Values,Description
|
||||
simplify,,,
|
||||
simplify_network,,,
|
||||
-- to_substations,bool,"{'true','false'}","Aggregates all nodes without power injection (positive or negative, i.e. demand or generation) to electrically closest ones"
|
||||
-- algorithm,str,"One of {‘kmeans’, ‘hac’}",
|
||||
-- feature,str,"Str in the format ‘carrier1+carrier2+...+carrierN-X’, where CarrierI can be from {‘solar’, ‘onwind’, ‘offwind’, ‘ror’} and X is one of {‘cap’, ‘time’}.",
|
||||
cluster_network
|
||||
-- algorithm,str,"One of {‘kmeans’, ‘hac’}",
|
||||
-- feature,str,"Str in the format ‘carrier1+carrier2+...+carrierN-X’, where CarrierI can be from {‘solar’, ‘onwind’, ‘offwind’, ‘ror’} and X is one of {‘cap’, ‘time’}.",
|
||||
aggregation_strategies,,,
|
||||
-- generators,,,
|
||||
-- -- {key},str,"{key} can be any of the component of the generator (str). It’s value can be any that can be converted to pandas.Series using getattr(). For example one of {min, max, sum}.","Aggregates the component according to the given strategy. For example, if sum, then all values within each cluster are summed to represent the new generator."
|
||||
-- buses,,,
|
||||
-- -- {key},str,"{key} can be any of the component of the bus (str). It’s value can be any that can be converted to pandas.Series using getattr(). For example one of {min, max, sum}.","Aggregates the component according to the given strategy. For example, if sum, then all values within each cluster are summed to represent the new bus."
|
||||
|
Can't render this file because it has a wrong number of fields in line 6.
|
@ -12,4 +12,6 @@ enable,,,
|
||||
-- retrieve_databundle,bool,"{true, false}","Switch to retrieve databundle from zenodo via the rule :mod:`retrieve_databundle` or whether to keep a custom databundle located in the corresponding folder."
|
||||
-- build_cutout,bool,"{true, false}","Switch to enable the building of cutouts via the rule :mod:`build_cutout`."
|
||||
-- retrieve_cutout,bool,"{true, false}","Switch to enable the retrieval of cutouts from zenodo with :mod:`retrieve_cutout`."
|
||||
-- build_natura_raster,bool,"{true, false}","Switch to enable the creation of the raster ``natura.tiff`` via the rule :mod:`build_natura_raster`."
|
||||
-- retrieve_natura_raster,bool,"{true, false}","Switch to enable the retrieval of ``natura.tiff`` from zenodo with :mod:`retrieve_natura_raster`."
|
||||
-- custom_busmap,bool,"{true, false}","Switch to enable the use of custom busmaps in rule :mod:`cluster_network`. If activated the rule looks for provided busmaps at ``data/custom_busmap_elec_s{simpl}_{clusters}.csv`` which should have the same format as ``resources/busmap_elec_s{simpl}_{clusters}.csv``, i.e. the index should contain the buses of ``networks/elec_s{simpl}.nc``."
|
||||
|
|
@ -27,6 +27,7 @@ With these and the externally extracted ENTSO-E online map topology
|
||||
Then the process continues by calculating conventional power plant capacities, potentials, and per-unit availability time series for variable renewable energy carriers and hydro power plants with the following rules:
|
||||
|
||||
- :mod:`build_powerplants` for today's thermal power plant capacities using `powerplantmatching <https://github.com/FRESNA/powerplantmatching>`_ allocating these to the closest substation for each powerplant,
|
||||
- :mod:`build_natura_raster` for rasterising NATURA2000 natural protection areas,
|
||||
- :mod:`build_renewable_profiles` for the hourly capacity factors and installation potentials constrained by land-use in each substation's Voronoi cell for PV, onshore and offshore wind, and
|
||||
- :mod:`build_hydro_profile` for the hourly per-unit hydro power availability time series.
|
||||
|
||||
@ -40,6 +41,7 @@ together into a detailed PyPSA network stored in ``networks/elec.nc``.
|
||||
preparation/build_shapes
|
||||
preparation/build_load_data
|
||||
preparation/build_cutout
|
||||
preparation/build_natura_raster
|
||||
preparation/prepare_links_p_nom
|
||||
preparation/base_network
|
||||
preparation/build_bus_regions
|
||||
|
39
doc/preparation/build_natura_raster.rst
Normal file
39
doc/preparation/build_natura_raster.rst
Normal file
@ -0,0 +1,39 @@
|
||||
..
|
||||
SPDX-FileCopyrightText: 2019-2020 The PyPSA-Eur Authors
|
||||
|
||||
SPDX-License-Identifier: CC-BY-4.0
|
||||
|
||||
.. _natura:
|
||||
|
||||
Rule ``build_natura_raster``
|
||||
===============================
|
||||
|
||||
.. graphviz::
|
||||
:align: center
|
||||
|
||||
digraph snakemake_dag {
|
||||
graph [bgcolor=white,
|
||||
margin=0,
|
||||
size="8,5"
|
||||
];
|
||||
node [fontname=sans,
|
||||
fontsize=10,
|
||||
penwidth=2,
|
||||
shape=box,
|
||||
style=rounded
|
||||
];
|
||||
edge [color=grey,
|
||||
penwidth=2
|
||||
];
|
||||
9 [color="0.22 0.6 0.85",
|
||||
label=build_renewable_profiles];
|
||||
12 [color="0.31 0.6 0.85",
|
||||
fillcolor=gray,
|
||||
label=build_natura_raster,
|
||||
style=filled];
|
||||
12 -> 9;
|
||||
}
|
||||
|
||||
|
|
||||
|
||||
.. automodule:: build_natura_raster
|
@ -41,6 +41,9 @@ Rule ``build_renewable_profiles``
|
||||
8 [color="0.00 0.6 0.85",
|
||||
label=build_shapes];
|
||||
8 -> 9;
|
||||
12 [color="0.31 0.6 0.85",
|
||||
label=build_natura_raster];
|
||||
12 -> 9;
|
||||
13 [color="0.56 0.6 0.85",
|
||||
label=build_cutout];
|
||||
13 -> 9;
|
||||
|
@ -50,3 +50,30 @@ The :ref:`tutorial` uses a smaller cutout than required for the full model (30 M
|
||||
|
||||
.. seealso::
|
||||
For details see :mod:`build_cutout` and read the `atlite documentation <https://atlite.readthedocs.io>`_.
