update mocksnakemake for testing
This commit is contained in:
commit
dadfa8691b
694
LICENSE.txt
694
LICENSE.txt
@ -1,674 +1,20 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
{one line to give the program's name and a brief idea of what it does.}
|
||||
Copyright (C) {year} {name of author}
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
{project} Copyright (C) {year} {fullname}
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
||||
MIT License
|
||||
|
||||
Copyright 2017-2021 The PyPSA-Eur Authors
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||
this software and associated documentation files (the "Software"), to deal in
|
||||
the Software without restriction, including without limitation the rights to
|
||||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software is furnished to do so,
|
||||
subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||||
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||||
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
@ -65,6 +65,6 @@ the additional sectors.
|
||||
# Licence
|
||||
|
||||
The code in PyPSA-Eur-Sec is released as free software under the
|
||||
[GPLv3](http://www.gnu.org/licenses/gpl-3.0.en.html), see LICENSE.txt.
|
||||
[MIT License](https://opensource.org/licenses/MIT), see `LICENSE.txt`.
|
||||
However, different licenses and terms of use may apply to the various
|
||||
input data.
|
||||
|
18
Snakefile
18
Snakefile
@ -188,6 +188,21 @@ rule build_biomass_potentials:
|
||||
script: 'scripts/build_biomass_potentials.py'
|
||||
|
||||
|
||||
if config["sector"]["biomass_transport"]:
|
||||
rule build_biomass_transport_costs:
|
||||
input:
|
||||
transport_cost_data=HTTP.remote("publications.jrc.ec.europa.eu/repository/bitstream/JRC98626/biomass potentials in europe_web rev.pdf", keep_local=True)
|
||||
output:
|
||||
biomass_transport_costs="resources/biomass_transport_costs.csv",
|
||||
threads: 1
|
||||
resources: mem_mb=1000
|
||||
benchmark: "benchmarks/build_biomass_transport_costs"
|
||||
script: 'scripts/build_biomass_transport_costs.py'
|
||||
build_biomass_transport_costs_output = rules.build_biomass_transport_costs.output
|
||||
else:
|
||||
build_biomass_transport_costs_output = {}
|
||||
|
||||
|
||||
rule build_ammonia_production:
|
||||
input:
|
||||
usgs="data/myb1-2017-nitro.xls"
|
||||
@ -360,7 +375,8 @@ rule prepare_sector_network:
|
||||
solar_thermal_total="resources/solar_thermal_total_elec_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_urban="resources/solar_thermal_urban_elec_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_rural="resources/solar_thermal_rural_elec_s{simpl}_{clusters}.nc",
|
||||
**build_retro_cost_output
|
||||
**build_retro_cost_output,
|
||||
**build_biomass_transport_costs_output
|
||||
output: RDIR + '/prenetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc'
|
||||
threads: 1
|
||||
resources: mem_mb=2000
|
||||
|
@ -72,7 +72,7 @@ electricity:
|
||||
|
||||
# regulate what components with which carriers are kept from PyPSA-Eur;
|
||||
# some technologies are removed because they are implemented differently
|
||||
# (e.g. battery or H2 storage) or have different year-dependent costs
|
||||
# (e.g. battery or H2 storage) or have different year-dependent costs
|
||||
# in PyPSA-Eur-Sec
|
||||
pypsa_eur:
|
||||
Bus:
|
||||
@ -223,7 +223,8 @@ sector:
|
||||
co2_vent: true
|
||||
SMR: true
|
||||
co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe
|
||||
co2_sequestration_cost: 20 #EUR/tCO2 for transport and sequestration of CO2
|
||||
co2_sequestration_cost: 10 #EUR/tCO2 for sequestration of CO2
|
||||
co2_network: false
|
||||
cc_fraction: 0.9 # default fraction of CO2 captured with post-combustion capture
|
||||
hydrogen_underground_storage: true
|
||||
use_fischer_tropsch_waste_heat: true
|
||||
@ -233,6 +234,7 @@ sector:
|
||||
electricity_grid_connection: true # only applies to onshore wind and utility PV
|
||||
gas_distribution_grid: true
|
||||
gas_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv
|
||||
biomass_transport: false # biomass transport between nodes
|
||||
conventional_generation: # generator : carrier
|
||||
OCGT: gas
|
||||
|
||||
@ -274,7 +276,6 @@ industry:
|
||||
hotmaps_locate_missing: false
|
||||
reference_year: 2015
|
||||
|
||||
|
||||
costs:
|
||||
lifetime: 25 #default lifetime
|
||||
# From a Lion Hirth paper, also reflects average of Noothout et al 2016
|
||||
@ -335,7 +336,7 @@ solving:
|
||||
|
||||
plotting:
|
||||
map:
|
||||
boundaries: [-11, 30, 34, 71]
|
||||
boundaries: [-11, 30, 34, 71]
|
||||
color_geomap:
|
||||
ocean: white
|
||||
land: whitesmoke
|
||||
@ -420,6 +421,7 @@ plotting:
|
||||
lines: k
|
||||
transmission lines: k
|
||||
H2: m
|
||||
H2 liquefaction: m
|
||||
hydrogen storage: m
|
||||
battery: slategray
|
||||
battery storage: slategray
|
||||
@ -466,6 +468,7 @@ plotting:
|
||||
hot water storage: '#BBBBBB'
|
||||
hot water charging: '#BBBBBB'
|
||||
hot water discharging: '#999999'
|
||||
CO2 pipeline: '#999999'
|
||||
CHP: r
|
||||
CHP heat: r
|
||||
CHP electric: r
|
||||
@ -506,5 +509,6 @@ plotting:
|
||||
shipping oil: "#6495ED"
|
||||
shipping oil emissions: "#6495ED"
|
||||
electricity distribution grid: '#333333'
|
||||
solid biomass transport: green
|
||||
H2 for industry: "#222222"
|
||||
H2 for shipping: "#6495ED"
|
||||
|
@ -134,7 +134,7 @@ it.
|
||||
Licence
|
||||
=======
|
||||
|
||||
The code in PyPSA-Eur-Sec is released as free software under the `GPLv3
|
||||
<http://www.gnu.org/licenses/gpl-3.0.en.html>`_, see
|
||||
The code in PyPSA-Eur-Sec is released as free software under the
|
||||
`MIT license <https://opensource.org/licenses/MIT>`_, see
|
||||
`LICENSE <https://github.com/PyPSA/pypsa-eur-sec/blob/master/LICENSE.txt>`_.
