Merge branch 'master' into ukraine_hackathon

This commit is contained in:
Fabian Neumann 2023-12-11 16:24:40 +01:00
commit df40fdf904
36 changed files with 357 additions and 193 deletions

View File

@ -5,7 +5,7 @@ exclude: "^LICENSES"
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0
rev: v4.5.0
hooks:
- id: check-merge-conflict
- id: end-of-file-fixer
@ -45,13 +45,13 @@ repos:
args: ["--in-place", "--make-summary-multi-line", "--pre-summary-newline"]
- repo: https://github.com/keewis/blackdoc
rev: v0.3.8
rev: v0.3.9
hooks:
- id: blackdoc
# Formatting with "black" coding style
- repo: https://github.com/psf/black
rev: 23.9.1
rev: 23.11.0
hooks:
# Format Python files
- id: black
@ -67,14 +67,14 @@ repos:
# Do YAML formatting (before the linter checks it for misses)
- repo: https://github.com/macisamuele/language-formatters-pre-commit-hooks
rev: v2.10.0
rev: v2.11.0
hooks:
- id: pretty-format-yaml
args: [--autofix, --indent, "2", --preserve-quotes]
# Format Snakemake rule / workflow files
- repo: https://github.com/snakemake/snakefmt
rev: v0.8.4
rev: v0.8.5
hooks:
- id: snakefmt

View File

@ -103,6 +103,6 @@ We strongly welcome anyone interested in contributing to this project. If you ha
# Licence
The code in PyPSA-Eur is released as free software under the
[MIT License](https://opensource.org/licenses/MIT), see `LICENSE.txt`.
[MIT License](https://opensource.org/licenses/MIT), see [`doc/licenses.rst`](doc/licenses.rst).
However, different licenses and terms of use may apply to the various
input data.

View File

@ -18,6 +18,8 @@ remote:
ssh: ""
path: ""
focus_weights: false
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run
run:
name: ""
@ -68,6 +70,7 @@ enable:
retrieve_sector_databundle: true
retrieve_cost_data: true
build_cutout: false
retrieve_irena: false
retrieve_cutout: true
build_natura_raster: false
retrieve_natura_raster: true
@ -451,10 +454,12 @@ sector:
coal_cc: false
dac: true
co2_vent: false
central_heat_vent: false
allam_cycle: false
hydrogen_fuel_cell: true
hydrogen_turbine: false
SMR: true
SMR_cc: true
regional_co2_sequestration_potential:
enable: false
attribute: 'conservative estimate Mt'
@ -801,6 +806,7 @@ plotting:
Coal: '#545454'
coal: '#545454'
Coal marginal: '#545454'
coal for industry: '#343434'
solid: '#545454'
Lignite: '#826837'
lignite: '#826837'
@ -877,6 +883,7 @@ plotting:
services rural heat: '#ff9c9c'
central heat: '#cc1f1f'
urban central heat: '#d15959'
urban central heat vent: '#a74747'
decentral heat: '#750606'
residential urban decentral heat: '#a33c3c'
services urban decentral heat: '#cc1f1f'

View File

@ -30,6 +30,9 @@ snapshots:
start: "2013-03-01"
end: "2013-03-08"
sector:
central_heat_vent: true
electricity:
co2limit: 100.e+6

View File

@ -44,6 +44,7 @@ electricity:
sector:
min_part_load_fischer_tropsch: 0
min_part_load_methanolisation: 0
atlite:
default_cutout: be-03-2013-era5
cutouts:

View File

@ -1,34 +1,34 @@
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018
Albania,,,,,,,,,,,,,,,,,,,
Austria,,,,,,,,,,,,,,,,,,,
Belgium,,,,,,,,,,31.5,196.5,196.5,381,707.7,707.7,712,712.2,877.2,1185.9
Bosnia Herzg,,,,,,,,,,,,,,,,,,,
Bulgaria,,,,,,,,,,,,,,,,,,,
Croatia,,,,,,,,,,,,,,,,,,,
Czechia,,,,,,,,,,,,,,,,,,,
Denmark,50,50,214,423.4,423.4,423.4,423.4,423.4,423.4,660.9,867.9,871.5,921.9,1271.1,1271.1,1271.1,1271.1,1263.8,1700.8
Estonia,,,,,,,,,,,,,,,,,,,
Finland,,,,,,,,,24,24,26.3,26.3,26.3,26.3,26.3,32,32,72.7,72.7
France,,,,,,,,,,,,,,,,,,2,2
Germany,,,,,,,,,,35,80,188,268,508,994,3283,4132,5406,6396
Greece,,,,,,,,,,,,,,,,,,,
Hungary,,,,,,,,,,,,,,,,,,,
Ireland,,,,,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2
Italy,,,,,,,,,,,,,,,,,,,
Latvia,,,,,,,,,,,,,,,,,,,
Lithuania,,,,,,,,,,,,,,,,,,,
Luxembourg,,,,,,,,,,,,,,,,,,,
Montenegro,,,,,,,,,,,,,,,,,,,
Netherlands,,,,,,,108,108,228,228,228,228,228,228,228,357,957,957,957
North Macedonia,,,,,,,,,,,,,,,,,,,
Norway,,,,,,,,,,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3
Poland,,,,,,,,,,,,,,,,,,,
Portugal,,,,,,,,,,,,1.9,2,2,2,2,,,
Romania,,,,,,,,,,,,,,,,,,,
Serbia,,,,,,,,,,,,,,,,,,,
Slovakia,,,,,,,,,,,,,,,,,,,
Slovenia,,,,,,,,,,,,,,,,,,,
Spain,,,,,,,,,,,,,,5,5,5,5,5,5
Sweden,13,22,22,22,22,22,22,131,133,163,163,163,163,212,213,213,203,203,203
Switzerland,,,,,,,,,,,,,,,,,,,
UK,3.8,3.8,3.8,63.8,123.8,213.8,303.8,393.8,596.2,951.2,1341.5,1838.3,2995.5,3696,4501.3,5093.4,5293.4,6987.9,8216.5
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
Albania,,,,,,,,,,,,,,,,,,,,,,,
Austria,,,,,,,,,,,,,,,,,,,,,,,
Belgium,,,,,,,,,,31.5,196.5,196.5,381.0,707.7,707.7,712.0,712.2,877.2,1185.9,1555.5,2261.8,2261.8,2261.8
Bosnia Herzg,,,,,,,,,,,,,,,,,,,,,,,
Bulgaria,,,,,,,,,,,,,,,,,,,,,,,
Croatia,,,,,,,,,,,,,,,,,,,,,,,
Czechia,,,,,,,,,,,,,,,,,,,,,,,
Denmark,49.95,49.95,213.95,423.35,423.35,423.35,423.35,423.35,423.35,660.85,867.85,871.45,921.85,1271.05,1271.05,1271.05,1271.05,1263.8,1700.8,1700.8,1700.8,2305.6,2305.6
Estonia,,,,,,,,,,,,,,,,,,,,,,,
Finland,,,,,,,,,24.0,24.0,26.3,26.3,26.3,26.3,26.3,32.0,32.0,72.7,72.7,73.0,73.0,73.0,73.0
France,,,,,,,,,,,,,,,,,,2.0,2.0,2.0,2.0,2.0,482.0
Germany,,,,,,,,,,35.0,80.0,188.0,268.0,508.0,994.0,3283.0,4132.0,5406.0,6393.0,7555.0,7787.0,7787.0,8129.0
Greece,,,,,,,,,,,,,,,,,,,,,,,
Hungary,,,,,,,,,,,,,,,,,,,,,,,
Ireland,,,,,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2
Italy,,,,,,,,,,,,,,,,,,,,,,,30.0
Latvia,,,,,,,,,,,,,,,,,,,,,,,
Lithuania,,,,,,,,,,,,,,,,,,,,,,,
Luxembourg,,,,,,,,,,,,,,,,,,,,,,,
Montenegro,,,,,,,,,,,,,,,,,,,,,,,
Netherlands,,,,,,,108.0,108.0,228.0,228.0,228.0,228.0,228.0,228.0,228.0,357.0,957.0,957.0,957.0,957.0,2459.5,2459.5,2571.0
North Macedonia,,,,,,,,,,,,,,,,,,,,,,,
Norway,,,,,,,,,,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,6.3,66.3
Poland,,,,,,,,,,,,,,,,,,,,,,,
Portugal,,,,,,,,,,,,1.86,2.0,2.0,2.0,2.0,,,,,25.0,25.0,25.0
Romania,,,,,,,,,,,,,,,,,,,,,,,
Serbia,,,,,,,,,,,,,,,,,,,,,,,
Slovakia,,,,,,,,,,,,,,,,,,,,,,,
Slovenia,,,,,,,,,,,,,,,,,,,,,,,
Spain,,,,,,,,,,,,,,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0
Sweden,13.0,22.0,22.0,22.0,22.0,22.0,22.0,131.0,133.0,163.0,163.0,163.0,163.0,212.0,213.0,213.0,203.0,203.0,203.0,203.0,203.0,193.0,193.0
Switzerland,,,,,,,,,,,,,,,,,,,,,,,
UK,4.0,4.0,4.0,64.0,124.0,214.0,304.0,394.0,596.2,951.0,1341.0,1838.0,2995.0,3696.0,4501.0,5093.0,5293.0,6988.0,8181.0,9888.0,10383.0,11255.0,13928.0