|
||||
|
||||
|
||||
Rule ``retrieve_natura_raster``
|
||||
-------------------------------
|
||||
|
||||
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.4706686.svg
|
||||
:target: https://doi.org/10.5281/zenodo.4706686
|
||||
|
||||
This rule, as a substitute for :mod:`build_natura_raster`, downloads an already rasterized version (`natura.tiff <https://zenodo.org/record/4706686/files/natura.tiff>`_) of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas to reduce computation times. The file is placed into the ``resources`` sub-directory.
|
||||
|
||||
**Relevant Settings**
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
enable:
|
||||
build_natura_raster:
|
||||
|
||||
.. seealso::
|
||||
Documentation of the configuration file ``config.yaml`` at
|
||||
:ref:`toplevel_cf`
|
||||
|
||||
**Outputs**
|
||||
|
||||
- ``resources/natura.tiff``: Rasterized version of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas to reduce computation times.
|
||||
|
||||
.. seealso::
|
||||
For details see :mod:`build_natura_raster`.
|
||||
|
@ -88,6 +88,11 @@ Upcoming Release
|
||||
|
||||
* Add option to alter marginal costs of a carrier through `{opts}` wildcard: `<carrier>+m<factor>`, e.g. `gas+m2.5`, will multiply the default marginal cost for gas by factor 2.5.
|
||||
|
||||
* Clustering strategies for generators and buses have moved from distinct scripts to configurables to unify the process and make it more transparent.
|
||||
|
||||
* Hierarchical clustering was introduced. Distance metric is calculated from renewable potentials on hourly (feature entry ends with `-time`) or annual (feature entry in config end with `-cap`) values.
|
||||
|
||||
|
||||
Synchronisation Release - Ukraine and Moldova (17th March 2022)
|
||||
===============================================================
|
||||
|
||||
|
@ -35,8 +35,8 @@ To run the tutorial, use this as your configuration file ``config.yaml``.
|
||||
|
||||
.../pypsa-eur % cp config.tutorial.yaml config.yaml
|
||||
|
||||
This configuration is set to download a reduced data set via the rules :mod:`retrieve_databundle`
|
||||
and :mod:`retrieve_cutout` totalling at less than 250 MB.
|
||||
This configuration is set to download a reduced data set via the rules :mod:`retrieve_databundle`,
|
||||
:mod:`retrieve_natura_raster`, :mod:`retrieve_cutout` totalling at less than 250 MB.
|
||||
The full set of data dependencies would consume 5.3 GB.
|
||||
For more information on the data dependencies of PyPSA-Eur, continue reading :ref:`data`.
|
||||
|
||||
|
@ -10,7 +10,7 @@ dependencies:
|
||||
- python>=3.8
|
||||
- pip
|
||||
|
||||
- pypsa>=0.18.1
|
||||
- pypsa>=0.19.1
|
||||
- atlite>=0.2.6
|
||||
- dask
|
||||
|
||||
@ -27,7 +27,7 @@ dependencies:
|
||||
- powerplantmatching>=0.5.3
|
||||
- numpy
|
||||
- pandas
|
||||
- geopandas
|
||||
- geopandas>=0.11.0
|
||||
- xarray
|
||||
- netcdf4
|
||||
- networkx
|
||||
@ -46,7 +46,6 @@ dependencies:
|
||||
# GIS dependencies:
|
||||
- cartopy
|
||||
- descartes
|
||||
- fiona # explicit for Windows
|
||||
- rasterio<=1.2.9 # 1.2.10 creates error https://github.com/PyPSA/atlite/issues/238
|
||||
|
||||
# PyPSA-Eur-Sec Dependencies
|
||||
|
@ -4,7 +4,9 @@
|
||||
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
from collections import OrderedDict
|
||||
|
||||
REGION_COLS = ['geometry', 'name', 'x', 'y', 'country']
|
||||
|
||||
def configure_logging(snakemake, skip_handlers=False):
|
||||
"""
|
||||
@ -210,6 +212,22 @@ def progress_retrieve(url, file):
|
||||
|
||||
urllib.request.urlretrieve(url, file, reporthook=dlProgress)
|
||||
|
||||
def get_aggregation_strategies(aggregation_strategies):