|
||||
However, different licenses and terms of use may apply to the various input data.
|
||||
|
@ -8,6 +8,8 @@ Future release
|
||||
.. note::
|
||||
This unreleased version currently requires the master branches of PyPSA, PyPSA-Eur, and the technology-data repository.
|
||||
|
||||
* With this release, we change the license from copyleft GPLv3 to the more
|
||||
liberal MIT license with the consent of all contributors.
|
||||
* Extended use of ``multiprocessing`` for much better performance
|
||||
(from up to 20 minutes to less than one minute).
|
||||
* Compatibility with ``atlite>=0.2``. Older versions of ``atlite`` will no longer work.
|
||||
@ -60,6 +62,14 @@ Future release
|
||||
These are included in the environment specifications of PyPSA-Eur.
|
||||
* Consistent use of ``__main__`` block and further unspecific code cleaning.
|
||||
* Distinguish costs for home battery storage and inverter from utility-scale battery costs.
|
||||
* Add option to regionally resolve CO2 storage and add CO2 pipeline transport because geological storage potential,
|
||||
CO2 utilisation sites and CO2 capture sites may be separated.
|
||||
The CO2 network is built from zero based on the topology of the electricity grid (greenfield).
|
||||
Pipelines are assumed to be bidirectional and lossless.
|
||||
Furthermore, neither retrofitting of natural gas pipelines (required pressures are too high, 80-160 bar vs <80 bar)
|
||||
nor other modes of CO2 transport (by ship, road or rail) are considered.
|
||||
The regional representation of CO2 is activated with the config setting ``sector: co2_network: true`` but is deactivated by default.
|
||||
The global limit for CO2 sequestration now applies to the sum of all CO2 stores via an ``extra_functionality`` constraint.
|
||||
* Added option for hydrogen liquefaction costs for hydrogen demand in shipping.
|
||||
This introduces a new ``H2 liquid`` bus at each location.
|
||||
It is activated via ``sector: shipping_hydrogen_liquefaction: true``.
|
||||
|
@ -44,11 +44,13 @@ Hydrogen network: nodal.
|
||||
Methane network: single node for Europe, since future demand is so
|
||||
low and no bottlenecks are expected.
|
||||
|
||||
Solid biomass: single node for Europe, until transport costs can be
|
||||
incorporated.
|
||||
Solid biomass: choice between single node for Europe and nodal where biomass
|
||||
potential is regionally disaggregated (currently given per country,
|
||||
then distributed by population density within)
|
||||
and transport of solid biomass is possible.
|
||||
|
||||
CO2: single node for Europe, but a transport and storage cost is added for
|
||||
sequestered CO2.
|
||||
sequestered CO2. Optionally: nodal, with CO2 transport via pipelines.
|
||||
|
||||
Liquid hydrocarbons: single node for Europe, since transport costs for
|
||||
liquids are low.
|
||||
|
@ -28,7 +28,7 @@ def add_build_year_to_new_assets(n, baseyear):
|
||||
# Give assets with lifetimes and no build year the build year baseyear
|
||||
for c in n.iterate_components(["Link", "Generator", "Store"]):
|
||||
|
||||
assets = c.df.index[~c.df.lifetime.isna() & c.df.build_year.isna()]
|
||||
assets = c.df.index[~c.df.lifetime.isna() & c.df.build_year==0]
|
||||
c.df.loc[assets, "build_year"] = baseyear
|
||||
|
||||
# add -baseyear to name
|
||||
@ -60,7 +60,7 @@ def add_existing_renewables(df_agg):
|
||||
}
|
||||
|
||||
for tech in ['solar', 'onwind', 'offwind']:
|
||||
|
||||
|
||||
carrier = carriers[tech]
|
||||
|
||||
df = pd.read_csv(snakemake.input[f"existing_{tech}"], index_col=0).fillna(0.)
|
||||
@ -112,9 +112,9 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
|
||||
Parameters
|
||||
----------
|
||||
n : pypsa.Network
|
||||
grouping_years :
|
||||
grouping_years :
|
||||
intervals to group existing capacities
|
||||
costs :
|
||||
costs :
|
||||
to read lifetime to estimate YearDecomissioning
|
||||
baseyear : int
|
||||
"""
|
||||
@ -209,7 +209,7 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
|
||||
build_year=grouping_year,
|
||||
lifetime=costs.at[generator, 'lifetime']
|
||||
)
|
||||
|
||||
|
||||
else:
|
||||
|
||||
n.madd("Link",
|
||||
@ -268,7 +268,7 @@ def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years
|
||||
df.fillna(0., inplace=True)
|
||||
|
||||
# convert GW to MW
|
||||
df *= 1e3
|
||||
df *= 1e3
|
||||
|
||||
cc = pd.read_csv(snakemake.input.country_codes, index_col=0)
|
||||
|
||||
@ -327,7 +327,7 @@ def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years
|
||||
efficiency = cop[heat_pump_type][nodes[name]]
|
||||
else:
|
||||
efficiency = costs.at[costs_name, 'efficiency']
|
||||
|
||||
|
||||
for i, grouping_year in enumerate(grouping_years):
|
||||
|
||||
if int(grouping_year) + default_lifetime <= int(baseyear):
|
||||
@ -378,7 +378,7 @@ def add_heating_capacities_installed_before_baseyear(n, baseyear, grouping_years
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[name_type + ' gas boiler', 'lifetime']
|
||||
)
|
||||
|
||||
|
||||
n.madd("Link",
|
||||
nodes[name],
|
||||
suffix=f" {name} oil boiler-{grouping_year}",
|
||||
@ -410,7 +410,8 @@ if __name__ == "__main__":
|
||||
simpl='',
|
||||
clusters=45,
|
||||
lv=1.0,
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
||||
opts='',
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar+p3-dist1',
|
||||
planning_horizons=2020,
|
||||
)
|
||||
|
||||
|
90
scripts/build_biomass_transport_costs.py
Normal file
90
scripts/build_biomass_transport_costs.py
Normal file
@ -0,0 +1,90 @@
|
||||
"""
|
||||
Reads biomass transport costs for different countries of the JRC report
|
||||
|
||||
"The JRC-EU-TIMES model.
|
||||
Bioenergy potentials
|
||||
for EU and neighbouring countries."