1 Country/area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
2 Albania
3 Austria
4 Belgium 31.5 196.5 196.5 381 381.0 707.7 707.7 712 712.0 712.2 877.2 1185.9 1555.5 2261.8 2261.8 2261.8
5 Bosnia Herzg
6 Bulgaria
7 Croatia
8 Czechia
9 Denmark 50 49.95 50 49.95 214 213.95 423.4 423.35 423.4 423.35 423.4 423.35 423.4 423.35 423.4 423.35 423.4 423.35 660.9 660.85 867.9 867.85 871.5 871.45 921.9 921.85 1271.1 1271.05 1271.1 1271.05 1271.1 1271.05 1271.1 1271.05 1263.8 1700.8 1700.8 1700.8 2305.6 2305.6
10 Estonia
11 Finland 24 24.0 24 24.0 26.3 26.3 26.3 26.3 26.3 32 32.0 32 32.0 72.7 72.7 73.0 73.0 73.0 73.0
12 France 2 2.0 2 2.0 2.0 2.0 2.0 482.0
13 Germany 35 35.0 80 80.0 188 188.0 268 268.0 508 508.0 994 994.0 3283 3283.0 4132 4132.0 5406 5406.0 6396 6393.0 7555.0 7787.0 7787.0 8129.0
14 Greece
15 Hungary
16 Ireland 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2
17 Italy 30.0
18 Latvia
19 Lithuania
20 Luxembourg
21 Montenegro
22 Netherlands 108 108.0 108 108.0 228 228.0 228 228.0 228 228.0 228 228.0 228 228.0 228 228.0 228 228.0 357 357.0 957 957.0 957 957.0 957 957.0 957.0 2459.5 2459.5 2571.0
23 North Macedonia
24 Norway 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 6.3 66.3
25 Poland
26 Portugal 1.9 1.86 2 2.0 2 2.0 2 2.0 2 2.0 25.0 25.0 25.0
27 Romania
28 Serbia
29 Slovakia
30 Slovenia
31 Spain 5 5.0 5 5.0 5 5.0 5 5.0 5 5.0 5 5.0 5.0 5.0 5.0 5.0
32 Sweden 13 13.0 22 22.0 22 22.0 22 22.0 22 22.0 22 22.0 22 22.0 131 131.0 133 133.0 163 163.0 163 163.0 163 163.0 163 163.0 212 212.0 213 213.0 213 213.0 203 203.0 203 203.0 203 203.0 203.0 203.0 193.0 193.0
33 Switzerland
34 UK 3.8 4.0 3.8 4.0 3.8 4.0 63.8 64.0 123.8 124.0 213.8 214.0 303.8 304.0 393.8 394.0 596.2 951.2 951.0 1341.5 1341.0 1838.3 1838.0 2995.5 2995.0 3696 3696.0 4501.3 4501.0 5093.4 5093.0 5293.4 5293.0 6987.9 6988.0 8216.5 8181.0 9888.0 10383.0 11255.0 13928.0

View File

@ -1,34 +1,34 @@
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018
Albania,,,,,,,,,,,,,,,,,,,
Austria,50,67,109,322,581,825.2,968.3,991.2,992,1001,1015.8,1106,1337.2,1674.5,2110.3,2488.7,2730,2886.7,3132.7
Belgium,14,26,31,67,96,167,212,276,324,576.5,715.5,872.5,989,1072.3,1236.3,1464,1657.8,1919.3,2074.8
Bosnia Herzg,,,,,,,,,,,,0.3,0.3,0.3,0.3,0.3,0.3,0.3,50.9
Bulgaria,,,,,1,8,27,30,114,333,488,541,677,683,699,699,699,698.4,698.9
Croatia,,,,,6,6,17,17,17,70,79,130,180,254,339,418,483,576.1,586.3
Czechia,2,,6.4,10.6,16.5,22,43.5,113.8,150,193,213,213,258,262,278,281,282,308.2,316.2
Denmark,2340.1,2447.2,2680.6,2696.6,2700.4,2704.5,2712.3,2700.9,2739.5,2821.2,2934,3080.5,3240.1,3547.9,3615.4,3805.9,3974.5,4225.8,4419.8
Estonia,,,1,3,7,31,31,50,77,104,108,180,266,248,275,300,310,311.8,310
Finland,38,39,43,52,82,82,86,110,119,123,170.7,172.7,230.7,420.7,600.7,973,1533,1971.3,1968.3
France,38,66,138,218,358,690,1412,2223,3403,4582,5912,6758,7607.5,8156,9201.4,10298.2,11566.6,13497.4,14898.1
Germany,6095,8754,12001,14381,16419,18248,20474,22116,22794,25697,26823,28524,30711,32969,37620,41297,45303,50174,52447
Greece,226,270,287,371,470,491,749,846,1022,1171,1298,1640,1753,1809,1978,2091,2370,2624,2877.5
Hungary,,1,1,3,3,17,33,61,134,203,293,331,325,329,329,329,329,329,329
Ireland,116.5,122.9,134.8,210.3,311.2,468.1,651.3,715.3,917.1,1226.1,1365.2,1559.4,1679.2,1983,2258.1,2426,2760.8,3292.8,3650.9
Italy,363,664,780,874,1127,1635,1902,2702,3525,4879,5794,6918,8102,8542,8683,9137,9384,9736.6,10230.2
Latvia,2,2,22,26,26,26,26,26,28,29,30,36,59,65.9,68.9,68.2,69.9,77.1,78.2
Lithuania,,,,,1,1,31,47,54,98,133,202,275,279,288,436,509,518,533
Luxembourg,14,13.9,13.9,20.5,34.9,34.9,34.9,34.9,42.9,42.9,43.7,44.5,58.3,58.3,58.3,63.8,119.7,119.7,122.9
Montenegro,,,,,,,,,,,,,,,,,,72,118
Netherlands,447,486,672,905,1075,1224,1453,1641,1921,1994,2009,2088,2205,2485,2637,3034,3300,3245,3436
North Macedonia,,,,,,,,,,,,,,,37,37,37,37,37
Norway,13,13,97,97,152,265,284,348,395,420.7,422.7,509.7,702.7,815.7,856.7,864.7,880.7,1204.7,1708
Poland,4,19,32,35,40,121,172,306,526,709,1108,1800,2564,3429,3836,4886,5747,5759.4,5766.1
Portugal,83,125,190,268,553,1064,1681,2201,2857,3326,3796,4254.4,4409.6,4607.9,4854.6,4934.8,5124.1,5124.1,5172.4
Romania,,,,,,1,1,3,5,15,389,988,1822,2773,3244,3130,3025,3029.8,3032.3
Serbia,,,,,,,,,,,,,0.5,0.5,0.5,10.4,17,25,25
Slovakia,,,,3,3,5,5,5,5,3,3,3,3,5,3,3,3,4,3
Slovenia,,,,,,,,,,,,,,4,4,5,5,5,5.2
Spain,2206,3397,4891,5945,8317,9918,11722,14820,16555,19176,20693,21529,22789,22953,22920,22938,22985,23119.5,23400.1
Sweden,196,273,335,395,453,500,563,692,956,1312,1854,2601,3443,3982,4875,5606,6232,6408,7097
Switzerland,3,5,5,5,9,12,12,12,14,18,42,46,49,60,60,60,75,75,75
UK,408.2,489.2,530.2,678.2,809.2,1351.2,1651.2,2083.2,2849.8,3470.8,4079.8,4758,6035,7586.3,8572.7,9212.2,10832.3,12596.9,13553.9
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
Albania,,,,,,,,,,,,,,,,,,,,,,,
Austria,50.0,67.0,109.0,322.0,581.0,825.22,968.27,991.16,991.97,1000.99,1015.83,1105.97,1337.15,1674.54,2110.28,2488.73,2730.0,2886.7,3132.71,3224.12,3225.98,3407.81,3735.81
Belgium,14.0,26.0,31.0,67.0,96.0,167.0,212.0,276.0,324.0,576.5,715.5,872.5,985.9,1061.3,1225.0,1469.3,1621.6,1902.2,2119.0,2308.0,2410.9,2686.6,2989.6
Bosnia Herzg,,,,,,,,,,,,0.3,0.3,0.3,0.3,0.3,0.3,0.3,51.0,87.0,87.0,135.0,135.0
Bulgaria,,,,,1.0,8.0,27.0,30.0,114.0,333.0,488.0,541.0,677.0,683.0,699.0,699.0,699.0,698.39,698.92,703.12,702.8,704.38,704.38
Croatia,,,,,6.0,6.0,17.0,17.0,17.0,70.0,79.0,130.0,180.0,254.0,339.0,418.0,483.0,576.1,586.3,646.3,801.3,986.9,1042.9
Czechia,2.0,,6.4,10.6,16.5,22.0,43.5,113.8,150.0,193.0,213.0,213.0,258.0,262.0,278.0,281.0,282.0,308.21,316.2,339.41,339.42,339.41,339.41
Denmark,2340.07,2447.2,2680.58,2696.57,2700.36,2704.49,2712.35,2700.86,2739.52,2821.24,2933.98,3080.53,3240.09,3547.87,3615.35,3805.92,3974.09,4225.15,4421.86,4409.74,4566.23,4715.24,4782.24
Estonia,,,1.0,3.0,7.0,31.0,31.0,50.0,77.0,104.0,108.0,180.0,266.0,248.0,275.0,300.0,310.0,311.8,310.0,316.0,317.0,315.0,315.0
Finland,38.0,39.0,43.0,52.0,82.0,82.0,86.0,110.0,119.0,123.0,170.7,172.7,230.7,420.7,600.7,973.0,1533.0,1971.3,1968.3,2211.0,2513.0,3184.0,5541.0
France,38.0,66.0,138.0,218.0,358.0,690.0,1412.0,2223.0,3403.0,4582.0,5912.0,6758.02,7607.5,8155.96,9201.42,10298.18,11566.56,13497.35,14898.14,16424.85,17512.0,18737.98,20637.98
Germany,6095.0,8754.0,12001.0,14381.0,16419.0,18248.0,20474.0,22116.0,22794.0,25697.0,26823.0,28524.0,30711.0,32969.0,37620.0,41297.0,45303.0,50174.0,52328.0,53187.0,54414.0,56046.0,58165.0
Greece,226.0,270.0,287.0,371.0,470.0,491.0,749.0,846.0,1022.0,1171.0,1298.0,1640.0,1753.0,1809.0,1978.0,2091.0,2370.0,2624.0,2877.5,3589.0,4119.25,4649.13,4879.13
Hungary,,1.0,1.0,3.0,3.0,17.0,33.0,61.0,134.0,203.0,293.0,331.0,325.0,329.0,329.0,329.0,329.0,329.0,329.0,323.0,323.0,324.0,324.0
Ireland,116.5,122.9,134.8,210.3,311.2,468.1,651.3,715.3,917.1,1226.1,1365.2,1559.4,1679.15,1898.1,2258.05,2425.95,2776.45,3293.95,3648.65,4101.25,4281.5,4313.84,4593.84
Italy,363.0,664.0,780.0,874.0,1127.0,1635.0,1902.0,2702.0,3525.0,4879.0,5794.0,6918.0,8102.0,8542.0,8683.0,9137.0,9384.0,9736.58,10230.25,10679.46,10870.62,11253.73,11749.73
Latvia,2.0,2.0,22.0,26.0,26.0,26.0,26.0,26.0,28.0,29.0,30.0,36.0,59.0,65.89,68.92,68.17,69.91,77.11,78.17,78.07,78.07,77.13,136.13
Lithuania,,,,,1.0,1.0,31.0,47.0,54.0,98.0,133.0,202.0,275.0,279.0,288.0,436.0,509.0,518.0,533.0,534.0,540.0,671.0,814.0
Luxembourg,14.0,13.9,13.9,20.5,34.9,34.9,34.9,34.9,42.92,42.93,43.73,44.53,58.33,58.33,58.34,63.79,119.69,119.69,122.89,135.79,152.74,136.44,165.44
Montenegro,,,,,,,,,,,,,,,,,,72.0,72.0,118.0,118.0,118.0,118.0
Netherlands,447.0,486.0,672.0,905.0,1075.0,1224.0,1453.0,1641.0,1921.0,1994.0,2009.0,2088.0,2205.0,2485.0,2637.0,3033.84,3300.12,3245.0,3436.11,3527.16,4188.38,5309.87,6176.0
North Macedonia,,,,,,,,,,,,,,,37.0,37.0,37.0,37.0,37.0,37.0,37.0,37.0,37.0
Norway,13.0,13.0,97.0,97.0,152.0,265.0,284.0,348.0,395.0,420.7,422.7,509.7,702.7,815.7,856.7,864.7,880.7,1204.7,1707.7,2911.7,4027.7,5042.7,5067.7
Poland,4.0,19.0,32.0,35.0,40.0,121.0,172.0,306.0,526.0,709.0,1108.0,1800.0,2564.0,3429.0,3836.0,4886.0,5747.0,5759.36,5766.08,5837.76,6298.25,6967.34,7987.34
Portugal,83.0,125.0,190.0,268.0,553.0,1064.0,1681.0,2201.0,2857.0,3326.0,3796.0,4254.35,4409.55,4607.95,4854.56,4934.84,5124.1,5124.1,5172.36,5222.75,5097.26,5402.33,5430.33
Romania,,,,,,1.0,1.0,3.0,5.0,15.0,389.0,988.0,1822.0,2773.0,3244.0,3130.0,3025.0,3029.8,3032.26,3037.52,3012.53,3014.96,3014.96
Serbia,,,,,,,,,,,,,0.5,0.5,0.5,10.4,17.0,25.0,227.0,398.0,398.0,398.0,398.0
Slovakia,,,,3.0,3.0,5.0,5.0,5.0,5.0,3.0,3.0,3.0,3.0,5.0,3.0,3.0,3.0,4.0,3.0,4.0,4.0,4.0,4.0
Slovenia,,,,,,,,,,,,,2.0,2.0,3.0,3.0,3.0,3.3,3.3,3.3,3.3,3.33,3.33
Spain,2206.0,3397.0,4891.0,5945.0,8317.0,9918.0,11722.0,14820.0,16555.0,19176.0,20693.0,21529.0,22789.0,22953.0,22920.0,22938.0,22985.0,23119.48,23400.06,25585.08,26814.19,27902.65,29302.84
Sweden,196.0,273.0,335.0,395.0,453.0,500.0,563.0,692.0,956.0,1312.0,1854.0,2601.0,3443.0,3982.0,4875.0,5606.0,6232.0,6408.0,7097.0,8478.0,9773.0,11923.0,14364.0
Switzerland,3.0,5.0,5.0,5.0,9.0,12.0,12.0,12.0,14.0,18.0,42.0,46.0,49.0,60.0,60.0,60.0,75.0,75.0,75.0,75.0,87.0,87.0,87.0
UK,431.0,490.0,531.0,678.0,809.0,1351.0,1651.0,2083.0,2849.8,3468.0,4080.0,4758.0,6035.0,7586.0,8573.0,9212.0,10833.0,12597.0,13425.0,13999.0,14075.0,14492.0,14832.0