|
||||
# default aggregation strategies that cannot be defined in .yaml format must be specified within
|
||||
# the function, otherwise (when defaults are passed in the function's definition) they get lost
|
||||
# when custom values are specified in the config.
|
||||
|
||||
import numpy as np
|
||||
from pypsa.networkclustering import _make_consense
|
||||
|
||||
bus_strategies = dict(country=_make_consense("Bus", "country"))
|
||||
bus_strategies.update(aggregation_strategies.get("buses", {}))
|
||||
|
||||
generator_strategies = {'build_year': lambda x: 0, 'lifetime': lambda x: np.inf}
|
||||
generator_strategies.update(aggregation_strategies.get("generators", {}))
|
||||
|
||||
return bus_strategies, generator_strategies
|
||||
|
||||
|
||||
def mock_snakemake(rulename, **wildcards):
|
||||
"""
|
||||
|
@ -391,7 +391,9 @@ def _set_countries_and_substations(n, config, country_shapes, offshore_shapes):
|
||||
|
||||
countries = config['countries']
|
||||
country_shapes = gpd.read_file(country_shapes).set_index('name')['geometry']
|
||||
offshore_shapes = gpd.read_file(offshore_shapes).set_index('name')['geometry']
|
||||
# reindexing necessary for supporting empty geo-dataframes
|
||||
offshore_shapes = gpd.read_file(offshore_shapes)
|
||||
offshore_shapes = offshore_shapes.reindex(columns=['name', 'geometry']).set_index('name')['geometry']
|
||||
substation_b = buses['symbol'].str.contains('substation|converter station', case=False)
|
||||
|
||||
def prefer_voltage(x, which):
|
||||
|
@ -42,7 +42,7 @@ Description
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
from _helpers import configure_logging, REGION_COLS
|
||||
|
||||
import pypsa
|
||||
import os
|
||||
@ -55,13 +55,6 @@ from scipy.spatial import Voronoi
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def save_to_geojson(s, fn):
|
||||
if os.path.exists(fn):
|
||||
os.unlink(fn)
|
||||
schema = {**gpd.io.file.infer_schema(s), 'geometry': 'Unknown'}
|
||||
s.to_file(fn, driver='GeoJSON', schema=schema)
|
||||
|
||||
|
||||
def voronoi_partition_pts(points, outline):
|
||||
"""
|
||||
Compute the polygons of a voronoi partition of `points` within the
|
||||
@ -120,7 +113,8 @@ if __name__ == "__main__":
|
||||
n = pypsa.Network(snakemake.input.base_network)
|
||||
|
||||
country_shapes = gpd.read_file(snakemake.input.country_shapes).set_index('name')['geometry']
|
||||
offshore_shapes = gpd.read_file(snakemake.input.offshore_shapes).set_index('name')['geometry']
|
||||
offshore_shapes = gpd.read_file(snakemake.input.offshore_shapes)
|
||||
offshore_shapes = offshore_shapes.reindex(columns=REGION_COLS).set_index('name')['geometry']
|
||||
|
||||
onshore_regions = []
|
||||
offshore_regions = []
|
||||
@ -151,6 +145,8 @@ if __name__ == "__main__":
|
||||
offshore_regions_c = offshore_regions_c.loc[offshore_regions_c.area > 1e-2]
|
||||
offshore_regions.append(offshore_regions_c)
|
||||
|
||||
save_to_geojson(pd.concat(onshore_regions, ignore_index=True), snakemake.output.regions_onshore)
|
||||
|
||||
save_to_geojson(pd.concat(offshore_regions, ignore_index=True), snakemake.output.regions_offshore)
|
||||
pd.concat(onshore_regions, ignore_index=True).to_file(snakemake.output.regions_onshore)
|
||||
if offshore_regions:
|
||||
pd.concat(offshore_regions, ignore_index=True).to_file(snakemake.output.regions_offshore)
|
||||
else:
|
||||
offshore_shapes.to_frame().to_file(snakemake.output.regions_offshore)
|
@ -116,7 +116,7 @@ if __name__ == "__main__":
|
||||
# Determine the bounds from bus regions with a buffer of two grid cells
|
||||
onshore = gpd.read_file(snakemake.input.regions_onshore)
|
||||
offshore = gpd.read_file(snakemake.input.regions_offshore)
|
||||
regions = onshore.append(offshore)
|
||||
regions = pd.concat([onshore, offshore])
|
||||
d = max(cutout_params.get('dx', 0.25), cutout_params.get('dy', 0.25))*2
|
||||
cutout_params['bounds'] = regions.total_bounds + [-d, -d, d, d]
|
||||
elif {'x', 'y'}.issubset(cutout_params):
|
||||
|
89
scripts/build_natura_raster.py
Normal file
89
scripts/build_natura_raster.py
Normal file
@ -0,0 +1,89 @@
|
||||
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
"""
|
||||
Rasters the vector data of the `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas onto all cutout regions.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
renewable:
|
||||
{technology}:
|
||||
cutout:
|
||||
|
||||
.. seealso::
|
||||
Documentation of the configuration file ``config.yaml`` at
|
||||
:ref:`renewable_cf`
|
||||
|
||||
Inputs
|
||||
------
|
||||
|
||||
- ``data/bundle/natura/Natura2000_end2015.shp``: `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas.
|
||||
|
||||
.. image:: ../img/natura.png
|
||||
:scale: 33 %
|
||||
|
||||
Outputs
|
||||
-------
|
||||
|
||||
- ``resources/natura.tiff``: Rasterized version of `Natura 2000 <https://en.wikipedia.org/wiki/Natura_2000>`_ natural protection areas to reduce computation times.
|
||||
|
||||
.. image:: ../img/natura.png
|
||||
:scale: 33 %
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import atlite
|
||||
import geopandas as gpd
|
||||
import rasterio as rio
|
||||
from rasterio.features import geometry_mask
|
||||
from rasterio.warp import transform_bounds
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def determine_cutout_xXyY(cutout_name):
|
||||
cutout = atlite.Cutout(cutout_name)
|
||||
assert cutout.crs.to_epsg() == 4326
|
||||
x, X, y, Y = cutout.extent
|
||||
dx, dy = cutout.dx, cutout.dy
|
||||
return [x - dx/2., X + dx/2., y - dy/2., Y + dy/2.]