|
||||
(2015)
|
||||
|
||||
converts them from units 'EUR per km/ton' -> 'EUR/ (km MWh)'
|
||||
|
||||
assuming as an approximation energy content of wood pellets
|
||||
|
||||
@author: bw0928
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import tabula as tbl
|
||||
|
||||
ENERGY_CONTENT = 4.8 # unit MWh/t (wood pellets)
|
||||
|
||||
def get_countries():
|
||||
|
||||
pandas_options = dict(
|
||||
skiprows=range(6),
|
||||
header=None,
|
||||
index_col=0
|
||||
)
|
||||
|
||||
return tbl.read_pdf(
|
||||
str(snakemake.input.transport_cost_data),
|
||||
pages="145",
|
||||
multiple_tables=False,
|
||||
pandas_options=pandas_options
|
||||
)[0].index
|
||||
|
||||
|
||||
def get_cost_per_tkm(page, countries):
|
||||
|
||||
pandas_options = dict(
|
||||
skiprows=range(6),
|
||||
header=0,
|
||||
sep=' |,',
|
||||
engine='python',
|
||||
index_col=False,
|
||||
)
|
||||
|
||||
sc = tbl.read_pdf(
|
||||
str(snakemake.input.transport_cost_data),
|
||||
pages=page,
|
||||
multiple_tables=False,
|
||||
pandas_options=pandas_options
|
||||
)[0]
|
||||
sc.index = countries
|
||||
sc.columns = sc.columns.str.replace("€", "EUR")
|
||||
|
||||
return sc
|
||||
|
||||
|
||||
def build_biomass_transport_costs():
|
||||
|
||||
countries = get_countries()
|
||||
|
||||
sc1 = get_cost_per_tkm(146, countries)
|
||||
sc2 = get_cost_per_tkm(147, countries)
|
||||
|
||||
# take mean of both supply chains
|
||||
to_concat = [sc1["EUR/km/ton"], sc2["EUR/km/ton"]]
|
||||
transport_costs = pd.concat(to_concat, axis=1).mean(axis=1)
|
||||
|
||||
# convert tonnes to MWh
|
||||
transport_costs /= ENERGY_CONTENT
|
||||
transport_costs.name = "EUR/km/MWh"
|
||||
|
||||
# rename country names
|
||||
to_rename = {
|
||||
"UK": "GB",
|
||||
"XK": "KO",
|
||||
"EL": "GR"
|
||||
}
|
||||
transport_costs.rename(to_rename, inplace=True)
|
||||
|
||||
# add missing Norway with data from Sweden
|
||||
transport_costs["NO"] = transport_costs["SE"]
|
||||
|
||||
transport_costs.to_csv(snakemake.output[0])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
build_biomass_transport_costs()
|
@ -90,8 +90,8 @@ if __name__ == '__main__':
|
||||
|
||||
for key, pop in pop_cells.items():
|
||||
|
||||
ycoords = ('y', cutout.coords['y'])
|
||||
xcoords = ('x', cutout.coords['x'])
|
||||
ycoords = ('y', cutout.coords['y'].data)
|
||||
xcoords = ('x', cutout.coords['x'].data)
|
||||
values = pop.values.reshape(cutout.shape)
|
||||
layout = xr.DataArray(values, [ycoords, xcoords])
|
||||
|
||||
|
@ -289,7 +289,7 @@ def plot_h2_map(network):
|
||||
title='Electrolyzer capacity',
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax)
|
||||
)
|
||||
|
||||
|
||||
ax.add_artist(l2)
|
||||
|
||||
handles = []
|
||||
@ -398,7 +398,8 @@ def plot_series(network, carrier="AC", name="test"):
|
||||
|
||||
supply = pd.DataFrame(index=n.snapshots)
|
||||
for c in n.iterate_components(n.branch_components):
|
||||
for i in range(2):
|
||||
n_port = 4 if c.name=='Link' else 2
|
||||
for i in range(n_port):
|
||||
supply = pd.concat((supply,
|
||||
(-1) * c.pnl["p" + str(i)].loc[:,
|
||||
c.df.index[c.df["bus" + str(i)].isin(buses)]].groupby(c.df.carrier,
|
||||
@ -522,10 +523,11 @@ if __name__ == "__main__":
|
||||
snakemake = mock_snakemake(
|
||||
'plot_network',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
lv=1.0,
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
||||
planning_horizons=2050,
|
||||
clusters=45,
|
||||
lv=1.5,
|
||||
opts='',
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar+p3-dist1',
|
||||
planning_horizons=2030,
|
||||
)
|
||||
|
||||
overrides = override_component_attrs(snakemake.input.overrides)
|
||||
|
@ -19,6 +19,56 @@ from helper import override_component_attrs
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
from types import SimpleNamespace
|
||||
spatial = SimpleNamespace()
|
||||
|
||||
|
||||
def define_spatial(nodes):
|
||||
"""
|
||||
Namespace for spatial
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nodes : list-like
|
||||
"""
|
||||
|
||||
global spatial
|
||||
global options
|
||||
|
||||
spatial.nodes = nodes
|
||||
|
||||
# biomass
|
||||
|
||||
spatial.biomass = SimpleNamespace()
|
||||
|
||||
if options["biomass_transport"]:
|
||||
spatial.biomass.nodes = nodes + " solid biomass"
|
||||
spatial.biomass.locations = nodes
|
||||
spatial.biomass.industry = nodes + " solid biomass for industry"
|
||||
spatial.biomass.industry_cc = nodes + " solid biomass for industry CC"
|
||||
else:
|
||||
spatial.biomass.nodes = ["EU solid biomass"]
|
||||
spatial.biomass.locations = ["EU"]
|
||||
spatial.biomass.industry = ["solid biomass for industry"]
|
||||
spatial.biomass.industry_cc = ["solid biomass for industry CC"]
|
||||
|
||||
spatial.biomass.df = pd.DataFrame(vars(spatial.biomass), index=nodes)
|
||||
|
||||
# co2
|
||||
|
||||
spatial.co2 = SimpleNamespace()
|
||||
|
||||
if options["co2_network"]:
|
||||
spatial.co2.nodes = nodes + " co2 stored"
|
||||
spatial.co2.locations = nodes
|
||||
spatial.co2.vents = nodes + " co2 vent"
|
||||
else:
|
||||
spatial.co2.nodes = ["co2 stored"]
|
||||
spatial.co2.locations = ["EU"]
|
||||
spatial.co2.vents = ["co2 vent"]
|
||||
|
||||
spatial.co2.df = pd.DataFrame(vars(spatial.co2), index=nodes)
|
||||
|
||||
|
||||
def emission_sectors_from_opts(opts):
|
||||
|
||||
@ -54,6 +104,40 @@ def get(item, investment_year=None):
|
||||
return item
|
||||
|
||||
|
||||
def create_network_topology(n, prefix, connector=" -> "):
|
||||
"""
|
||||
Create a network topology like the power transmission network.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : pypsa.Network
|
||||
prefix : str
|
||||
connector : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
pd.DataFrame with columns bus0, bus1 and length
|
||||
"""
|
||||
|
||||
ln_attrs = ["bus0", "bus1", "length"]
|
||||
lk_attrs = ["bus0", "bus1", "length", "underwater_fraction"]
|
||||
|
||||
candidates = pd.concat([
|
||||
n.lines[ln_attrs],
|
||||
n.links.loc[n.links.carrier == "DC", lk_attrs]
|
||||
]).fillna(0)
|
||||
|
||||
positive_order = candidates.bus0 < candidates.bus1
|
||||
candidates_p = candidates[positive_order]
|
||||
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
||||
candidates_n = candidates[~positive_order].rename(columns=swap_buses)
|
||||
candidates = pd.concat([candidates_p, candidates_n])
|
||||
|
||||
topo = candidates.groupby(["bus0", "bus1"], as_index=False).mean()
|
||||
topo.index = topo.apply(lambda c: prefix + c.bus0 + connector + c.bus1, axis=1)
|
||||
return topo
|
||||
|
||||
|
||||
def co2_emissions_year(countries, opts, year):
|
||||
"""
|
||||
Calculate CO2 emissions in one specific year (e.g. 1990 or 2018).