1 Country/area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
2 Albania
3 Austria 50 50.0 67 67.0 109 109.0 322 322.0 581 581.0 825.2 825.22 968.3 968.27 991.2 991.16 992 991.97 1001 1000.99 1015.8 1015.83 1106 1105.97 1337.2 1337.15 1674.5 1674.54 2110.3 2110.28 2488.7 2488.73 2730 2730.0 2886.7 3132.7 3132.71 3224.12 3225.98 3407.81 3735.81
4 Belgium 14 14.0 26 26.0 31 31.0 67 67.0 96 96.0 167 167.0 212 212.0 276 276.0 324 324.0 576.5 715.5 872.5 989 985.9 1072.3 1061.3 1236.3 1225.0 1464 1469.3 1657.8 1621.6 1919.3 1902.2 2074.8 2119.0 2308.0 2410.9 2686.6 2989.6
5 Bosnia Herzg 0.3 0.3 0.3 0.3 0.3 0.3 0.3 50.9 51.0 87.0 87.0 135.0 135.0
6 Bulgaria 1 1.0 8 8.0 27 27.0 30 30.0 114 114.0 333 333.0 488 488.0 541 541.0 677 677.0 683 683.0 699 699.0 699 699.0 699 699.0 698.4 698.39 698.9 698.92 703.12 702.8 704.38 704.38
7 Croatia 6 6.0 6 6.0 17 17.0 17 17.0 17 17.0 70 70.0 79 79.0 130 130.0 180 180.0 254 254.0 339 339.0 418 418.0 483 483.0 576.1 586.3 646.3 801.3 986.9 1042.9
8 Czechia 2 2.0 6.4 10.6 16.5 22 22.0 43.5 113.8 150 150.0 193 193.0 213 213.0 213 213.0 258 258.0 262 262.0 278 278.0 281 281.0 282 282.0 308.2 308.21 316.2 339.41 339.42 339.41 339.41
9 Denmark 2340.1 2340.07 2447.2 2680.6 2680.58 2696.6 2696.57 2700.4 2700.36 2704.5 2704.49 2712.3 2712.35 2700.9 2700.86 2739.5 2739.52 2821.2 2821.24 2934 2933.98 3080.5 3080.53 3240.1 3240.09 3547.9 3547.87 3615.4 3615.35 3805.9 3805.92 3974.5 3974.09 4225.8 4225.15 4419.8 4421.86 4409.74 4566.23 4715.24 4782.24
10 Estonia 1 1.0 3 3.0 7 7.0 31 31.0 31 31.0 50 50.0 77 77.0 104 104.0 108 108.0 180 180.0 266 266.0 248 248.0 275 275.0 300 300.0 310 310.0 311.8 310 310.0 316.0 317.0 315.0 315.0
11 Finland 38 38.0 39 39.0 43 43.0 52 52.0 82 82.0 82 82.0 86 86.0 110 110.0 119 119.0 123 123.0 170.7 172.7 230.7 420.7 600.7 973 973.0 1533 1533.0 1971.3 1968.3 2211.0 2513.0 3184.0 5541.0
12 France 38 38.0 66 66.0 138 138.0 218 218.0 358 358.0 690 690.0 1412 1412.0 2223 2223.0 3403 3403.0 4582 4582.0 5912 5912.0 6758 6758.02 7607.5 8156 8155.96 9201.4 9201.42 10298.2 10298.18 11566.6 11566.56 13497.4 13497.35 14898.1 14898.14 16424.85 17512.0 18737.98 20637.98
13 Germany 6095 6095.0 8754 8754.0 12001 12001.0 14381 14381.0 16419 16419.0 18248 18248.0 20474 20474.0 22116 22116.0 22794 22794.0 25697 25697.0 26823 26823.0 28524 28524.0 30711 30711.0 32969 32969.0 37620 37620.0 41297 41297.0 45303 45303.0 50174 50174.0 52447 52328.0 53187.0 54414.0 56046.0 58165.0
14 Greece 226 226.0 270 270.0 287 287.0 371 371.0 470 470.0 491 491.0 749 749.0 846 846.0 1022 1022.0 1171 1171.0 1298 1298.0 1640 1640.0 1753 1753.0 1809 1809.0 1978 1978.0 2091 2091.0 2370 2370.0 2624 2624.0 2877.5 3589.0 4119.25 4649.13 4879.13
15 Hungary 1 1.0 1 1.0 3 3.0 3 3.0 17 17.0 33 33.0 61 61.0 134 134.0 203 203.0 293 293.0 331 331.0 325 325.0 329 329.0 329 329.0 329 329.0 329 329.0 329 329.0 329 329.0 323.0 323.0 324.0 324.0
16 Ireland 116.5 122.9 134.8 210.3 311.2 468.1 651.3 715.3 917.1 1226.1 1365.2 1559.4 1679.2 1679.15 1983 1898.1 2258.1 2258.05 2426 2425.95 2760.8 2776.45 3292.8 3293.95 3650.9 3648.65 4101.25 4281.5 4313.84 4593.84
17 Italy 363 363.0 664 664.0 780 780.0 874 874.0 1127 1127.0 1635 1635.0 1902 1902.0 2702 2702.0 3525 3525.0 4879 4879.0 5794 5794.0 6918 6918.0 8102 8102.0 8542 8542.0 8683 8683.0 9137 9137.0 9384 9384.0 9736.6 9736.58 10230.2 10230.25 10679.46 10870.62 11253.73 11749.73
18 Latvia 2 2.0 2 2.0 22 22.0 26 26.0 26 26.0 26 26.0 26 26.0 26 26.0 28 28.0 29 29.0 30 30.0 36 36.0 59 59.0 65.9 65.89 68.9 68.92 68.2 68.17 69.9 69.91 77.1 77.11 78.2 78.17 78.07 78.07 77.13 136.13
19 Lithuania 1 1.0 1 1.0 31 31.0 47 47.0 54 54.0 98 98.0 133 133.0 202 202.0 275 275.0 279 279.0 288 288.0 436 436.0 509 509.0 518 518.0 533 533.0 534.0 540.0 671.0 814.0
20 Luxembourg 14 14.0 13.9 13.9 20.5 34.9 34.9 34.9 34.9 42.9 42.92 42.9 42.93 43.7 43.73 44.5 44.53 58.3 58.33 58.3 58.33 58.3 58.34 63.8 63.79 119.7 119.69 119.7 119.69 122.9 122.89 135.79 152.74 136.44 165.44
21 Montenegro 72 72.0 118 72.0 118.0 118.0 118.0 118.0
22 Netherlands 447 447.0 486 486.0 672 672.0 905 905.0 1075 1075.0 1224 1224.0 1453 1453.0 1641 1641.0 1921 1921.0 1994 1994.0 2009 2009.0 2088 2088.0 2205 2205.0 2485 2485.0 2637 2637.0 3034 3033.84 3300 3300.12 3245 3245.0 3436 3436.11 3527.16 4188.38 5309.87 6176.0
23 North Macedonia 37 37.0 37 37.0 37 37.0 37 37.0 37 37.0 37.0 37.0 37.0 37.0
24 Norway 13 13.0 13 13.0 97 97.0 97 97.0 152 152.0 265 265.0 284 284.0 348 348.0 395 395.0 420.7 422.7 509.7 702.7 815.7 856.7 864.7 880.7 1204.7 1708 1707.7 2911.7 4027.7 5042.7 5067.7
25 Poland 4 4.0 19 19.0 32 32.0 35 35.0 40 40.0 121 121.0 172 172.0 306 306.0 526 526.0 709 709.0 1108 1108.0 1800 1800.0 2564 2564.0 3429 3429.0 3836 3836.0 4886 4886.0 5747 5747.0 5759.4 5759.36 5766.1 5766.08 5837.76 6298.25 6967.34 7987.34
26 Portugal 83 83.0 125 125.0 190 190.0 268 268.0 553 553.0 1064 1064.0 1681 1681.0 2201 2201.0 2857 2857.0 3326 3326.0 3796 3796.0 4254.4 4254.35 4409.6 4409.55 4607.9 4607.95 4854.6 4854.56 4934.8 4934.84 5124.1 5124.1 5172.4 5172.36 5222.75 5097.26 5402.33 5430.33
27 Romania 1 1.0 1 1.0 3 3.0 5 5.0 15 15.0 389 389.0 988 988.0 1822 1822.0 2773 2773.0 3244 3244.0 3130 3130.0 3025 3025.0 3029.8 3032.3 3032.26 3037.52 3012.53 3014.96 3014.96
28 Serbia 0.5 0.5 0.5 10.4 17 17.0 25 25.0 25 227.0 398.0 398.0 398.0 398.0
29 Slovakia 3 3.0 3 3.0 5 5.0 5 5.0 5 5.0 5 5.0 3 3.0 3 3.0 3 3.0 3 3.0 5 5.0 3 3.0 3 3.0 3 3.0 4 4.0 3 3.0 4.0 4.0 4.0 4.0
30 Slovenia 2.0 4 2.0 4 3.0 5 3.0 5 3.0 5 3.3 5.2 3.3 3.3 3.3 3.33 3.33
31 Spain 2206 2206.0 3397 3397.0 4891 4891.0 5945 5945.0 8317 8317.0 9918 9918.0 11722 11722.0 14820 14820.0 16555 16555.0 19176 19176.0 20693 20693.0 21529 21529.0 22789 22789.0 22953 22953.0 22920 22920.0 22938 22938.0 22985 22985.0 23119.5 23119.48 23400.1 23400.06 25585.08 26814.19 27902.65 29302.84
32 Sweden 196 196.0 273 273.0 335 335.0 395 395.0 453 453.0 500 500.0 563 563.0 692 692.0 956 956.0 1312 1312.0 1854 1854.0 2601 2601.0 3443 3443.0 3982 3982.0 4875 4875.0 5606 5606.0 6232 6232.0 6408 6408.0 7097 7097.0 8478.0 9773.0 11923.0 14364.0
33 Switzerland 3 3.0 5 5.0 5 5.0 5 5.0 9 9.0 12 12.0 12 12.0 12 12.0 14 14.0 18 18.0 42 42.0 46 46.0 49 49.0 60 60.0 60 60.0 60 60.0 75 75.0 75 75.0 75 75.0 75.0 87.0 87.0 87.0
34 UK 408.2 431.0 489.2 490.0 530.2 531.0 678.2 678.0 809.2 809.0 1351.2 1351.0 1651.2 1651.0 2083.2 2083.0 2849.8 3470.8 3468.0 4079.8 4080.0 4758 4758.0 6035 6035.0 7586.3 7586.0 8572.7 8573.0 9212.2 9212.0 10832.3 10833.0 12596.9 12597.0 13553.9 13425.0 13999.0 14075.0 14492.0 14832.0