|
||||
|
||||
|
||||
def get_transform_and_shape(bounds, res):
|
||||
left, bottom = [(b // res)* res for b in bounds[:2]]
|
||||
right, top = [(b // res + 1) * res for b in bounds[2:]]
|
||||
shape = int((top - bottom) // res), int((right - left) / res)
|
||||
transform = rio.Affine(res, 0, left, 0, -res, top)
|
||||
return transform, shape
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('build_natura_raster')
|
||||
configure_logging(snakemake)
|
||||
|
||||
cutouts = snakemake.input.cutouts
|
||||
xs, Xs, ys, Ys = zip(*(determine_cutout_xXyY(cutout) for cutout in cutouts))
|
||||
bounds = transform_bounds(4326, 3035, min(xs), min(ys), max(Xs), max(Ys))
|
||||
transform, out_shape = get_transform_and_shape(bounds, res=100)
|
||||
|
||||
# adjusted boundaries
|
||||
shapes = gpd.read_file(snakemake.input.natura).to_crs(3035)
|
||||
raster = ~geometry_mask(shapes.geometry, out_shape[::-1], transform)
|
||||
raster = raster.astype(rio.uint8)
|
||||
|
||||
with rio.open(snakemake.output[0], 'w', driver='GTiff', dtype=rio.uint8,
|
||||
count=1, transform=transform, crs=3035, compress='lzw',
|
||||
width=raster.shape[1], height=raster.shape[0]) as dst:
|
||||
dst.write(raster, indexes=1)
|
@ -221,15 +221,17 @@ if __name__ == '__main__':
|
||||
client = Client(cluster, asynchronous=True)
|
||||
|
||||
cutout = atlite.Cutout(snakemake.input['cutout'])
|
||||
regions = gpd.read_file(snakemake.input.regions).set_index('name').rename_axis('bus')
|
||||
regions = gpd.read_file(snakemake.input.regions)
|
||||
assert not regions.empty, (f"List of regions in {snakemake.input.regions} is empty, please "
|
||||
"disable the corresponding renewable technology")
|
||||
# do not pull up, set_index does not work if geo dataframe is empty
|
||||
regions = regions.set_index('name').rename_axis('bus')
|
||||
buses = regions.index
|
||||
|
||||
excluder = atlite.ExclusionContainer(crs=3035, res=100)
|
||||
|
||||
if config['natura']:
|
||||
mask = regions.to_crs(3035).buffer(0) # buffer to avoid invalid geometry
|
||||
natura = gpd.read_file(snakemake.input.natura, mask=mask)
|
||||
excluder.add_geometry(natura.geometry)
|
||||
excluder.add_raster(snakemake.input.natura, nodata=0, allow_no_overlap=True)
|
||||
|
||||
corine = config.get("corine", {})
|
||||
if "grid_codes" in corine:
|
||||
|
@ -129,14 +129,15 @@ def eez(country_shapes, eez, country_list):
|
||||
df['name'] = df['ISO_3digit'].map(lambda c: _get_country('alpha_2', alpha_3=c))
|
||||
s = df.set_index('name').geometry.map(lambda s: _simplify_polys(s, filterremote=False))
|
||||
s = gpd.GeoSeries({k:v for k,v in s.iteritems() if v.distance(country_shapes[k]) < 1e-3})
|
||||
s = s.to_frame("geometry")
|
||||
s.index.name = "name"
|
||||
return s
|
||||
|
||||
|
||||
def country_cover(country_shapes, eez_shapes=None):
|
||||
shapes = list(country_shapes)
|
||||
shapes = country_shapes
|
||||
if eez_shapes is not None:
|
||||
shapes += list(eez_shapes)
|
||||
shapes = pd.concat([shapes, eez_shapes])
|
||||
|
||||
europe_shape = unary_union(shapes)
|
||||
if isinstance(europe_shape, MultiPolygon):
|
||||
@ -203,16 +204,6 @@ def nuts3(country_shapes, nuts3, nuts3pop, nuts3gdp, ch_cantons, ch_popgdp):
|
||||
return df
|
||||
|
||||
|
||||
def save_to_geojson(df, fn):
|
||||
if os.path.exists(fn):
|
||||
os.unlink(fn)
|
||||
if not isinstance(df, gpd.GeoDataFrame):
|
||||
df = gpd.GeoDataFrame(dict(geometry=df))
|
||||
df = df.reset_index()
|
||||
schema = {**gpd.io.file.infer_schema(df), 'geometry': 'Unknown'}
|
||||
df.to_file(fn, driver='GeoJSON', schema=schema)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
@ -220,15 +211,14 @@ if __name__ == "__main__":
|
||||
configure_logging(snakemake)
|
||||
|
||||
country_shapes = countries(snakemake.input.naturalearth, snakemake.config['countries'])
|
||||
save_to_geojson(country_shapes, snakemake.output.country_shapes)
|
||||
country_shapes.reset_index().to_file(snakemake.output.country_shapes)
|
||||
|
||||
offshore_shapes = eez(country_shapes, snakemake.input.eez, snakemake.config['countries'])
|
||||
save_to_geojson(offshore_shapes, snakemake.output.offshore_shapes)
|
||||
offshore_shapes.reset_index().to_file(snakemake.output.offshore_shapes)
|
||||
|
||||
europe_shape = country_cover(country_shapes, offshore_shapes)
|
||||
save_to_geojson(gpd.GeoSeries(europe_shape), snakemake.output.europe_shape)
|
||||
europe_shape = gpd.GeoDataFrame(geometry=[country_cover(country_shapes, offshore_shapes.geometry)])
|
||||
europe_shape.reset_index().to_file(snakemake.output.europe_shape)
|
||||
|
||||
nuts3_shapes = nuts3(country_shapes, snakemake.input.nuts3, snakemake.input.nuts3pop,
|
||||
snakemake.input.nuts3gdp, snakemake.input.ch_cantons, snakemake.input.ch_popgdp)
|
||||
|
||||
save_to_geojson(nuts3_shapes, snakemake.output.nuts3_shapes)
|
||||
nuts3_shapes.reset_index().to_file(snakemake.output.nuts3_shapes)
|
||||
|
@ -11,11 +11,11 @@ Relevant Settings
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
focus_weights:
|
||||
clustering:
|
||||
cluster_network:
|
||||
aggregation_strategies:
|
||||
|
||||
renewable: (keys)
|
||||
{technology}:
|
||||
potential:
|
||||
focus_weights:
|
||||
|
||||
solving:
|
||||
solver:
|
||||
@ -122,7 +122,7 @@ Exemplary unsolved network clustered to 37 nodes:
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging, update_p_nom_max