|
||||
@ -75,7 +159,7 @@ def co2_emissions_year(countries, opts, year):
|
||||
co2_emissions = co2_totals.loc[countries, sectors].sum().sum()
|
||||
|
||||
# convert MtCO2 to GtCO2
|
||||
co2_emissions *= 0.001
|
||||
co2_emissions *= 0.001
|
||||
|
||||
return co2_emissions
|
||||
|
||||
@ -102,17 +186,14 @@ def build_carbon_budget(o, fn):
|
||||
|
||||
#emissions at the beginning of the path (last year available 2018)
|
||||
e_0 = co2_emissions_year(countries, opts, year=2018)
|
||||
|
||||
#emissions in 2019 and 2020 assumed equal to 2018 and substracted
|
||||
carbon_budget -= 2 * e_0
|
||||
|
||||
|
||||
planning_horizons = snakemake.config['scenario']['planning_horizons']
|
||||
t_0 = planning_horizons[0]
|
||||
|
||||
if "be" in o:
|
||||
|
||||
# final year in the path
|
||||
t_f = t_0 + (2 * carbon_budget / e_0).round(0)
|
||||
t_f = t_0 + (2 * carbon_budget / e_0).round(0)
|
||||
|
||||
def beta_decay(t):
|
||||
cdf_term = (t - t_0) / (t_f - t_0)
|
||||
@ -144,6 +225,53 @@ def add_lifetime_wind_solar(n, costs):
|
||||
n.generators.loc[gen_i, "lifetime"] = costs.at[carrier, 'lifetime']
|
||||
|
||||
|
||||
def create_network_topology(n, prefix, connector=" -> ", bidirectional=True):
|
||||
"""
|
||||
Create a network topology like the power transmission network.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : pypsa.Network
|
||||
prefix : str
|
||||
connector : str
|
||||
bidirectional : bool, default True
|
||||
True: one link for each connection
|
||||
False: one link for each connection and direction (back and forth)
|
||||
|
||||
Returns
|
||||
-------
|
||||
pd.DataFrame with columns bus0, bus1 and length
|
||||
"""
|
||||
|
||||
ln_attrs = ["bus0", "bus1", "length"]
|
||||
lk_attrs = ["bus0", "bus1", "length", "underwater_fraction"]
|
||||
|
||||
candidates = pd.concat([
|
||||
n.lines[ln_attrs],
|
||||
n.links.loc[n.links.carrier == "DC", lk_attrs]
|
||||
]).fillna(0)
|
||||
|
||||
positive_order = candidates.bus0 < candidates.bus1
|
||||
candidates_p = candidates[positive_order]
|
||||
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
||||
candidates_n = candidates[~positive_order].rename(columns=swap_buses)
|
||||
candidates = pd.concat([candidates_p, candidates_n])
|
||||
|
||||
def make_index(c):
|
||||
return prefix + c.bus0 + connector + c.bus1
|
||||
|
||||
topo = candidates.groupby(["bus0", "bus1"], as_index=False).mean()
|
||||
topo.index = topo.apply(make_index, axis=1)
|
||||
|
||||
if not bidirectional:
|
||||
topo_reverse = topo.copy()
|
||||
topo_reverse.rename(columns=swap_buses, inplace=True)
|
||||
topo_reverse.index = topo_reverse.apply(make_index, axis=1)
|
||||
topo = topo.append(topo_reverse)
|
||||
|
||||
return topo
|
||||
|
||||
|
||||
# TODO merge issue with PyPSA-Eur
|
||||
def update_wind_solar_costs(n, costs):
|
||||
"""
|
||||
@ -273,6 +401,9 @@ def patch_electricity_network(n):
|
||||
update_wind_solar_costs(n, costs)
|
||||
n.loads["carrier"] = "electricity"
|
||||
n.buses["location"] = n.buses.index
|
||||
# remove trailing white space of load index until new PyPSA version after v0.18.
|
||||
n.loads.rename(lambda x: x.strip(), inplace=True)
|
||||
n.loads_t.p_set.rename(lambda x: x.strip(), axis=1, inplace=True)
|
||||
|
||||
|
||||
def add_co2_tracking(n, options):
|
||||
@ -299,26 +430,26 @@ def add_co2_tracking(n, options):
|
||||
)
|
||||
|
||||
# this tracks CO2 stored, e.g. underground
|
||||
n.add("Bus",
|
||||
"co2 stored",
|
||||
location="EU",
|
||||
n.madd("Bus",
|
||||
spatial.co2.nodes,
|
||||
location=spatial.co2.locations,
|
||||
carrier="co2 stored"
|
||||
)
|
||||
|
||||
n.add("Store",
|
||||
"co2 stored",
|
||||
n.madd("Store",
|
||||
spatial.co2.nodes,
|
||||
e_nom_extendable=True,
|
||||
e_nom_max=options['co2_sequestration_potential'] * 1e6,
|
||||
e_nom_max=np.inf,
|
||||
capital_cost=options['co2_sequestration_cost'],
|
||||
carrier="co2 stored",
|
||||
bus="co2 stored"
|
||||
bus=spatial.co2.nodes
|
||||
)
|
||||
|
||||
if options['co2_vent']:
|
||||
|
||||
n.add("Link",
|
||||
"co2 vent",
|
||||
bus0="co2 stored",
|
||||
n.madd("Link",
|
||||
spatial.co2.vents,
|
||||
bus0=spatial.co2.nodes,
|
||||
bus1="co2 atmosphere",
|
||||
carrier="co2 vent",
|
||||
efficiency=1.,
|
||||
@ -326,6 +457,28 @@ def add_co2_tracking(n, options):
|
||||
)
|
||||
|
||||
|
||||
def add_co2_network(n, costs):
|
||||
|
||||
logger.info("Adding CO2 network.")