View File

@ -1,34 +1,34 @@
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018
Albania,,0.1,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.3,0.4,0.6,0.7,0.8,0.9,1.1,1,1,1
Austria,5,7,9,23,27,21,22.4,24.2,30.1,48.9,88.8,174.1,337.5,626,785.2,937.1,1096,1269,1437.6
Belgium,,,1,1,1,2,2,20,62,386,1007,1979,2647,2902,3015.2,3131.7,3327,3616.2,3986.5
Bosnia Herzg,,,,0.1,0.2,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,1.3,7.2,8.2,14.1,16,18.2
Bulgaria,,,,,,,,0,0.1,2,25,154,1013,1020,1026,1029,1028,1035.6,1032.7
Croatia,,,,,,,,,,0.3,0.3,0.3,4,19,33,47.8,55.8,60,67.7
Czechia,0.1,0.1,0.2,0.3,0.4,0.6,0.8,4,39.5,464.6,1727,1913,2022,2063.5,2067.4,2074.9,2067.9,2069.5,2075.1
Denmark,1,1,2,2,2,3,3,3,3,5,7,17,402,571,607,782.1,851,906.4,998
Estonia,,,,,,,,,,0.1,0.1,0.2,0.4,1.5,3.3,6.5,10,15,31.9
Finland,2,3,3,3,4,4,5,5,6,6,7,7,8,9,11,17,39,82,140
France,7,7,8,9,11,13,15,26,80,277,1044,3003.6,4358.8,5277.3,6034.4,7137.5,7702.1,8610.4,9617
Germany,114,195,260,435,1105,2056,2899,4170,6120,10564,18004,25914,34075,36708,37898,39222,40677,42291,45179
Greece,,1,1,1,1,1,5,9,12,46,202,612,1536,2579,2596,2604,2604,2605.5,2651.6
Hungary,,,,,,,,0.4,1,1,2,4,12,35,89,172,235,344,726
Ireland,,,,,,,,,,0.6,0.7,0.8,0.9,1,1.6,2.4,5.9,15.7,24.2
Italy,19,20,22,26,31,34,45,110,483,1264,3592,13131,16785,18185,18594,18901,19283,19682.3,20107.6
Latvia,,,,,,,,,,,,,0.2,0.2,0.2,0.2,0.7,0.7,2
Lithuania,,,,,,,,,0.1,0.1,0.1,0.3,7,68,69,69,70,73.8,82
Luxembourg,,0.2,1.6,14.2,23.6,23.6,23.7,23.9,24.6,26.4,29.5,40.7,74.7,95,109.9,116.3,121.9,128.1,130.6
Montenegro,,,,,,,0,0.2,0.4,0.4,0.6,0.8,0.9,1.1,2.1,2.7,3.1,3.4,3.4
Netherlands,13,21,26,46,50,51,53,54,59,69,90,149,369,746,1048,1515,2049,2903,4522
North Macedonia,,,,,,,,,,,0,2,4,7,15,17,16.7,16.7,20.6
Norway,6,6,6,7,7,7,8,8,8.3,8.7,9.1,9.5,10,11,13,15,26.7,44.9,68.4
Poland,,,,,,,,,,,,1.1,1.3,2.4,27.2,107.8,187.2,287.1,562
Portugal,1,1,1,2,2,2,3,24,59,115,134,172,238,296,415,447,512.8,579.2,667.4
Romania,,,,,,,,,0.1,0.1,0.1,1,41,761,1293,1326,1372,1374.1,1385.8
Serbia,,,,,,0.1,0.2,0.4,0.9,1.2,1.3,1.5,3.1,4.7,6,9,11,10,10
Slovakia,,,,,,,,,,,19,496,513,533,533,533,533,528,472
Slovenia,,,0,0,0,0,0.2,0.6,1,4,12,57,142,187,223,238,233,246.8,221.3
Spain,10,13,17,22,33,52,130,494,3384,3423,3873,4283,4569,4690,4697,4704,4713,4723,4763.5
Sweden,3,3,3,4,4,4,5,6,8,9,11,12,24,43,60,104,153,402,492
Switzerland,16,18,20,22,24,28,30,37,49,79,125,223,437,756,1061,1394,1664,1906,2171
UK,2,3,4,6,8,11,14,18,23,27,95,1000,1753,2937,5528,9601.2,11930.5,12781.8,13118.3
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
Albania,,0.1,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.3,0.4,0.56,0.68,0.76,0.87,1.05,1.0,1.0,1.0,14.0,21.0,23.0,28.6
Austria,5.0,7.0,9.0,23.0,27.0,18.49,19.61,21.42,27.0,45.56,85.27,169.88,333.09,620.78,779.76,931.56,1089.53,1262.01,1447.94,1694.4,2034.74,2773.91,3538.91
Belgium,,,1.0,1.0,1.0,2.0,2.0,20.0,62.0,386.0,1006.6,1978.6,2646.6,2901.6,3015.0,3131.6,3328.8,3620.6,4000.0,4636.6,5572.8,6012.4,6898.4
Bosnia Herzg,,,,0.1,0.2,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.35,1.34,7.17,8.17,14.12,16.0,18.15,22.35,34.89,56.51,107.47
Bulgaria,,,,,,,,0.03,0.1,2.0,25.0,154.0,921.99,1038.54,1028.92,1027.89,1029.89,1030.7,1033.06,1044.39,1100.21,1274.71,1948.36
Croatia,,,,,,,,,,0.3,0.3,0.3,4.0,19.0,33.0,47.8,55.8,60.0,67.7,84.8,108.5,138.3,182.3
Czechia,0.1,0.1,0.2,0.3,0.4,0.59,0.84,3.96,39.5,464.6,1727.0,1913.0,2022.0,2063.5,2067.4,2074.9,2067.9,2075.44,2081.05,2110.67,2171.96,2246.09,2627.09
Denmark,1.0,1.0,2.0,2.0,2.0,3.0,3.0,3.0,3.0,5.0,7.0,17.0,402.0,571.0,607.0,782.11,850.95,906.35,998.0,1080.0,1304.29,1704.04,3122.04
Estonia,,,,,,,,,,0.1,0.1,0.2,0.38,1.5,3.34,6.5,10.0,15.0,31.9,120.6,207.67,394.77,534.77
Finland,2.0,3.0,3.0,3.0,4.0,4.0,5.0,5.0,6.0,6.0,7.0,7.0,8.0,9.0,11.0,17.0,39.0,82.0,140.0,222.0,318.0,425.0,590.6
France,7.0,7.0,8.0,9.0,11.0,13.0,15.0,26.0,80.0,277.0,1044.0,3003.57,4358.75,5277.29,6034.42,7137.52,7702.08,8610.44,9638.88,10738.39,11812.2,14436.97,17036.97
Germany,114.0,195.0,260.0,435.0,1105.0,2056.0,2899.0,4170.0,6120.0,10564.0,18004.0,25914.0,34075.0,36708.0,37898.0,39222.0,40677.0,42291.0,45156.0,48912.0,53669.0,59371.0,66662.0
Greece,,1.0,1.0,1.0,1.0,1.0,5.0,9.0,12.0,46.0,202.0,612.0,1536.0,2579.0,2596.0,2604.0,2604.0,2605.53,2651.57,2833.79,3287.72,4277.42,5557.42
Hungary,,,,,,,,0.4,1.0,1.0,2.0,4.0,12.0,35.0,89.0,172.0,235.0,344.0,728.0,1400.0,2131.0,2968.0,2988.0
Ireland,,,,,,,,,,,,,,,,,,,,,,,
Italy,19.0,20.0,22.0,26.0,31.0,34.0,45.0,110.0,483.0,1264.0,3592.0,13131.0,16785.0,18185.0,18594.0,18901.0,19283.0,19682.29,20107.59,20865.28,21650.04,22594.26,25076.56
Latvia,,,,,,,,,,,,,,,,,0.69,0.69,1.96,3.3,5.1,7.16,56.16
Lithuania,,,,,,,,,0.1,0.1,0.1,0.3,7.0,68.0,69.0,69.0,70.0,70.08,72.0,73.0,80.0,84.0,397.0
Luxembourg,,0.16,1.59,14.17,23.56,23.58,23.7,23.93,24.56,26.36,29.45,40.67,74.65,95.02,109.93,116.27,121.9,128.1,130.62,159.74,186.64,277.16,319.16
Montenegro,,,,,,,,,,,,,,,,,,,,,2.57,2.57,22.2
Netherlands,13.0,21.0,26.0,46.0,50.0,51.0,53.0,54.0,59.0,69.0,90.0,149.0,287.0,650.0,1007.0,1526.26,2135.02,2910.89,4608.0,7226.0,11108.43,14910.69,18848.69
North Macedonia,,,,,,,,,,,,2.0,4.0,7.0,15.0,17.0,16.7,16.7,16.7,16.71,84.93,84.93,84.93
Norway,6.0,6.0,6.0,7.0,7.0,7.0,8.0,8.0,8.3,8.7,9.1,9.5,10.0,11.0,13.0,15.0,26.7,44.9,53.11,102.53,141.53,186.53,302.53
Poland,,,,,,,,,,,,1.11,1.3,2.39,27.15,107.78,187.25,287.09,561.98,1539.26,3954.96,7415.52,11166.52
Portugal,1.0,1.0,1.0,2.0,2.0,2.0,3.0,24.0,59.0,115.0,134.0,169.6,235.6,293.6,412.6,441.75,493.05,539.42,617.85,832.74,1010.07,1474.78,2364.78
Romania,,,,,,,,,0.1,0.1,0.1,1.0,41.0,761.0,1293.0,1326.0,1372.0,1374.13,1385.82,1397.71,1382.54,1393.92,1413.92
Serbia,,,,,,0.1,0.2,0.4,0.9,1.2,1.3,1.5,3.1,4.7,6.0,9.0,11.0,10.0,11.0,11.0,11.5,11.94,11.94
Slovakia,,,,,,,,,,,19.0,496.0,513.0,533.0,533.0,533.0,533.0,528.0,472.0,590.0,535.0,537.0,537.0
Slovenia,1.0,1.0,,,,0.05,0.19,0.59,1.0,4.0,12.0,57.0,142.0,187.0,223.0,238.0,233.0,246.8,246.8,277.88,369.78,461.16,632.16
Spain,1.0,3.0,6.0,10.0,19.0,37.0,113.0,476.0,3365.0,3403.0,3851.0,4260.0,4545.0,4665.0,4672.0,4677.0,4687.0,4696.0,4730.7,8772.02,10100.42,13678.4,18176.73
Sweden,3.0,3.0,3.0,4.0,4.0,4.0,5.0,6.0,8.0,9.0,11.0,12.0,24.0,43.0,60.0,104.0,153.0,231.0,411.0,698.0,1090.0,1587.0,2587.0
Switzerland,16.0,18.0,20.0,22.0,24.0,28.0,30.0,37.0,49.0,79.0,125.0,223.0,437.0,756.0,1061.0,1394.0,1664.0,1906.0,2173.0,2498.0,2973.0,3655.0,4339.92
UK,2.0,3.0,4.0,6.0,8.0,11.0,14.0,18.0,23.0,27.0,95.0,1000.0,1753.0,2937.0,5528.0,9601.0,11914.0,12760.0,13059.0,13345.0,13579.0,13965.0,14660.0