|
||||
from _helpers import configure_logging, update_p_nom_max, get_aggregation_strategies, REGION_COLS
|
||||
|
||||
import pypsa
|
||||
import os
|
||||
@ -138,7 +138,7 @@ import seaborn as sns
|
||||
from functools import reduce
|
||||
|
||||
from pypsa.networkclustering import (busmap_by_kmeans, busmap_by_spectral_clustering,
|
||||
_make_consense, get_clustering_from_busmap)
|
||||
busmap_by_hac, _make_consense, get_clustering_from_busmap)
|
||||
|
||||
import warnings
|
||||
warnings.filterwarnings(action='ignore', category=UserWarning)
|
||||
@ -173,6 +173,42 @@ def weighting_for_country(n, x):
|
||||
return (w * (100. / w.max())).clip(lower=1.).astype(int)
|
||||
|
||||
|
||||
def get_feature_for_hac(n, buses_i=None, feature=None):
|
||||
|
||||
if buses_i is None:
|
||||
buses_i = n.buses.index
|
||||
|
||||
if feature is None:
|
||||
feature = "solar+onwind-time"
|
||||
|
||||
carriers = feature.split('-')[0].split('+')
|
||||
if "offwind" in carriers:
|
||||
carriers.remove("offwind")
|
||||
carriers = np.append(carriers, network.generators.carrier.filter(like='offwind').unique())
|
||||
|
||||
if feature.split('-')[1] == 'cap':
|
||||
feature_data = pd.DataFrame(index=buses_i, columns=carriers)
|
||||
for carrier in carriers:
|
||||
gen_i = n.generators.query("carrier == @carrier").index
|
||||
attach = n.generators_t.p_max_pu[gen_i].mean().rename(index = n.generators.loc[gen_i].bus)
|
||||
feature_data[carrier] = attach
|
||||
|
||||
if feature.split('-')[1] == 'time':
|
||||
feature_data = pd.DataFrame(columns=buses_i)
|
||||
for carrier in carriers:
|
||||
gen_i = n.generators.query("carrier == @carrier").index
|
||||
attach = n.generators_t.p_max_pu[gen_i].rename(columns = n.generators.loc[gen_i].bus)
|
||||
feature_data = pd.concat([feature_data, attach], axis=0)[buses_i]
|
||||
|
||||
feature_data = feature_data.T
|
||||
# timestamp raises error in sklearn >= v1.2:
|
||||
feature_data.columns = feature_data.columns.astype(str)
|
||||
|
||||
feature_data = feature_data.fillna(0)
|
||||
|
||||
return feature_data
|
||||
|
||||
|
||||
def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"):
|
||||
"""Determine the number of clusters per country"""
|
||||
|
||||
@ -221,13 +257,50 @@ def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"):
|
||||
return pd.Series(m.n.get_values(), index=L.index).round().astype(int)
|
||||
|
||||
|
||||
def busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights=None, algorithm="kmeans", **algorithm_kwds):
|
||||
def busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights=None, algorithm="kmeans", feature=None, **algorithm_kwds):
|
||||
if algorithm == "kmeans":
|
||||
algorithm_kwds.setdefault('n_init', 1000)
|
||||
algorithm_kwds.setdefault('max_iter', 30000)
|
||||
algorithm_kwds.setdefault('tol', 1e-6)
|
||||
algorithm_kwds.setdefault('random_state', 0)
|
||||
|
||||
def fix_country_assignment_for_hac(n):
|
||||
from scipy.sparse import csgraph
|
||||
|
||||
# overwrite country of nodes that are disconnected from their country-topology
|
||||
for country in n.buses.country.unique():
|
||||
m = n[n.buses.country ==country].copy()
|
||||
|
||||
_, labels = csgraph.connected_components(m.adjacency_matrix(), directed=False)
|
||||
|
||||
component = pd.Series(labels, index=m.buses.index)
|
||||
component_sizes = component.value_counts()
|
||||
|
||||
if len(component_sizes)>1:
|
||||
disconnected_bus = component[component==component_sizes.index[-1]].index[0]
|
||||
|
||||
neighbor_bus = (
|
||||
n.lines.query("bus0 == @disconnected_bus or bus1 == @disconnected_bus")
|
||||
.iloc[0][['bus0', 'bus1']]
|
||||
)
|
||||
new_country = list(set(n.buses.loc[neighbor_bus].country)-set([country]))[0]
|
||||
|
||||
logger.info(
|
||||
f"overwriting country `{country}` of bus `{disconnected_bus}` "
|
||||
f"to new country `{new_country}`, because it is disconnected "
|
||||
"from its inital inter-country transmission grid."
|
||||
)
|
||||
n.buses.at[disconnected_bus, "country"] = new_country
|
||||
return n
|
||||
|
||||
if algorithm == "hac":
|
||||
feature = get_feature_for_hac(n, buses_i=n.buses.index, feature=feature)
|
||||
n = fix_country_assignment_for_hac(n)
|
||||
|
||||
if (algorithm != "hac") and (feature is not None):
|
||||
logger.warning(f"Keyword argument feature is only valid for algorithm `hac`. "
|
||||
f"Given feature `{feature}` will be ignored.")
|
||||
|
||||
n.determine_network_topology()
|
||||
|
||||
n_clusters = distribute_clusters(n, n_clusters, focus_weights=focus_weights, solver_name=solver_name)
|
||||
@ -251,47 +324,34 @@ def busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights=None, algori
|
||||
return prefix + busmap_by_spectral_clustering(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds)
|
||||
elif algorithm == "louvain":
|
||||
return prefix + busmap_by_louvain(reduce_network(n, x), n_clusters[x.name], **algorithm_kwds)
|
||||
elif algorithm == "hac":
|
||||
return prefix + busmap_by_hac(n, n_clusters[x.name], buses_i=x.index, feature=feature.loc[x.index])
|
||||
else:
|
||||
raise ValueError(f"`algorithm` must be one of 'kmeans', 'spectral' or 'louvain'. Is {algorithm}.")
|
||||
raise ValueError(f"`algorithm` must be one of 'kmeans', 'hac', 'spectral' or 'louvain'. Is {algorithm}.")