|
||||
co2_links = create_network_topology(n, "CO2 pipeline ")
|
||||
|
||||
cost_onshore = (1 - co2_links.underwater_fraction) * costs.at['CO2 pipeline', 'fixed'] * co2_links.length
|
||||
cost_submarine = co2_links.underwater_fraction * costs.at['CO2 submarine pipeline', 'fixed'] * co2_links.length
|
||||
capital_cost = cost_onshore + cost_submarine
|
||||
|
||||
n.madd("Link",
|
||||
co2_links.index,
|
||||
bus0=co2_links.bus0.values + " co2 stored",
|
||||
bus1=co2_links.bus1.values + " co2 stored",
|
||||
p_min_pu=-1,
|
||||
p_nom_extendable=True,
|
||||
length=co2_links.length.values,
|
||||
capital_cost=capital_cost.values,
|
||||
carrier="CO2 pipeline",
|
||||
lifetime=costs.at['CO2 pipeline', 'lifetime']
|
||||
)
|
||||
|
||||
|
||||
def add_dac(n, costs):
|
||||
|
||||
heat_carriers = ["urban central heat", "services urban decentral heat"]
|
||||
@ -339,7 +492,7 @@ def add_dac(n, costs):
|
||||
locations,
|
||||
suffix=" DAC",
|
||||
bus0="co2 atmosphere",
|
||||
bus1="co2 stored",
|
||||
bus1=spatial.co2.df.loc[locations, "nodes"].values,
|
||||
bus2=locations.values,
|
||||
bus3=heat_buses,
|
||||
carrier="DAC",
|
||||
@ -770,7 +923,8 @@ def insert_electricity_distribution_grid(n, costs):
|
||||
marginal_cost=n.generators.loc[solar, 'marginal_cost'],
|
||||
capital_cost=costs.at['solar-rooftop', 'fixed'],
|
||||
efficiency=n.generators.loc[solar, 'efficiency'],
|
||||
p_max_pu=n.generators_t.p_max_pu[solar]
|
||||
p_max_pu=n.generators_t.p_max_pu[solar],
|
||||
lifetime=costs.at['solar-rooftop', 'lifetime']
|
||||
)
|
||||
|
||||
n.add("Carrier", "home battery")
|
||||
@ -818,7 +972,7 @@ def insert_gas_distribution_costs(n, costs):
|
||||
# TODO options?
|
||||
|
||||
f_costs = options['gas_distribution_grid_cost_factor']
|
||||
|
||||
|
||||
print("Inserting gas distribution grid with investment cost factor of", f_costs)
|
||||
|
||||
capital_cost = costs.loc['electricity distribution grid']["fixed"] * f_costs
|
||||
@ -827,7 +981,7 @@ def insert_gas_distribution_costs(n, costs):
|
||||
gas_b = n.links.index[n.links.carrier.str.contains("gas boiler") &
|
||||
(~n.links.carrier.str.contains("urban central"))]
|
||||
n.links.loc[gas_b, "capital_cost"] += capital_cost
|
||||
|
||||
|
||||
# micro CHPs
|
||||
mchp = n.links.index[n.links.carrier.str.contains("micro gas")]
|
||||
n.links.loc[mchp, "capital_cost"] += capital_cost
|
||||
@ -989,10 +1143,11 @@ def add_storage(n, costs):
|
||||
if options['methanation']:
|
||||
|
||||
n.madd("Link",
|
||||
nodes + " Sabatier",
|
||||
spatial.nodes,
|
||||
suffix=" Sabatier",
|
||||
bus0=nodes + " H2",
|
||||
bus1="EU gas",
|
||||
bus2="co2 stored",
|
||||
bus2=spatial.co2.nodes,
|
||||
p_nom_extendable=True,
|
||||
carrier="Sabatier",
|
||||
efficiency=costs.at["methanation", "efficiency"],
|
||||
@ -1004,10 +1159,11 @@ def add_storage(n, costs):
|
||||
if options['helmeth']:
|
||||
|
||||
n.madd("Link",
|
||||
nodes + " helmeth",
|
||||
spatial.nodes,
|
||||
suffix=" helmeth",
|
||||
bus0=nodes,
|
||||
bus1="EU gas",
|
||||
bus2="co2 stored",
|
||||
bus2=spatial.co2.nodes,
|
||||
carrier="helmeth",
|
||||
p_nom_extendable=True,
|
||||
efficiency=costs.at["helmeth", "efficiency"],
|
||||
@ -1020,11 +1176,12 @@ def add_storage(n, costs):
|
||||
if options['SMR']:
|
||||
|
||||
n.madd("Link",
|
||||
nodes + " SMR CC",
|
||||
spatial.nodes,
|
||||
suffix=" SMR CC",
|
||||
bus0="EU gas",
|
||||
bus1=nodes + " H2",
|
||||
bus2="co2 atmosphere",
|
||||
bus3="co2 stored",
|
||||
bus3=spatial.co2.nodes,
|
||||
p_nom_extendable=True,
|
||||
carrier="SMR CC",
|
||||
efficiency=costs.at["SMR CC", "efficiency"],
|
||||
@ -1075,7 +1232,7 @@ def add_land_transport(n, costs):
|
||||
suffix=" EV battery",
|
||||
carrier="Li ion"
|
||||
)
|
||||
|
||||
|
||||
p_set = electric_share * (transport[nodes] + cycling_shift(transport[nodes], 1) + cycling_shift(transport[nodes], 2)) / 3
|
||||
|
||||
n.madd("Load",
|
||||
@ -1086,8 +1243,8 @@ def add_land_transport(n, costs):
|
||||
p_set=p_set
|
||||
)
|
||||
|
||||
|
||||
p_nom = nodal_transport_data["number cars"] * options.get("bev_charge_rate", 0.011) * electric_share
|
||||
|
||||
p_nom = nodal_transport_data["number cars"] * options.get("bev_charge_rate", 0.011) * electric_share
|
||||
|
||||
n.madd("Link",
|
||||
nodes,
|
||||
@ -1119,7 +1276,7 @@ def add_land_transport(n, costs):
|
||||
|
||||
if electric_share > 0 and options["bev_dsm"]:
|
||||
|
||||
e_nom = nodal_transport_data["number cars"] * options.get("bev_energy", 0.05) * options["bev_availability"] * electric_share
|
||||
e_nom = nodal_transport_data["number cars"] * options.get("bev_energy", 0.05) * options["bev_availability"] * electric_share
|
||||
|
||||
n.madd("Store",
|
||||
nodes,
|
||||
@ -1199,7 +1356,7 @@ def add_heat(n, costs):
|
||||
"services urban decentral",
|
||||
"urban central"
|
||||
]
|
||||
|
||||
|
||||
for name in heat_systems:
|
||||
|
||||
name_type = "central" if name == "urban central" else "decentral"
|
||||
@ -1281,16 +1438,16 @@ def add_heat(n, costs):
|
||||
p_nom_extendable=True
|
||||
)
|
||||
|
||||
|
||||
|
||||
if isinstance(options["tes_tau"], dict):
|
||||
tes_time_constant_days = options["tes_tau"][name_type]
|
||||
else:
|
||||
logger.warning("Deprecated: a future version will require you to specify 'tes_tau' ",
|
||||
"for 'decentral' and 'central' separately.")