1 Country/area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
2 Albania 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.6 0.56 0.7 0.68 0.8 0.76 0.9 0.87 1.1 1.05 1 1.0 1 1.0 1 1.0 14.0 21.0 23.0 28.6
3 Austria 5 5.0 7 7.0 9 9.0 23 23.0 27 27.0 21 18.49 22.4 19.61 24.2 21.42 30.1 27.0 48.9 45.56 88.8 85.27 174.1 169.88 337.5 333.09 626 620.78 785.2 779.76 937.1 931.56 1096 1089.53 1269 1262.01 1437.6 1447.94 1694.4 2034.74 2773.91 3538.91
4 Belgium 1 1.0 1 1.0 1 1.0 2 2.0 2 2.0 20 20.0 62 62.0 386 386.0 1007 1006.6 1979 1978.6 2647 2646.6 2902 2901.6 3015.2 3015.0 3131.7 3131.6 3327 3328.8 3616.2 3620.6 3986.5 4000.0 4636.6 5572.8 6012.4 6898.4
5 Bosnia Herzg 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 1.3 1.34 7.2 7.17 8.2 8.17 14.1 14.12 16 16.0 18.2 18.15 22.35 34.89 56.51 107.47
6 Bulgaria 0 0.03 0.1 2 2.0 25 25.0 154 154.0 1013 921.99 1020 1038.54 1026 1028.92 1029 1027.89 1028 1029.89 1035.6 1030.7 1032.7 1033.06 1044.39 1100.21 1274.71 1948.36
7 Croatia 0.3 0.3 0.3 4 4.0 19 19.0 33 33.0 47.8 55.8 60 60.0 67.7 84.8 108.5 138.3 182.3
8 Czechia 0.1 0.1 0.2 0.3 0.4 0.6 0.59 0.8 0.84 4 3.96 39.5 464.6 1727 1727.0 1913 1913.0 2022 2022.0 2063.5 2067.4 2074.9 2067.9 2069.5 2075.44 2075.1 2081.05 2110.67 2171.96 2246.09 2627.09
9 Denmark 1 1.0 1 1.0 2 2.0 2 2.0 2 2.0 3 3.0 3 3.0 3 3.0 3 3.0 5 5.0 7 7.0 17 17.0 402 402.0 571 571.0 607 607.0 782.1 782.11 851 850.95 906.4 906.35 998 998.0 1080.0 1304.29 1704.04 3122.04
10 Estonia 0.1 0.1 0.2 0.4 0.38 1.5 3.3 3.34 6.5 10 10.0 15 15.0 31.9 120.6 207.67 394.77 534.77
11 Finland 2 2.0 3 3.0 3 3.0 3 3.0 4 4.0 4 4.0 5 5.0 5 5.0 6 6.0 6 6.0 7 7.0 7 7.0 8 8.0 9 9.0 11 11.0 17 17.0 39 39.0 82 82.0 140 140.0 222.0 318.0 425.0 590.6
12 France 7 7.0 7 7.0 8 8.0 9 9.0 11 11.0 13 13.0 15 15.0 26 26.0 80 80.0 277 277.0 1044 1044.0 3003.6 3003.57 4358.8 4358.75 5277.3 5277.29 6034.4 6034.42 7137.5 7137.52 7702.1 7702.08 8610.4 8610.44 9617 9638.88 10738.39 11812.2 14436.97 17036.97
13 Germany 114 114.0 195 195.0 260 260.0 435 435.0 1105 1105.0 2056 2056.0 2899 2899.0 4170 4170.0 6120 6120.0 10564 10564.0 18004 18004.0 25914 25914.0 34075 34075.0 36708 36708.0 37898 37898.0 39222 39222.0 40677 40677.0 42291 42291.0 45179 45156.0 48912.0 53669.0 59371.0 66662.0
14 Greece 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 5 5.0 9 9.0 12 12.0 46 46.0 202 202.0 612 612.0 1536 1536.0 2579 2579.0 2596 2596.0 2604 2604.0 2604 2604.0 2605.5 2605.53 2651.6 2651.57 2833.79 3287.72 4277.42 5557.42
15 Hungary 0.4 1 1.0 1 1.0 2 2.0 4 4.0 12 12.0 35 35.0 89 89.0 172 172.0 235 235.0 344 344.0 726 728.0 1400.0 2131.0 2968.0 2988.0
16 Ireland 0.6 0.7 0.8 0.9 1 1.6 2.4 5.9 15.7 24.2
17 Italy 19 19.0 20 20.0 22 22.0 26 26.0 31 31.0 34 34.0 45 45.0 110 110.0 483 483.0 1264 1264.0 3592 3592.0 13131 13131.0 16785 16785.0 18185 18185.0 18594 18594.0 18901 18901.0 19283 19283.0 19682.3 19682.29 20107.6 20107.59 20865.28 21650.04 22594.26 25076.56
18 Latvia 0.2 0.2 0.2 0.2 0.7 0.69 0.7 0.69 2 1.96 3.3 5.1 7.16 56.16
19 Lithuania 0.1 0.1 0.1 0.3 7 7.0 68 68.0 69 69.0 69 69.0 70 70.0 73.8 70.08 82 72.0 73.0 80.0 84.0 397.0
20 Luxembourg 0.2 0.16 1.6 1.59 14.2 14.17 23.6 23.56 23.6 23.58 23.7 23.9 23.93 24.6 24.56 26.4 26.36 29.5 29.45 40.7 40.67 74.7 74.65 95 95.02 109.9 109.93 116.3 116.27 121.9 128.1 130.6 130.62 159.74 186.64 277.16 319.16
21 Montenegro 0 0.2 0.4 0.4 0.6 0.8 0.9 1.1 2.1 2.7 3.1 3.4 3.4 2.57 2.57 22.2
22 Netherlands 13 13.0 21 21.0 26 26.0 46 46.0 50 50.0 51 51.0 53 53.0 54 54.0 59 59.0 69 69.0 90 90.0 149 149.0 369 287.0 746 650.0 1048 1007.0 1515 1526.26 2049 2135.02 2903 2910.89 4522 4608.0 7226.0 11108.43 14910.69 18848.69
23 North Macedonia 0 2 2.0 4 4.0 7 7.0 15 15.0 17 17.0 16.7 16.7 20.6 16.7 16.71 84.93 84.93 84.93
24 Norway 6 6.0 6 6.0 6 6.0 7 7.0 7 7.0 7 7.0 8 8.0 8 8.0 8.3 8.7 9.1 9.5 10 10.0 11 11.0 13 13.0 15 15.0 26.7 44.9 68.4 53.11 102.53 141.53 186.53 302.53
25 Poland 1.1 1.11 1.3 2.4 2.39 27.2 27.15 107.8 107.78 187.2 187.25 287.1 287.09 562 561.98 1539.26 3954.96 7415.52 11166.52
26 Portugal 1 1.0 1 1.0 1 1.0 2 2.0 2 2.0 2 2.0 3 3.0 24 24.0 59 59.0 115 115.0 134 134.0 172 169.6 238 235.6 296 293.6 415 412.6 447 441.75 512.8 493.05 579.2 539.42 667.4 617.85 832.74 1010.07 1474.78 2364.78
27 Romania 0.1 0.1 0.1 1 1.0 41 41.0 761 761.0 1293 1293.0 1326 1326.0 1372 1372.0 1374.1 1374.13 1385.8 1385.82 1397.71 1382.54 1393.92 1413.92
28 Serbia 0.1 0.2 0.4 0.9 1.2 1.3 1.5 3.1 4.7 6 6.0 9 9.0 11 11.0 10 10.0 10 11.0 11.0 11.5 11.94 11.94
29 Slovakia 19 19.0 496 496.0 513 513.0 533 533.0 533 533.0 533 533.0 533 533.0 528 528.0 472 472.0 590.0 535.0 537.0 537.0
30 Slovenia 1.0 1.0 0 0 0 0 0.05 0.2 0.19 0.6 0.59 1 1.0 4 4.0 12 12.0 57 57.0 142 142.0 187 187.0 223 223.0 238 238.0 233 233.0 246.8 221.3 246.8 277.88 369.78 461.16 632.16
31 Spain 10 1.0 13 3.0 17 6.0 22 10.0 33 19.0 52 37.0 130 113.0 494 476.0 3384 3365.0 3423 3403.0 3873 3851.0 4283 4260.0 4569 4545.0 4690 4665.0 4697 4672.0 4704 4677.0 4713 4687.0 4723 4696.0 4763.5 4730.7 8772.02 10100.42 13678.4 18176.73
32 Sweden 3 3.0 3 3.0 3 3.0 4 4.0 4 4.0 4 4.0 5 5.0 6 6.0 8 8.0 9 9.0 11 11.0 12 12.0 24 24.0 43 43.0 60 60.0 104 104.0 153 153.0 402 231.0 492 411.0 698.0 1090.0 1587.0 2587.0
33 Switzerland 16 16.0 18 18.0 20 20.0 22 22.0 24 24.0 28 28.0 30 30.0 37 37.0 49 49.0 79 79.0 125 125.0 223 223.0 437 437.0 756 756.0 1061 1061.0 1394 1394.0 1664 1664.0 1906 1906.0 2171 2173.0 2498.0 2973.0 3655.0 4339.92
34 UK 2 2.0 3 3.0 4 4.0 6 6.0 8 8.0 11 11.0 14 14.0 18 18.0 23 23.0 27 27.0 95 95.0 1000 1000.0 1753 1753.0 2937 2937.0 5528 5528.0 9601.2 9601.0 11930.5 11914.0 12781.8 12760.0 13118.3 13059.0 13345.0 13579.0 13965.0 14660.0