|
||||
|
||||
return (n.buses.groupby(['country', 'sub_network'], group_keys=False)
|
||||
.apply(busmap_for_country).squeeze().rename('busmap'))
|
||||
|
||||
|
||||
def clustering_for_n_clusters(n, n_clusters, custom_busmap=False, aggregate_carriers=None,
|
||||
line_length_factor=1.25, potential_mode='simple', solver_name="cbc",
|
||||
algorithm="kmeans", extended_link_costs=0, focus_weights=None):
|
||||
line_length_factor=1.25, aggregation_strategies=dict(), solver_name="cbc",
|
||||
algorithm="hac", feature=None, extended_link_costs=0, focus_weights=None):
|
||||
|
||||
if potential_mode == 'simple':
|
||||
p_nom_max_strategy = pd.Series.sum
|
||||
elif potential_mode == 'conservative':
|
||||
p_nom_max_strategy = pd.Series.min
|
||||
else:
|
||||
raise AttributeError(f"potential_mode should be one of 'simple' or 'conservative' but is '{potential_mode}'")
|
||||
bus_strategies, generator_strategies = get_aggregation_strategies(aggregation_strategies)
|
||||
|
||||
if not isinstance(custom_busmap, pd.Series):
|
||||
busmap = busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights, algorithm)
|
||||
busmap = busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights, algorithm, feature)
|
||||
else:
|
||||
busmap = custom_busmap
|
||||
|
||||
clustering = get_clustering_from_busmap(
|
||||
n, busmap,
|
||||
bus_strategies=dict(country=_make_consense("Bus", "country")),
|
||||
bus_strategies=bus_strategies,
|
||||
aggregate_generators_weighted=True,
|
||||
aggregate_generators_carriers=aggregate_carriers,
|
||||
aggregate_one_ports=["Load", "StorageUnit"],
|
||||
line_length_factor=line_length_factor,
|
||||
generator_strategies={'p_nom_max': p_nom_max_strategy,
|
||||
'p_nom_min': pd.Series.sum,
|
||||
'p_min_pu': pd.Series.mean,
|
||||
'marginal_cost': pd.Series.mean,
|
||||
'committable': np.any,
|
||||
'ramp_limit_up': pd.Series.max,
|
||||
'ramp_limit_down': pd.Series.max,
|
||||
'build_year': lambda x: 0,
|
||||
'lifetime': lambda x: np.inf,
|
||||
'efficiency': np.mean,
|
||||
},
|
||||
generator_strategies=generator_strategies,
|
||||
scale_link_capital_costs=False)
|
||||
|
||||
if not n.links.empty:
|
||||
@ -306,24 +366,18 @@ def clustering_for_n_clusters(n, n_clusters, custom_busmap=False, aggregate_carr
|
||||
return clustering
|
||||
|
||||
|
||||
def save_to_geojson(s, fn):
|
||||
if os.path.exists(fn):
|
||||
os.unlink(fn)
|
||||
df = s.reset_index()
|
||||
schema = {**gpd.io.file.infer_schema(df), 'geometry': 'Unknown'}
|
||||
df.to_file(fn, driver='GeoJSON', schema=schema)
|
||||
|
||||
|
||||
def cluster_regions(busmaps, input=None, output=None):
|
||||
|
||||
busmap = reduce(lambda x, y: x.map(y), busmaps[1:], busmaps[0])
|
||||
|
||||
for which in ('regions_onshore', 'regions_offshore'):
|
||||
regions = gpd.read_file(getattr(input, which)).set_index('name')
|
||||
geom_c = regions.geometry.groupby(busmap).apply(shapely.ops.unary_union)
|
||||
regions_c = gpd.GeoDataFrame(dict(geometry=geom_c))
|
||||
regions = gpd.read_file(getattr(input, which))
|
||||
regions = regions.reindex(columns=REGION_COLS).set_index('name')
|
||||
aggfunc = dict(x="mean", y="mean", country="first")
|
||||
regions_c = regions.dissolve(busmap, aggfunc=aggfunc)
|
||||
regions_c.index.name = 'name'
|
||||
save_to_geojson(regions_c, getattr(output, which))
|
||||
regions_c = regions_c.reset_index()
|
||||
regions_c.to_file(getattr(output, which))
|
||||
|
||||
|
||||
def plot_busmap_for_n_clusters(n, n_clusters, fn=None):
|
||||
@ -378,21 +432,29 @@ if __name__ == "__main__":
|
||||
"The `potential` configuration option must agree for all renewable carriers, for now!"
|
||||
)
|
||||
return v
|
||||
potential_mode = consense(pd.Series([snakemake.config['renewable'][tech]['potential']
|
||||
for tech in renewable_carriers]))
|
||||
aggregation_strategies = snakemake.config["clustering"].get("aggregation_strategies", {})
|
||||
# translate str entries of aggregation_strategies to pd.Series functions:
|
||||
aggregation_strategies = {
|
||||
p: {k: getattr(pd.Series, v) for k,v in aggregation_strategies[p].items()}
|
||||
for p in aggregation_strategies.keys()
|
||||
}
|
||||
|
||||
custom_busmap = snakemake.config["enable"].get("custom_busmap", False)
|
||||
if custom_busmap:
|
||||
custom_busmap = pd.read_csv(snakemake.input.custom_busmap, index_col=0, squeeze=True)
|
||||
custom_busmap.index = custom_busmap.index.astype(str)
|
||||
logger.info(f"Imported custom busmap from {snakemake.input.custom_busmap}")
|
||||
|
||||
cluster_config = snakemake.config.get('clustering', {}).get('cluster_network', {})
|
||||
clustering = clustering_for_n_clusters(n, n_clusters, custom_busmap, aggregate_carriers,
|
||||
line_length_factor, potential_mode,
|
||||
line_length_factor, aggregation_strategies,
|
||||
snakemake.config['solving']['solver']['name'],
|
||||
"kmeans", hvac_overhead_cost, focus_weights)
|
||||
cluster_config.get("algorithm", "hac"),
|
||||
cluster_config.get("feature", "solar+onwind-time"),
|
||||
hvac_overhead_cost, focus_weights)
|
||||
|
||||
update_p_nom_max(clustering.network)
|
||||
|
||||
update_p_nom_max(n)
|
||||
|
||||
clustering.network.export_to_netcdf(snakemake.output.network)
|
||||
for attr in ('busmap', 'linemap'): #also available: linemap_positive, linemap_negative
|
||||
getattr(clustering, attr).to_csv(snakemake.output[attr])
|
||||
|
@ -13,6 +13,11 @@ Relevant Settings
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