|
||||
tes_time_constant_days = options["tes_tau"] if name_type == "decentral" else 180.
|
||||
|
||||
|
||||
# conversion from EUR/m^3 to EUR/MWh for 40 K diff and 1.17 kWh/m^3/K
|
||||
capital_cost = costs.at[name_type + ' water tank storage', 'fixed'] / 0.00117 / 40
|
||||
capital_cost = costs.at[name_type + ' water tank storage', 'fixed'] / 0.00117 / 40
|
||||
|
||||
n.madd("Store",
|
||||
nodes[name] + f" {name} water tanks",
|
||||
@ -1373,7 +1530,7 @@ def add_heat(n, costs):
|
||||
bus1=nodes[name],
|
||||
bus2=nodes[name] + " urban central heat",
|
||||
bus3="co2 atmosphere",
|
||||
bus4="co2 stored",
|
||||
bus4=spatial.co2.df.loc[nodes[name], "nodes"].values,
|
||||
carrier="urban central gas CHP CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at['central gas CHP', 'fixed']*costs.at['central gas CHP', 'efficiency'] + costs.at['biomass CHP capture', 'fixed']*costs.at['gas', 'CO2 intensity'],
|
||||
@ -1503,9 +1660,9 @@ def create_nodes_for_heat_sector():
|
||||
# rural are areas with low heating density and individual heating
|
||||
# urban are areas with high heating density
|
||||
# urban can be split into district heating (central) and individual heating (decentral)
|
||||
|
||||
|
||||
sectors = ["residential", "services"]
|
||||
|
||||
|
||||
nodes = {}
|
||||
for sector in sectors:
|
||||
nodes[sector + " rural"] = pop_layout.index
|
||||
@ -1516,10 +1673,10 @@ def create_nodes_for_heat_sector():
|
||||
nodes[sector + " urban decentral"] = pop_layout.index[pop_layout.ct.isin(urban_decentral_ct)]
|
||||
else:
|
||||
nodes[sector + " urban decentral"] = pop_layout.index
|
||||
|
||||
|
||||
# for central nodes, residential and services are aggregated
|
||||
nodes["urban central"] = pop_layout.index.symmetric_difference(nodes["residential urban decentral"])
|
||||
|
||||
|
||||
return nodes
|
||||
|
||||
|
||||
@ -1529,8 +1686,16 @@ def add_biomass(n, costs):
|
||||
|
||||
biomass_potentials = pd.read_csv(snakemake.input.biomass_potentials, index_col=0)
|
||||
|
||||
n.add("Carrier", "biogas")
|
||||
if options["biomass_transport"]:
|
||||
# potential per node distributed within country by population
|
||||
biomass_potentials_spatial = (biomass_potentials.loc[pop_layout.ct]
|
||||
.set_index(pop_layout.index)
|
||||
.mul(pop_layout.fraction, axis="index")
|
||||
.rename(index=lambda x: x + " solid biomass"))
|
||||
else:
|
||||
biomass_potentials_spatial = biomass_potentials.sum()
|
||||
|
||||
n.add("Carrier", "biogas")
|
||||
n.add("Carrier", "solid biomass")
|
||||
|
||||
n.add("Bus",
|
||||
@ -1539,9 +1704,9 @@ def add_biomass(n, costs):
|
||||
carrier="biogas"
|
||||
)
|
||||
|
||||
n.add("Bus",
|
||||
"EU solid biomass",
|
||||
location="EU",
|
||||
n.madd("Bus",
|
||||
spatial.biomass.nodes,
|
||||
location=spatial.biomass.locations,
|
||||
carrier="solid biomass"
|
||||
)
|
||||
|
||||
@ -1554,13 +1719,13 @@ def add_biomass(n, costs):
|
||||
e_initial=biomass_potentials["biogas"].sum()
|
||||
)
|
||||
|
||||
n.add("Store",
|
||||
"EU solid biomass",
|
||||
bus="EU solid biomass",
|
||||
n.madd("Store",
|
||||
spatial.biomass.nodes,
|
||||
bus=spatial.biomass.nodes,
|
||||
carrier="solid biomass",
|
||||
e_nom=biomass_potentials["solid biomass"].sum(),
|
||||
e_nom=biomass_potentials_spatial["solid biomass"],
|
||||
marginal_cost=costs.at['solid biomass', 'fuel'],
|
||||
e_initial=biomass_potentials["solid biomass"].sum()
|
||||
e_initial=biomass_potentials_spatial["solid biomass"]
|
||||
)
|
||||
|
||||
n.add("Link",
|
||||
@ -1575,6 +1740,32 @@ def add_biomass(n, costs):
|
||||
p_nom_extendable=True
|
||||
)
|
||||
|
||||
if options["biomass_transport"]:
|
||||
|
||||
transport_costs = pd.read_csv(
|
||||
snakemake.input.biomass_transport_costs,
|
||||
index_col=0,
|
||||
squeeze=True
|
||||
)
|
||||
|
||||
# add biomass transport
|
||||
biomass_transport = create_network_topology(n, "biomass transport ", bidirectional=False)
|
||||
|
||||
# costs
|
||||
bus0_costs = biomass_transport.bus0.apply(lambda x: transport_costs[x[:2]])
|
||||
bus1_costs = biomass_transport.bus1.apply(lambda x: transport_costs[x[:2]])
|
||||
biomass_transport["costs"] = pd.concat([bus0_costs, bus1_costs], axis=1).mean(axis=1)
|
||||
|
||||
n.madd("Link",
|
||||
biomass_transport.index,
|
||||
bus0=biomass_transport.bus0 + " solid biomass",