View File

@ -5,6 +5,7 @@ retrieve_databundle,bool,"{true, false}","Switch to retrieve databundle from zen
retrieve_sector_databundle,bool,"{true, false}","Switch to retrieve sector databundle from zenodo via the rule :mod:`retrieve_sector_databundle` or whether to keep a custom databundle located in the corresponding folder."
retrieve_cost_data,bool,"{true, false}","Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_."
build_cutout,bool,"{true, false}","Switch to enable the building of cutouts via the rule :mod:`build_cutout`."
retrieve_irena,bool,"{true, false}",Switch to enable the retrieval of ``existing_capacities`` from IRENASTAT with :mod:`retrieve_irena`.
retrieve_cutout,bool,"{true, false}","Switch to enable the retrieval of cutouts from zenodo with :mod:`retrieve_cutout`."
build_natura_raster,bool,"{true, false}","Switch to enable the creation of the raster ``natura.tiff`` via the rule :mod:`build_natura_raster`."
retrieve_natura_raster,bool,"{true, false}","Switch to enable the retrieval of ``natura.tiff`` from zenodo with :mod:`retrieve_natura_raster`."

1 Unit Values Description
5 retrieve_sector_databundle bool {true, false} Switch to retrieve sector databundle from zenodo via the rule :mod:`retrieve_sector_databundle` or whether to keep a custom databundle located in the corresponding folder.
6 retrieve_cost_data bool {true, false} Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_.
7 build_cutout bool {true, false} Switch to enable the building of cutouts via the rule :mod:`build_cutout`.
8 retrieve_irena bool {true, false} Switch to enable the retrieval of ``existing_capacities`` from IRENASTAT with :mod:`retrieve_irena`.
9 retrieve_cutout bool {true, false} Switch to enable the retrieval of cutouts from zenodo with :mod:`retrieve_cutout`.
10 build_natura_raster bool {true, false} Switch to enable the creation of the raster ``natura.tiff`` via the rule :mod:`build_natura_raster`.
11 retrieve_natura_raster bool {true, false} Switch to enable the retrieval of ``natura.tiff`` from zenodo with :mod:`retrieve_natura_raster`.

View File

@ -79,6 +79,7 @@ allam_cycle,--,"{true, false}",Add option to include `Allam cycle gas power plan
hydrogen_fuel_cell,--,"{true, false}",Add option to include hydrogen fuel cell for re-electrification. Assuming OCGT technology costs
hydrogen_turbine,--,"{true, false}",Add option to include hydrogen turbine for re-electrification. Assuming OCGT technology costs
SMR,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR)
SMR CC,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR) and Carbon Capture (CC)
regional_co2 _sequestration_potential,,,
-- enable,--,"{true, false}",Add option for regionally-resolved geological carbon dioxide sequestration potentials based on `CO2StoP <https://setis.ec.europa.eu/european-co2-storage-database_en>`_.
-- attribute,--,string,Name of the attribute for the sequestration potential

1 Unit Values Description
79 hydrogen_fuel_cell -- {true, false} Add option to include hydrogen fuel cell for re-electrification. Assuming OCGT technology costs
80 hydrogen_turbine -- {true, false} Add option to include hydrogen turbine for re-electrification. Assuming OCGT technology costs
81 SMR -- {true, false} Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR)
82 SMR CC -- {true, false} Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR) and Carbon Capture (CC)
83 regional_co2 _sequestration_potential
84 -- enable -- {true, false} Add option for regionally-resolved geological carbon dioxide sequestration potentials based on `CO2StoP <https://setis.ec.europa.eu/european-co2-storage-database_en>`_.
85 -- attribute -- string Name of the attribute for the sequestration potential

View File

@ -10,3 +10,4 @@ private,,,
remote,,,
-- ssh,--,,Optionally specify the SSH of a remote cluster to be synchronized.
-- path,--,,Optionally specify the file path within the remote cluster to be synchronized.
focus_weights,,,Optionally specify the focus weights for the clustering of countries. For instance: `DE: 0.8` will distribute 80% of all nodes to Germany and 20% to the rest of the countries.

1 Unit Values Description
10 remote
11 -- ssh -- Optionally specify the SSH of a remote cluster to be synchronized.
12 -- path -- Optionally specify the file path within the remote cluster to be synchronized.
13 focus_weights Optionally specify the focus weights for the clustering of countries. For instance: `DE: 0.8` will distribute 80% of all nodes to Germany and 20% to the rest of the countries.

View File

@ -185,7 +185,7 @@ For sector-coupling studies: ::
pages = "1--25"
year = "2023",
eprint = "2207.05816",
doi = "10.1016/j.joule.2022.04.016",
doi = "10.1016/j.joule.2023.06.016",
}
For sector-coupling studies with pathway optimisation: ::

View File

@ -29,10 +29,17 @@ Upcoming Release
* Rule ``purge`` now initiates a dialog to confirm if purge is desired.
* Rule ``retrieve_irena`` get updated values for renewables capacities.
* Split configuration to enable SMR and SMR CC.
* The ``mock_snakemake`` function can now be used with a Snakefile from a different directory using the new ``root_dir`` argument.
**Bugs and Compatibility**
* A bug preventing custom powerplants specified in ``data/custom_powerplants.csv`` was fixed. (https://github.com/PyPSA/pypsa-eur/pull/732)
* Fix nodal fraction in ``add_existing_year`` when using distributed generators
PyPSA-Eur 0.8.1 (27th July 2023)

View File

@ -91,7 +91,7 @@ None.
**Outputs**
- ``data/load_raw.csv``
- ``resources/load_raw.csv``
Rule ``retrieve_cost_data``
@ -118,6 +118,11 @@ This rule downloads techno-economic assumptions from the `technology-data reposi
- ``resources/costs.csv``
Rule ``retrieve_irena``
================================
.. automodule:: retrieve_irena
Rule ``retrieve_ship_raster``
================================

View File

@ -25,7 +25,7 @@ full model, which allows the user to explore most of its functionalities on a
local machine. The tutorial will cover examples on how to configure and
customise the PyPSA-Eur model and run the ``snakemake`` workflow step by step
from network creation to the solved network. The configuration for the tutorial
is located at ``test/config.electricity.yaml``. It includes parts deviating from
is located at ``config/test/config.electricity.yaml``. It includes parts deviating from
the default config file ``config/config.default.yaml``. To run the tutorial with this
configuration, execute
@ -96,7 +96,7 @@ open-source solver GLPK.
:start-at: solver:
:end-before: plotting:
Note, that ``test/config.electricity.yaml`` only includes changes relative to
Note, that ``config/test/config.electricity.yaml`` only includes changes relative to
the default configuration. There are many more configuration options, which are
documented at :ref:`config`.