clustering:
|
||||
simplify_network:
|
||||
cluster_network:
|
||||
aggregation_strategies:
|
||||
|
||||
costs:
|
||||
USD2013_to_EUR2013:
|
||||
discountrate:
|
||||
@ -22,10 +27,6 @@ Relevant Settings
|
||||
electricity:
|
||||
max_hours:
|
||||
|
||||
renewables: (keys)
|
||||
{technology}:
|
||||
potential:
|
||||
|
||||
lines:
|
||||
length_factor:
|
||||
|
||||
@ -83,7 +84,7 @@ The rule :mod:`simplify_network` does up to four things:
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging, update_p_nom_max
|
||||
from _helpers import configure_logging, update_p_nom_max, get_aggregation_strategies
|
||||
|
||||
from cluster_network import clustering_for_n_clusters, cluster_regions
|
||||
from add_electricity import load_costs
|
||||
@ -189,7 +190,10 @@ def _adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus, out
|
||||
|
||||
|
||||
|
||||
def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, output, aggregate_one_ports={"Load", "StorageUnit"}):
|
||||
def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, output,
|
||||
aggregate_one_ports={"Load", "StorageUnit"},
|
||||
aggregation_strategies=dict()):
|
||||
|
||||
def replace_components(n, c, df, pnl):
|
||||
n.mremove(c, n.df(c).index)
|
||||
|
||||
@ -200,14 +204,12 @@ def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, output, a
|
||||
|
||||
_adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus, output)
|
||||
|
||||
strategies = {
|
||||
'p_nom_min': np.sum,
|
||||
'p_nom_max': 'sum',
|
||||
'build_year': lambda x: 0,
|
||||
'lifetime': lambda x: np.inf,
|
||||
'efficiency': np.mean
|
||||
}
|
||||
generators, generators_pnl = aggregategenerators(n, busmap, custom_strategies=strategies)
|
||||
_, generator_strategies = get_aggregation_strategies(aggregation_strategies)
|
||||
|
||||
generators, generators_pnl = aggregategenerators(
|
||||
n, busmap, custom_strategies=generator_strategies
|
||||
)
|
||||
|
||||
replace_components(n, "Generator", generators, generators_pnl)
|
||||
|
||||
for one_port in aggregate_one_ports:
|
||||
@ -221,7 +223,7 @@ def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, output, a
|
||||
n.mremove(c, df.index[df.bus0.isin(buses_to_del) | df.bus1.isin(buses_to_del)])
|
||||
|
||||
|
||||
def simplify_links(n, costs, config, output):
|
||||
def simplify_links(n, costs, config, output, aggregation_strategies=dict()):
|
||||
## Complex multi-node links are folded into end-points
|
||||
logger.info("Simplifying connected link components")
|
||||
|
||||
@ -313,21 +315,23 @@ def simplify_links(n, costs, config, output):
|
||||
|
||||
logger.debug("Collecting all components using the busmap")
|
||||
|
||||
_aggregate_and_move_components(n, busmap, connection_costs_to_bus, output)
|
||||
_aggregate_and_move_components(n, busmap, connection_costs_to_bus, output,
|
||||
aggregation_strategies=aggregation_strategies)
|
||||
return n, busmap
|
||||
|
||||
def remove_stubs(n, costs, config, output):
|
||||
def remove_stubs(n, costs, config, output, aggregation_strategies=dict()):
|
||||
logger.info("Removing stubs")
|
||||
|
||||
busmap = busmap_by_stubs(n) # ['country'])
|
||||
|
||||
connection_costs_to_bus = _compute_connection_costs_to_bus(n, busmap, costs, config)
|
||||
|
||||
_aggregate_and_move_components(n, busmap, connection_costs_to_bus, output)
|
||||
_aggregate_and_move_components(n, busmap, connection_costs_to_bus, output,
|
||||
aggregation_strategies=aggregation_strategies)
|
||||
|
||||
return n, busmap
|
||||
|
||||
def aggregate_to_substations(n, buses_i=None):
|
||||
def aggregate_to_substations(n, aggregation_strategies=dict(), buses_i=None):
|
||||
# can be used to aggregate a selection of buses to electrically closest neighbors
|
||||
# if no buses are given, nodes that are no substations or without offshore connection are aggregated
|
||||
|
||||
@ -352,23 +356,20 @@ def aggregate_to_substations(n, buses_i=None):
|
||||
busmap = n.buses.index.to_series()
|
||||
busmap.loc[buses_i] = dist.idxmin(1)
|
||||
|
||||
bus_strategies, generator_strategies = get_aggregation_strategies(aggregation_strategies)
|
||||
|
||||
clustering = get_clustering_from_busmap(n, busmap,
|
||||
bus_strategies=dict(country=_make_consense("Bus", "country")),
|
||||
bus_strategies=bus_strategies,
|
||||
aggregate_generators_weighted=True,
|
||||
aggregate_generators_carriers=None,
|
||||
aggregate_one_ports=["Load", "StorageUnit"],
|
||||
line_length_factor=1.0,
|
||||
generator_strategies={'p_nom_max': 'sum',
|
||||
'build_year': lambda x: 0,
|
||||
'lifetime': lambda x: np.inf,
|
||||
'efficiency': np.mean
|
||||
},
|
||||
generator_strategies=generator_strategies,
|
||||
scale_link_capital_costs=False)
|
||||
|
||||
return clustering.network, busmap
|
||||
|
||||
|
||||
def cluster(n, n_clusters, config):
|
||||
def cluster(n, n_clusters, config, algorithm="hac", feature=None, aggregation_strategies=dict()):
|
||||
logger.info(f"Clustering to {n_clusters} buses")
|
||||
|
||||
focus_weights = config.get('focus_weights', None)
|
||||
@ -376,17 +377,11 @@ def cluster(n, n_clusters, config):
|
||||
renewable_carriers = pd.Index([tech
|
||||
for tech in n.generators.carrier.unique()
|
||||
if tech.split('-', 2)[0] in config['renewable']])
|
||||
def consense(x):
|
||||
v = x.iat[0]
|
||||
assert ((x == v).all() or x.isnull().all()), (
|
||||
"The `potential` configuration option must agree for all renewable carriers, for now!"
|
||||
)
|
||||
return v
|
||||
potential_mode = (consense(pd.Series([config['renewable'][tech]['potential']
|
||||
for tech in renewable_carriers]))
|
||||
if len(renewable_carriers) > 0 else 'conservative')
|
||||
clustering = clustering_for_n_clusters(n, n_clusters, custom_busmap=False, potential_mode=potential_mode,
|
||||
|
||||
clustering = clustering_for_n_clusters(n, n_clusters, custom_busmap=False,
|
||||
aggregation_strategies=aggregation_strategies,
|
||||
solver_name=config['solving']['solver']['name'],
|
||||
algorithm=algorithm, feature=feature,
|
||||
focus_weights=focus_weights)
|
||||
|
||||
return clustering.network, clustering.busmap
|
||||
@ -400,24 +395,50 @@ if __name__ == "__main__":
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
|
||||
aggregation_strategies = snakemake.config["clustering"].get("aggregation_strategies", {})
|
||||
# translate str entries of aggregation_strategies to pd.Series functions:
|
||||
aggregation_strategies = {
|
||||
p: {k: getattr(pd.Series, v) for k,v in aggregation_strategies[p].items()}
|
||||
for p in aggregation_strategies.keys()
|
||||
}
|
||||
|
||||
n, trafo_map = simplify_network_to_380(n)
|
||||
|
||||
Nyears = n.snapshot_weightings.objective.sum() / 8760
|
||||
|
||||
technology_costs = load_costs(snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity'], Nyears)
|
||||
|
||||
n, simplify_links_map = simplify_links(n, technology_costs, snakemake.config, snakemake.output)
|
||||
n, simplify_links_map = simplify_links(n, technology_costs, snakemake.config, snakemake.output,
|
||||
aggregation_strategies)
|
||||
|
||||
n, stub_map = remove_stubs(n, technology_costs, snakemake.config, snakemake.output)
|
||||
n, stub_map = remove_stubs(n, technology_costs, snakemake.config, snakemake.output,
|
||||
aggregation_strategies=aggregation_strategies)
|
||||
|
||||
busmaps = [trafo_map, simplify_links_map, stub_map]
|
||||
|
||||
if snakemake.config.get('clustering', {}).get('simplify', {}).get('to_substations', False):
|
||||
n, substation_map = aggregate_to_substations(n)
|
||||
cluster_config = snakemake.config.get('clustering', {}).get('simplify_network', {})
|
||||
if cluster_config.get('clustering', {}).get('simplify_network', {}).get('to_substations', False):
|
||||
n, substation_map = aggregate_to_substations(n, aggregation_strategies)
|
||||
busmaps.append(substation_map)
|
||||
|
||||
# treatment of outliers (nodes without a profile for considered carrier):
|
||||
# all nodes that have no profile of the given carrier are being aggregated to closest neighbor
|
||||
if (
|
||||
snakemake.config.get("clustering", {}).get("cluster_network", {}).get("algorithm", "hac") == "hac" or
|
||||
cluster_config.get("algorithm", "hac") == "hac"
|
||||
):
|
||||
carriers = cluster_config.get("feature", "solar+onwind-time").split('-')[0].split('+')
|
||||
for carrier in carriers:
|
||||
buses_i = list(set(n.buses.index)-set(n.generators.query("carrier == @carrier").bus))
|
||||
logger.info(f'clustering preparaton (hac): aggregating {len(buses_i)} buses of type {carrier}.')
|
||||
n, busmap_hac = aggregate_to_substations(n, aggregation_strategies, buses_i)
|
||||
busmaps.append(busmap_hac)
|
||||
|
||||
if snakemake.wildcards.simpl:
|
||||
n, cluster_map = cluster(n, int(snakemake.wildcards.simpl), snakemake.config)
|
||||
n, cluster_map = cluster(n, int(snakemake.wildcards.simpl), snakemake.config,
|
||||
cluster_config.get('algorithm', 'hac'),
|
||||
cluster_config.get('feature', None),
|
||||
aggregation_strategies)
|
||||
busmaps.append(cluster_map)
|
||||
|
||||
# some entries in n.buses are not updated in previous functions, therefore can be wrong. as they are not needed
|
||||
|
@ -104,7 +104,7 @@ def prepare_network(n, solve_opts):
|
||||
if load_shedding:
|
||||
n.add("Carrier", "load", color="#dd2e23", nice_name="Load shedding")
|
||||
buses_i = n.buses.query("carrier == 'AC'").index
|
||||
if not np.isscalar(load_shedding): load_shedding = 1e2
|
||||
if not np.isscalar(load_shedding): load_shedding = 1e2 # Eur/kWh
|
||||
# intersect between macroeconomic and surveybased
|
||||
# willingness to pay
|
||||
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full)
|
||||
|
@ -18,8 +18,23 @@ scenario:
|
||||
countries: ['BE']
|
||||
|
||||
clustering:
|
||||
simplify:
|
||||
simplify_network:
|
||||
to_substations: false # network is simplified to nodes with positive or negative power injection (i.e. substations or offwind connections)
|
||||
algorithm: kmeans # choose from: [hac, kmeans]
|
||||
feature: solar+onwind-time # only for hac. choose from: [solar+onwind-time, solar+onwind-cap, solar-time, solar-cap, solar+offwind-cap] etc.
|
||||
cluster_network:
|
||||
algorithm: kmeans
|
||||
feature: solar+onwind-time
|
||||
aggregation_strategies:
|
||||
generators:
|
||||
p_nom_max: sum # use "min" for more conservative assumptions
|
||||
p_nom_min: sum
|
||||
p_min_pu: mean
|
||||
marginal_cost: mean
|
||||
committable: any
|
||||
ramp_limit_up: max
|
||||
ramp_limit_down: max
|
||||
efficiency: mean
|
||||
|
||||
snapshots:
|
||||
start: "2013-03-01"
|
||||
@ -31,6 +46,8 @@ enable:
|
||||
retrieve_databundle: true
|
||||
build_cutout: false
|
||||
retrieve_cutout: true
|
||||
build_natura_raster: false
|
||||
retrieve_natura_raster: true
|
||||
custom_busmap: false
|
||||
|
||||
electricity:
|
||||
|
Loading…
Reference in New Issue
Block a user