|
||||
bus1=biomass_transport.bus1 + " solid biomass",
|
||||
p_nom_extendable=True,
|
||||
length=biomass_transport.length.values,
|
||||
marginal_cost=biomass_transport.costs * biomass_transport.length.values,
|
||||
capital_cost=1,
|
||||
carrier="solid biomass transport"
|
||||
)
|
||||
|
||||
#AC buses with district heating
|
||||
urban_central = n.buses.index[n.buses.carrier == "urban central heat"]
|
||||
@ -1585,7 +1776,7 @@ def add_biomass(n, costs):
|
||||
|
||||
n.madd("Link",
|
||||
urban_central + " urban central solid biomass CHP",
|
||||
bus0="EU solid biomass",
|
||||
bus0=spatial.biomass.df.loc[urban_central, "nodes"].values,
|
||||
bus1=urban_central,
|
||||
bus2=urban_central + " urban central heat",
|
||||
carrier="urban central solid biomass CHP",
|
||||
@ -1599,11 +1790,11 @@ def add_biomass(n, costs):
|
||||
|
||||
n.madd("Link",
|
||||
urban_central + " urban central solid biomass CHP CC",
|
||||
bus0="EU solid biomass",
|
||||
bus0=spatial.biomass.df.loc[urban_central, "nodes"].values,
|
||||
bus1=urban_central,
|
||||
bus2=urban_central + " urban central heat",
|
||||
bus3="co2 atmosphere",
|
||||
bus4="co2 stored",
|
||||
bus4=spatial.co2.df.loc[urban_central, "nodes"].values,
|
||||
carrier="urban central solid biomass CHP CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at[key, 'fixed'] * costs.at[key, 'efficiency'] + costs.at['biomass CHP capture', 'fixed'] * costs.at['solid biomass', 'CO2 intensity'],
|
||||
@ -1625,36 +1816,39 @@ def add_industry(n, costs):
|
||||
# 1e6 to convert TWh to MWh
|
||||
industrial_demand = pd.read_csv(snakemake.input.industrial_demand, index_col=0) * 1e6
|
||||
|
||||
solid_biomass_by_country = industrial_demand["solid biomass"].groupby(pop_layout.ct).sum()
|
||||
|
||||
n.add("Bus",
|
||||
"solid biomass for industry",
|
||||
location="EU",
|
||||
n.madd("Bus",
|
||||
spatial.biomass.industry,
|
||||
location=spatial.biomass.locations,
|
||||
carrier="solid biomass for industry"
|
||||
)
|
||||
|
||||
n.add("Load",
|
||||
"solid biomass for industry",
|
||||
bus="solid biomass for industry",
|
||||
if options["biomass_transport"]:
|
||||
p_set = industrial_demand.loc[spatial.biomass.locations, "solid biomass"].rename(index=lambda x: x + " solid biomass for industry") / 8760
|
||||
else:
|
||||
p_set = industrial_demand["solid biomass"].sum() / 8760
|
||||
|
||||
n.madd("Load",
|
||||
spatial.biomass.industry,
|
||||
bus=spatial.biomass.industry,
|
||||
carrier="solid biomass for industry",
|
||||
p_set=solid_biomass_by_country.sum() / 8760
|
||||
p_set=p_set
|
||||
)
|
||||
|
||||
n.add("Link",
|
||||
"solid biomass for industry",
|
||||
bus0="EU solid biomass",
|
||||
bus1="solid biomass for industry",
|
||||
n.madd("Link",
|
||||
spatial.biomass.industry,
|
||||
bus0=spatial.biomass.nodes,
|
||||
bus1=spatial.biomass.industry,
|
||||
carrier="solid biomass for industry",
|
||||
p_nom_extendable=True,
|
||||
efficiency=1.
|
||||
)
|
||||
|
||||
n.add("Link",
|
||||
"solid biomass for industry CC",
|
||||
bus0="EU solid biomass",
|
||||
bus1="solid biomass for industry",
|
||||
n.madd("Link",
|
||||
spatial.biomass.industry_cc,
|
||||
bus0=spatial.biomass.nodes,
|
||||
bus1=spatial.biomass.industry,
|
||||
bus2="co2 atmosphere",
|
||||
bus3="co2 stored",
|
||||
bus3=spatial.co2.nodes,
|
||||
carrier="solid biomass for industry CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["cement capture", "fixed"] * costs.at['solid biomass', 'CO2 intensity'],
|
||||
@ -1687,12 +1881,13 @@ def add_industry(n, costs):
|
||||
efficiency2=costs.at['gas', 'CO2 intensity']
|
||||
)
|
||||
|
||||
n.add("Link",
|
||||
"gas for industry CC",
|
||||
n.madd("Link",
|
||||
spatial.co2.locations,
|
||||
suffix=" gas for industry CC",
|
||||
bus0="EU gas",
|
||||
bus1="gas for industry",
|
||||
bus2="co2 atmosphere",
|
||||
bus3="co2 stored",
|
||||
bus3=spatial.co2.nodes,
|
||||
carrier="gas for industry CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["cement capture", "fixed"] * costs.at['gas', 'CO2 intensity'],
|
||||
@ -1751,9 +1946,9 @@ def add_industry(n, costs):
|
||||
if shipping_hydrogen_share < 1:
|
||||
|
||||
shipping_oil_share = 1 - shipping_hydrogen_share
|
||||
|
||||
|
||||
p_set = shipping_oil_share * nodal_energy_totals.loc[nodes, all_navigation].sum(axis=1) * 1e6 / 8760.