View File

@ -11,6 +11,8 @@ dependencies:
- pip
- atlite>=0.2.9
- pypsa==0.25.2
- linopy
- dask
- jupyter
- nbconvert
@ -36,7 +38,7 @@ dependencies:
- scipy
- shapely>=2.0
- pyomo
- matplotlib<3.6
- matplotlib
- proj
- fiona
- country_converter
@ -57,5 +59,4 @@ dependencies:
- pip:
- git+https://github.com/fneum/tsam.git@performance
- pypsa>=0.25.2
- tsam>=2.3.1

View File

@ -24,7 +24,7 @@ rule build_electricity_demand:
countries=config["countries"],
load=config["load"],
input:
ancient("data/load_raw.csv"),
ancient(RESOURCES + "load_raw.csv"),
output:
RESOURCES + "load.csv",
log:
@ -278,7 +278,7 @@ rule build_renewable_profiles:
),
ship_density=lambda w: (
RESOURCES + "shipdensity_raster.tif"
if "ship_threshold" in config["renewable"][w.technology].keys()
if config["renewable"][w.technology].get("ship_threshold", False)
else []
),
country_shapes=RESOURCES + "country_shapes.geojson",

View File

@ -609,7 +609,7 @@ if config["sector"]["retrofitting"]["retro_endogen"]:
countries=config["countries"],
input:
building_stock="data/retro/data_building_stock.csv",
data_tabula="data/retro/tabula-calculator-calcsetbuilding.csv",
data_tabula="data/bundle-sector/retro/tabula-calculator-calcsetbuilding.csv",
air_temperature=RESOURCES + "temp_air_total_elec_s{simpl}_{clusters}.nc",
u_values_PL="data/retro/u_values_poland.csv",
tax_w="data/retro/electricity_taxes_eu.csv",

View File

@ -42,6 +42,24 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle",
"../scripts/retrieve_databundle.py"
if config["enable"].get("retrieve_irena"):
rule retrieve_irena:
output:
offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
log:
LOGS + "retrieve_irena.log",
resources:
mem_mb=1000,
retries: 2
conda:
"../envs/environment.yaml"
script:
"../scripts/retrieve_irena.py"
if config["enable"]["retrieve"] and config["enable"].get("retrieve_cutout", True):
rule retrieve_cutout:
@ -180,7 +198,7 @@ if config["enable"]["retrieve"]:
static=True,
),
output:
"data/load_raw.csv",
RESOURCES + "load_raw.csv",
log:
LOGS + "retrieve_electricity_demand.log",
resources:

View File

@ -191,7 +191,7 @@ def progress_retrieve(url, file, disable=False):
urllib.request.urlretrieve(url, file, reporthook=update_to)
def mock_snakemake(rulename, configfiles=[], **wildcards):
def mock_snakemake(rulename, root_dir=None, configfiles=[], **wildcards):
"""
This function is expected to be executed from the 'scripts'-directory of '
the snakemake project. It returns a snakemake.script.Snakemake object,
@ -203,6 +203,8 @@ def mock_snakemake(rulename, configfiles=[], **wildcards):
----------
rulename: str
name of the rule for which the snakemake object should be generated
root_dir: str/path-like
path to the root directory of the snakemake project
configfiles: list, str
list of configfiles to be used to update the config
**wildcards:
@ -217,7 +219,10 @@ def mock_snakemake(rulename, configfiles=[], **wildcards):
from snakemake.script import Snakemake
script_dir = Path(__file__).parent.resolve()
root_dir = script_dir.parent
if root_dir is None:
root_dir = script_dir.parent
else:
root_dir = Path(root_dir).resolve()
user_in_script_dir = Path.cwd().resolve() == script_dir
if user_in_script_dir:

View File

@ -120,7 +120,6 @@ def add_brownfield(n, n_p, year):
n.links.loc[new_pipes, "p_nom_min"] = 0.0
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake

View File

@ -88,7 +88,9 @@ def add_existing_renewables(df_agg):
]
cfs = n.generators_t.p_max_pu[gens].mean()
cfs_key = cfs / cfs.sum()
nodal_fraction.loc[n.generators.loc[gens, "bus"]] = cfs_key.values
nodal_fraction.loc[n.generators.loc[gens, "bus"]] = cfs_key.groupby(
n.generators.loc[gens, "bus"]
).sum()
nodal_df = df.loc[n.buses.loc[elec_buses, "country"]]
nodal_df.index = elec_buses
@ -630,7 +632,6 @@ def add_heating_capacities_installed_before_baseyear(
n.mremove("Link", links_i)
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake

View File

@ -31,7 +31,7 @@ Relevant Settings
Inputs
------
- ``data/load_raw.csv``:
- ``resources/load_raw.csv``:
Outputs
-------

View File

@ -96,23 +96,6 @@ def prepare_hotmaps_database(regions):
gdf.rename(columns={"index_right": "bus"}, inplace=True)
gdf["country"] = gdf.bus.str[:2]
# the .sjoin can lead to duplicates if a geom is in two regions
if gdf.index.duplicated().any():
import pycountry
# get all duplicated entries
duplicated_i = gdf.index[gdf.index.duplicated()]
# convert from raw data country name to iso-2-code
s = df.loc[duplicated_i, "Country"].apply(
lambda x: pycountry.countries.lookup(x).alpha_2
)
# Get a boolean mask where gdf's country column matches s's values for the same index
mask = gdf["country"] == gdf.index.map(s)
# Filter gdf using the mask
gdf_filtered = gdf[mask]
# concat not duplicated and filtered gdf
gdf = pd.concat([gdf.drop(duplicated_i), gdf_filtered]).sort_index()
# the .sjoin can lead to duplicates if a geom is in two overlapping regions
if gdf.index.duplicated().any():
# get all duplicated entries
@ -164,7 +147,6 @@ def build_nodal_distribution_key(hotmaps, regions, countries):
return keys
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake

View File

@ -251,7 +251,7 @@ if __name__ == "__main__":
snakemake.input.corine, codes=codes, buffer=buffer, crs=3035
)
if "ship_threshold" in params:
if params.get("ship_threshold"):
shipping_threshold = (
params["ship_threshold"] * 8760 * 6
) # approximation because 6 years of data which is hourly collected

View File

@ -102,7 +102,7 @@ solar_energy_transmittance = (
)
# solar global radiation [kWh/(m^2a)]
solar_global_radiation = pd.Series(
[246, 401, 246, 148],
[271, 392, 271, 160],
index=["east", "south", "west", "north"],
name="solar_global_radiation [kWh/(m^2a)]",
)
@ -164,6 +164,12 @@ def prepare_building_stock_data():
},
inplace=True,
)
building_data["feature"].replace(
{
"Construction features (U-value)": "Construction features (U-values)",
},
inplace=True,
)
building_data.country_code = building_data.country_code.str.upper()
building_data["subsector"].replace(
@ -198,12 +204,14 @@ def prepare_building_stock_data():
}
)
building_data["country_code"] = building_data["country"].map(country_iso_dic)
# heated floor area ----------------------------------------------------------
area = building_data[
(building_data.type == "Heated area [Mm²]")
& (building_data.subsector != "Total")
]
area_tot = area.groupby(["country", "sector"]).sum()
area_tot = area[["country", "sector", "value"]].groupby(["country", "sector"]).sum()
area = pd.concat(
[
area,
@ -223,7 +231,7 @@ def prepare_building_stock_data():
usecols=[0, 1, 2, 3],
encoding="ISO-8859-1",
)
area_tot = area_tot.append(area_missing.unstack(level=-1).dropna().stack())
area_tot = pd.concat([area_tot, area_missing.unstack(level=-1).dropna().stack()])
area_tot = area_tot.loc[~area_tot.index.duplicated(keep="last")]
# for still missing countries calculate floor area by population size
@ -246,7 +254,7 @@ def prepare_building_stock_data():
averaged_data.index = index
averaged_data["estimated"] = 1
if ct not in area_tot.index.levels[0]:
area_tot = area_tot.append(averaged_data, sort=True)
area_tot = pd.concat([area_tot, averaged_data], sort=True)
else:
area_tot.loc[averaged_data.index] = averaged_data
@ -272,7 +280,7 @@ def prepare_building_stock_data():
][x["bage"]].iloc[0],
axis=1,
)
data_PL_final = data_PL_final.append(data_PL)
data_PL_final = pd.concat([data_PL_final, data_PL])
u_values = pd.concat([u_values, data_PL_final]).reset_index(drop=True)
@ -943,7 +951,8 @@ def sample_dE_costs_area(
.rename(index=rename_sectors, level=2)
.reset_index()
)
.rename(columns={"country": "country_code"})
# if uncommented, leads to the second `country_code` column
# .rename(columns={"country": "country_code"})
.set_index(["country_code", "subsector", "bage"])
)
@ -956,13 +965,14 @@ def sample_dE_costs_area(
)
# map missing countries
for ct in countries.difference(cost_dE.index.levels[0]):
for ct in set(countries).difference(cost_dE.index.levels[0]):
averaged_data = (
cost_dE.reindex(index=map_for_missings[ct], level=0)
.mean(level=1)
.groupby(level=1)
.mean()
.set_index(pd.MultiIndex.from_product([[ct], cost_dE.index.levels[1]]))
)
cost_dE = cost_dE.append(averaged_data)
cost_dE = pd.concat([cost_dE, averaged_data])
# weights costs after construction index
if construction_index:
@ -979,24 +989,23 @@ def sample_dE_costs_area(
# drop not considered countries
cost_dE = cost_dE.reindex(countries, level=0)
# get share of residential and service floor area
sec_w = area_tot.value / area_tot.value.groupby(level=0).sum()
sec_w = area_tot.div(area_tot.groupby(level=0).transform("sum"))
# get the total cost-energy-savings weight by sector area
tot = (
cost_dE.mul(sec_w, axis=0)
.groupby(level="country_code")
# sec_w has columns "estimated" and "value"
cost_dE.mul(sec_w.value, axis=0)
# for some reasons names of the levels were lost somewhere
# .groupby(level="country_code")
.groupby(level=0)
.sum()
.set_index(
pd.MultiIndex.from_product(
[cost_dE.index.unique(level="country_code"), ["tot"]]
)
)
.set_index(pd.MultiIndex.from_product([cost_dE.index.unique(level=0), ["tot"]]))
)
cost_dE = cost_dE.append(tot).unstack().stack()
cost_dE = pd.concat([cost_dE, tot]).unstack().stack()
summed_area = pd.DataFrame(area_tot.groupby("country").sum()).set_index(
pd.MultiIndex.from_product([area_tot.index.unique(level="country"), ["tot"]])
summed_area = pd.DataFrame(area_tot.groupby(level=0).sum()).set_index(
pd.MultiIndex.from_product([area_tot.index.unique(level=0), ["tot"]])
)
area_tot = area_tot.append(summed_area).unstack().stack()
area_tot = pd.concat([area_tot, summed_area]).unstack().stack()
cost_per_saving = cost_dE["cost"] / (
1 - cost_dE["dE"]