|
||||
|
||||
|
||||
n.madd("Load",
|
||||
nodes,
|
||||
suffix=" shipping oil",
|
||||
@ -1761,7 +1956,7 @@ def add_industry(n, costs):
|
||||
carrier="shipping oil",
|
||||
p_set=p_set
|
||||
)
|
||||
|
||||
|
||||
co2 = shipping_oil_share * nodal_energy_totals.loc[nodes, all_navigation].sum().sum() * 1e6 / 8760 * costs.at["oil", "CO2 intensity"]
|
||||
|
||||
n.add("Load",
|
||||
@ -1780,7 +1975,7 @@ def add_industry(n, costs):
|
||||
)
|
||||
|
||||
if "EU oil Store" not in n.stores.index:
|
||||
|
||||
|
||||
#could correct to e.g. 0.001 EUR/kWh * annuity and O&M
|
||||
n.add("Store",
|
||||
"EU oil Store",
|
||||
@ -1823,7 +2018,7 @@ def add_industry(n, costs):
|
||||
nodes + " Fischer-Tropsch",
|
||||
bus0=nodes + " H2",
|
||||
bus1="EU oil",
|
||||
bus2="co2 stored",
|
||||
bus2=spatial.co2.nodes,
|
||||
carrier="Fischer-Tropsch",
|
||||
efficiency=costs.at["Fischer-Tropsch", 'efficiency'],
|
||||
capital_cost=costs.at["Fischer-Tropsch", 'fixed'],
|
||||
@ -1912,11 +2107,12 @@ def add_industry(n, costs):
|
||||
)
|
||||
|
||||
#assume enough local waste heat for CC
|
||||
n.add("Link",
|
||||
"process emissions CC",
|
||||
n.madd("Link",
|
||||
spatial.co2.locations,
|
||||
suffix=" process emissions CC",
|
||||
bus0="process emissions",
|
||||
bus1="co2 atmosphere",
|
||||
bus2="co2 stored",
|
||||
bus2=spatial.co2.nodes,
|
||||
carrier="process emissions CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["cement capture", "fixed"],
|
||||
@ -1947,7 +2143,7 @@ def add_waste_heat(n):
|
||||
|
||||
|
||||
def decentral(n):
|
||||
"""Removes the electricity transmission system."""
|
||||
"""Removes the electricity transmission system."""
|
||||
n.lines.drop(n.lines.index, inplace=True)
|
||||
n.links.drop(n.links.index[n.links.carrier.isin(["DC", "B2B"])], inplace=True)
|
||||
|
||||
@ -1980,7 +2176,7 @@ def maybe_adjust_costs_and_potentials(n, opts):
|
||||
if attr == 'p_nom_max':
|
||||
comps = {"Generator", "Link", "StorageUnit"}
|
||||
elif attr == 'e_nom_max':
|
||||
comps = {"Store"}
|
||||
comps = {"Store"}
|
||||
else:
|
||||
comps = {"Generator", "Link", "StorageUnit", "Store"}
|
||||
for c in n.iterate_components(comps):
|
||||
@ -2006,10 +2202,11 @@ if __name__ == "__main__":
|
||||
snakemake = mock_snakemake(
|
||||
'prepare_sector_network',
|
||||
simpl='',
|
||||
clusters=48,
|
||||
clusters="45",
|
||||
lv=1.0,
|
||||
opts='',
|
||||
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
|
||||
planning_horizons=2020,
|
||||
planning_horizons=2030,
|
||||
)
|
||||
|
||||
logging.basicConfig(level=snakemake.config['logging_level'])
|
||||
@ -2034,8 +2231,10 @@ if __name__ == "__main__":
|
||||
|
||||
patch_electricity_network(n)
|
||||
|
||||
define_spatial(pop_layout.index)
|
||||
|
||||
if snakemake.config["foresight"] == 'myopic':
|
||||
|
||||
|
||||
add_lifetime_wind_solar(n, costs)
|
||||
|
||||
conventional = snakemake.config['existing_capacities']['conventional_carriers']
|
||||
@ -2056,6 +2255,8 @@ if __name__ == "__main__":
|
||||
if o[:4] == "dist":
|
||||
options['electricity_distribution_grid'] = True
|
||||
options['electricity_distribution_grid_cost_factor'] = float(o[4:].replace("p", ".").replace("m", "-"))
|
||||
if o == "biomasstransport":
|
||||
options["biomass_transport"] = True
|
||||
|
||||
nodal_energy_totals, heat_demand, ashp_cop, gshp_cop, solar_thermal, transport, avail_profile, dsm_profile, nodal_transport_data = prepare_data(n)
|
||||
|
||||
@ -2086,6 +2287,9 @@ if __name__ == "__main__":
|
||||
if "noH2network" in opts:
|
||||
remove_h2_network(n)
|
||||
|
||||
if options["co2_network"]:
|
||||
add_co2_network(n, costs)
|
||||
|
||||
for o in opts:
|
||||
m = re.match(r'^\d+h$', o, re.IGNORECASE)
|
||||
if m is not None:
|
||||
|
@ -3,6 +3,7 @@
|
||||
import pypsa
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from pypsa.linopt import get_var, linexpr, define_constraints
|
||||
|
||||
@ -150,8 +151,26 @@ def add_chp_constraints(n):
|
||||
define_constraints(n, lhs, "<=", 0, 'chplink', 'backpressure')
|
||||
|
||||
|
||||
def add_co2_sequestration_limit(n, sns):
|
||||
|
||||
co2_stores = n.stores.loc[n.stores.carrier=='co2 stored'].index
|
||||
|
||||
if co2_stores.empty or ('Store', 'e') not in n.variables.index:
|
||||
return
|
||||
|
||||
vars_final_co2_stored = get_var(n, 'Store', 'e').loc[sns[-1], co2_stores]
|
||||
|
||||
lhs = linexpr((1, vars_final_co2_stored)).sum()
|
||||
rhs = n.config["sector"].get("co2_sequestration_potential", 200) * 1e6
|
||||
|
||||
name = 'co2_sequestration_limit'
|
||||
define_constraints(n, lhs, "<=", rhs, 'GlobalConstraint',
|
||||
'mu', axes=pd.Index([name]), spec=name)
|
||||
|
||||
|
||||
def extra_functionality(n, snapshots):
|
||||
add_battery_constraints(n)
|
||||
add_co2_sequestration_limit(n, snapshots)
|
||||
|
||||
|
||||
def solve_network(n, config, opts='', **kwargs):
|
||||
|
Loading…
Reference in New Issue
Block a user