View File

@ -237,7 +237,7 @@ def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"):
n_clusters >= len(N) and n_clusters <= N.sum()
), f"Number of clusters must be {len(N)} <= n_clusters <= {N.sum()} for this selection of countries."
if focus_weights is not None:
if isinstance(focus_weights, dict):
total_focus = sum(list(focus_weights.values()))
assert (
@ -271,7 +271,7 @@ def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"):
)
opt = po.SolverFactory(solver_name)
if not opt.has_capability("quadratic_objective"):
if solver_name == "appsi_highs" or not opt.has_capability("quadratic_objective"):
logger.warning(
f"The configured solver `{solver_name}` does not support quadratic objectives. Falling back to `ipopt`."
)
@ -466,6 +466,7 @@ if __name__ == "__main__":
params = snakemake.params
solver_name = snakemake.config["solving"]["solver"]["name"]
solver_name = "appsi_highs" if solver_name == "highs" else solver_name
n = pypsa.Network(snakemake.input.network)

View File

@ -28,6 +28,16 @@ idx = pd.IndexSlice
opt_name = {"Store": "e", "Line": "s", "Transformer": "s"}
def reindex_columns(df, cols):
investments = cols.levels[3]
if len(cols.names) != len(df.columns.levels):
df = pd.concat([df] * len(investments), axis=1)
df.columns = cols
df = df.reindex(cols, axis=1)
return df
def calculate_costs(n, label, costs):
investments = n.investment_periods
cols = pd.MultiIndex.from_product(
@ -39,7 +49,8 @@ def calculate_costs(n, label, costs):
],
names=costs.columns.names[:3] + ["year"],
)
costs = costs.reindex(cols, axis=1)
costs = reindex_columns(costs, cols)
for c in n.iterate_components(
n.branch_components | n.controllable_one_port_components ^ {"Load"}
@ -176,7 +187,7 @@ def calculate_capacities(n, label, capacities):
],
names=capacities.columns.names[:3] + ["year"],
)
capacities = capacities.reindex(cols, axis=1)
capacities = reindex_columns(capacities, cols)
for c in n.iterate_components(
n.branch_components | n.controllable_one_port_components ^ {"Load"}
@ -229,7 +240,7 @@ def calculate_energy(n, label, energy):
],
names=energy.columns.names[:3] + ["year"],
)
energy = energy.reindex(cols, axis=1)
energy = reindex_columns(energy, cols)
for c in n.iterate_components(n.one_port_components | n.branch_components):
if c.name in n.one_port_components:
@ -336,7 +347,7 @@ def calculate_supply_energy(n, label, supply_energy):
],
names=supply_energy.columns.names[:3] + ["year"],
)
supply_energy = supply_energy.reindex(cols, axis=1)
supply_energy = reindex_columns(supply_energy, cols)
bus_carriers = n.buses.carrier.unique()
@ -604,7 +615,7 @@ def calculate_price_statistics(n, label, price_statistics):
price_statistics.at["mean", label] = n.buses_t.marginal_price[buses].mean().mean()
price_statistics.at["standard_deviation", label] = (
n.buses_t.marginal_price[buses].droplevel(0).unstack().std()
n.buses_t.marginal_price[buses].std().std()
)
return price_statistics
@ -706,7 +717,6 @@ def to_csv(df):
df[key].to_csv(snakemake.output[key])
# %%
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if "snakemake" not in globals():

View File

@ -1060,7 +1060,6 @@ def plot_map_perfect(
)
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake

View File

@ -33,8 +33,6 @@ if __name__ == "__main__":
lambda s: s != "", "lightgrey"
)
# %%
def rename_index(ds):
specific = ds.index.map(lambda x: f"{x[1]}\n({x[0]})")
generic = ds.index.get_level_values("carrier")

View File

@ -452,7 +452,6 @@ def plot_carbon_budget_distribution(input_eurostat):
sns.set()
sns.set_style("ticks")
plt.style.use("seaborn-ticks")
plt.rcParams["xtick.direction"] = "in"
plt.rcParams["ytick.direction"] = "in"
plt.rcParams["xtick.labelsize"] = 20
@ -564,7 +563,6 @@ def plot_carbon_budget_distribution(input_eurostat):
plt.savefig(path, bbox_inches="tight")
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake

View File

@ -274,7 +274,6 @@ def set_line_nom_max(
n.links.p_nom_max.clip(upper=p_nom_max_set, inplace=True)
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake

View File

@ -493,7 +493,6 @@ def set_temporal_aggregation_SEG(n, opts, solver_name):
return n
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake

View File

@ -1392,7 +1392,7 @@ def add_storage_and_grids(n, costs):
lifetime=costs.at["coal", "lifetime"],
)
if options["SMR"]:
if options["SMR_cc"]:
n.madd(
"Link",
spatial.nodes,
@ -1410,6 +1410,7 @@ def add_storage_and_grids(n, costs):
lifetime=costs.at["SMR CC", "lifetime"],
)
if options["SMR"]:
n.madd(
"Link",
nodes + " SMR",
@ -1555,14 +1556,7 @@ def add_land_transport(n, costs):
)
if ice_share > 0:
if "oil" not in n.buses.carrier.unique():
n.madd(
"Bus",
spatial.oil.nodes,
location=spatial.oil.locations,
carrier="oil",
unit="MWh_LHV",
)
add_carrier_buses(n, "oil")
ice_efficiency = options["transport_internal_combustion_efficiency"]
@ -1699,6 +1693,18 @@ def add_heat(n, costs):
unit="MWh_th",
)
if name == "urban central" and options.get("central_heat_vent"):
n.madd(
"Generator",
nodes[name] + f" {name} heat vent",
location=nodes[name],
carrier=name + " heat vent",
p_nom_extendable=True,
p_max_pu=0,
p_min_pu=-1,
unit="MWh_th",
)
## Add heat load
for sector in sectors:
@ -1953,7 +1959,7 @@ def add_heat(n, costs):
# demand 'dE' [per unit of original heat demand] for each country and
# different retrofitting strengths [additional insulation thickness in m]
retro_data = pd.read_csv(
snakemake.input.retro_cost_energy,
snakemake.input.retro_cost,
index_col=[0, 1],
skipinitialspace=True,
header=[0, 1],
@ -1997,7 +2003,11 @@ def add_heat(n, costs):
space_heat_demand = demand * w_space[sec][node]
# normed time profile of space heat demand 'space_pu' (values between 0-1),
# p_max_pu/p_min_pu of retrofitting generators
space_pu = (space_heat_demand / space_heat_demand.max()).to_frame(name=node)
space_pu = (
(space_heat_demand / space_heat_demand.max())
.to_frame(name=node)
.fillna(0)
)
# minimum heat demand 'dE' after retrofitting in units of original heat demand (values between 0-1)
dE = retro_data.loc[(ct, sec), ("dE")]
@ -2009,6 +2019,9 @@ def add_heat(n, costs):
* floor_area_node
/ ((1 - dE) * space_heat_demand.max())
)
if space_heat_demand.max() == 0:
capital_cost = capital_cost.apply(lambda b: 0 if b == np.inf else b)
# number of possible retrofitting measures 'strengths' (set in list at config.yaml 'l_strength')
# given in additional insulation thickness [m]
# for each measure, a retrofitting generator is added at the node

107
scripts/retrieve_irena.py Normal file
View File

@ -0,0 +1,107 @@
# -*- coding: utf-8 -*-
# Copyright 2023 Thomas Gilon (Climact)
# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
This rule downloads the existing capacities from `IRENASTAT <https://www.irena.org/Data/Downloads/IRENASTAT>`_ and extracts it in the ``data/existing_capacities`` sub-directory.
**Relevant Settings**
.. code:: yaml
enable:
retrieve_irena:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`enable_cf`
**Outputs**
- ``data/existing_capacities``: existing capacities for offwind, onwind and solar
"""
import logging
import pandas as pd
from _helpers import configure_logging
logger = logging.getLogger(__name__)
REGIONS = [
"Albania",
"Austria",
"Belgium",
"Bosnia and Herzegovina",
"Bulgaria",
"Croatia",
"Czechia",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Montenegro",
# "Netherlands",
"Netherlands (Kingdom of the)",
"North Macedonia",
"Norway",
"Poland",
"Portugal",
"Romania",
"Serbia",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
# "United Kingdom",
"United Kingdom of Great Britain and Northern Ireland (the)",
]
REGIONS_DICT = {
"Bosnia and Herzegovina": "Bosnia Herzg",
"Netherlands (Kingdom of the)": "Netherlands",
"United Kingdom of Great Britain and Northern Ireland (the)": "UK",
}
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("retrieve_irena")
configure_logging(snakemake)
irena_raw = pd.read_csv(
"https://pxweb.irena.org:443/sq/99e64b12-fe03-4a7b-92ea-a22cc3713b92",
skiprows=2,
index_col=[0, 1, 3],
encoding="latin-1",
)
var = "Installed electricity capacity (MW)"
irena = irena_raw[var].unstack(level=2).reset_index(level=1).replace(0, "")
irena = irena[irena.index.isin(REGIONS)]
irena.rename(index=REGIONS_DICT, inplace=True)
df_offwind = irena[irena.Technology.str.contains("Offshore")].drop(
columns=["Technology"]
)
df_onwind = irena[irena.Technology.str.contains("Onshore")].drop(
columns=["Technology"]
)
df_pv = irena[irena.Technology.str.contains("Solar")].drop(columns=["Technology"])
df_offwind.to_csv(snakemake.output["offwind"])
df_onwind.to_csv(snakemake.output["onwind"])
df_pv.to_csv(snakemake.output["solar"])

View File

@ -350,7 +350,7 @@ def prepare_network(
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
# TODO: retrieve color and nice name from config
n.add("Carrier", "load", color="#dd2e23", nice_name="Load shedding")
buses_i = n.buses.query("carrier == 'AC'").index
buses_i = n.buses.index
if not np.isscalar(load_shedding):
# TODO: do not scale via sign attribute (use Eur/MWh instead of Eur/kWh)
load_shedding = 1e2 # Eur/kWh
@ -844,7 +844,6 @@ def solve_network(n, config, solving, opts="", **kwargs):
return n
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake