move building of distribution of existing heating to own script
This makes the distribution of existing heating to urban/rural, residential/services and spatially more transparent.
This commit is contained in:
parent
9897cd6f05
commit
d98ad95332
@ -1,8 +1,40 @@
|
||||
# SPDX-FileCopyrightText: : 2023 The PyPSA-Eur Authors
|
||||
# SPDX-FileCopyrightText: : 2023-4 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
|
||||
rule build_existing_heating_distribution:
|
||||
params:
|
||||
baseyear=config["scenario"]["planning_horizons"][0],
|
||||
sector=config["sector"],
|
||||
existing_capacities=config["existing_capacities"],
|
||||
input:
|
||||
existing_heating="data/existing_infrastructure/existing_heating_raw.csv",
|
||||
clustered_pop_layout=RESOURCES + "pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
clustered_pop_energy_layout=RESOURCES + "pop_weighted_energy_totals_s{simpl}_{clusters}.csv",
|
||||
district_heat_share=RESOURCES + "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
output:
|
||||
existing_heating_distribution=RESOURCES
|
||||
+ "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
wildcard_constraints:
|
||||
planning_horizons=config["scenario"]["planning_horizons"][0], #only applies to baseyear
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=2000,
|
||||
log:
|
||||
LOGS
|
||||
+ "build_existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.log",
|
||||
benchmark:
|
||||
(
|
||||
BENCHMARKS
|
||||
+ "build_existing_heating_distribution/elec_s{simpl}_{clusters}_{planning_horizons}"
|
||||
)
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_existing_heating_distribution.py"
|
||||
|
||||
|
||||
rule add_existing_baseyear:
|
||||
params:
|
||||
baseyear=config["scenario"]["planning_horizons"][0],
|
||||
@ -19,7 +51,8 @@ rule add_existing_baseyear:
|
||||
costs="data/costs_{}.csv".format(config["scenario"]["planning_horizons"][0]),
|
||||
cop_soil_total=RESOURCES + "cop_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_total=RESOURCES + "cop_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
existing_heating="data/existing_infrastructure/existing_heating_raw.csv",
|
||||
existing_heating_distribution=RESOURCES
|
||||
+ "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
existing_solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
|
||||
existing_onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
|
||||
existing_offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
|
||||
|
@ -409,97 +409,20 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
# file: "WP2_DataAnnex_1_BuildingTechs_ForPublication_201603.xls" -> "existing_heating_raw.csv".
|
||||
# TODO start from original file
|
||||
|
||||
# retrieve existing heating capacities
|
||||
techs = [
|
||||
"gas boiler",
|
||||
"oil boiler",
|
||||
"resistive heater",
|
||||
"air heat pump",
|
||||
"ground heat pump",
|
||||
]
|
||||
df = pd.read_csv(snakemake.input.existing_heating, index_col=0, header=0)
|
||||
existing_heating = pd.read_csv(snakemake.input.existing_heating_distribution,
|
||||
header=[0,1],
|
||||
index_col=0)
|
||||
|
||||
# data for Albania, Montenegro and Macedonia not included in database
|
||||
df.loc["Albania"] = np.nan
|
||||
df.loc["Montenegro"] = np.nan
|
||||
df.loc["Macedonia"] = np.nan
|
||||
|
||||
df.fillna(0.0, inplace=True)
|
||||
techs = existing_heating.columns.get_level_values(1).unique()
|
||||
|
||||
# convert GW to MW
|
||||
df *= 1e3
|
||||
for name in existing_heating.columns.get_level_values(0).unique():
|
||||
|
||||
df.index = cc.convert(df.index, to="iso2")
|
||||
|
||||
# coal and oil boilers are assimilated to oil boilers
|
||||
df["oil boiler"] = df["oil boiler"] + df["coal boiler"]
|
||||
df.drop(["coal boiler"], axis=1, inplace=True)
|
||||
|
||||
# distribute technologies to nodes by population
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
|
||||
nodal_df = df.loc[pop_layout.ct]
|
||||
nodal_df.index = pop_layout.index
|
||||
nodal_df = nodal_df.multiply(pop_layout.fraction, axis=0)
|
||||
|
||||
# split existing capacities between residential and services
|
||||
# proportional to energy demand
|
||||
p_set_sum = n.loads_t.p_set.sum()
|
||||
ratio_residential = pd.Series(
|
||||
[
|
||||
(
|
||||
p_set_sum[f"{node} residential rural heat"]
|
||||
/ (
|
||||
p_set_sum[f"{node} residential rural heat"]
|
||||
+ p_set_sum[f"{node} services rural heat"]
|
||||
)
|
||||
)
|
||||
# if rural heating demand for one of the nodes doesn't exist,
|
||||
# then columns were dropped before and heating demand share should be 0.0
|
||||
if all(
|
||||
f"{node} {service} rural heat" in p_set_sum.index
|
||||
for service in ["residential", "services"]
|
||||
)
|
||||
else 0.0
|
||||
for node in nodal_df.index
|
||||
],
|
||||
index=nodal_df.index,
|
||||
)
|
||||
|
||||
for tech in techs:
|
||||
nodal_df["residential " + tech] = nodal_df[tech] * ratio_residential
|
||||
nodal_df["services " + tech] = nodal_df[tech] * (1 - ratio_residential)
|
||||
|
||||
names = [
|
||||
"residential rural",
|
||||
"services rural",
|
||||
"residential urban decentral",
|
||||
"services urban decentral",
|
||||
"urban central",
|
||||
]
|
||||
|
||||
nodes = {}
|
||||
p_nom = {}
|
||||
for name in names:
|
||||
name_type = "central" if name == "urban central" else "decentral"
|
||||
nodes[name] = pd.Index(
|
||||
[
|
||||
n.buses.at[index, "location"]
|
||||
for index in n.buses.index[
|
||||
n.buses.index.str.contains(name)
|
||||
& n.buses.index.str.contains("heat")
|
||||
]
|
||||
]
|
||||
)
|
||||
heat_pump_type = "air" if "urban" in name else "ground"
|
||||
heat_type = "residential" if "residential" in name else "services"
|
||||
|
||||
if name == "urban central":
|
||||
p_nom[name] = nodal_df["air heat pump"][nodes[name]]
|
||||
else:
|
||||
p_nom[name] = nodal_df[f"{heat_type} {heat_pump_type} heat pump"][
|
||||
nodes[name]
|
||||
]
|
||||
nodes = pd.Index(n.buses.location[n.buses.index.str.contains(f"{name} heat")])
|
||||
|
||||
heat_pump_type = "air" if "urban" in name else "ground"
|
||||
|
||||
# Add heat pumps
|
||||
costs_name = f"decentral {heat_pump_type}-sourced heat pump"
|
||||
@ -507,7 +430,7 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
cop = {"air": ashp_cop, "ground": gshp_cop}
|
||||
|
||||
if time_dep_hp_cop:
|
||||
efficiency = cop[heat_pump_type][nodes[name]]
|
||||
efficiency = cop[heat_pump_type][nodes]
|
||||
else:
|
||||
efficiency = costs.at[costs_name, "efficiency"]
|
||||
|
||||
@ -520,27 +443,26 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
nodes,
|
||||
suffix=f" {name} {heat_pump_type} heat pump-{grouping_year}",
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus0=nodes,
|
||||
bus1=nodes + " " + name + " heat",
|
||||
carrier=f"{name} {heat_pump_type} heat pump",
|
||||
efficiency=efficiency,
|
||||
capital_cost=costs.at[costs_name, "efficiency"]
|
||||
* costs.at[costs_name, "fixed"],
|
||||
p_nom=p_nom[name] * ratio / costs.at[costs_name, "efficiency"],
|
||||
p_nom=existing_heating[(name, f"{heat_pump_type} heat pump")][nodes] * ratio / costs.at[costs_name, "efficiency"],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name, "lifetime"],
|
||||
)
|
||||
|
||||
# add resistive heater, gas boilers and oil boilers
|
||||
# (50% capacities to rural buses, 50% to urban buses)
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
nodes,
|
||||
suffix=f" {name} resistive heater-{grouping_year}",
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus0=nodes,
|
||||
bus1=nodes + " " + name + " heat",
|
||||
carrier=name + " resistive heater",
|
||||
efficiency=costs.at[f"{name_type} resistive heater", "efficiency"],
|
||||
capital_cost=(
|
||||
@ -548,21 +470,20 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
* costs.at[f"{name_type} resistive heater", "fixed"]
|
||||
),
|
||||
p_nom=(
|
||||
0.5
|
||||
* nodal_df[f"{heat_type} resistive heater"][nodes[name]]
|
||||
existing_heating[(name, "resistive heater")][nodes]
|
||||
* ratio
|
||||
/ costs.at[f"{name_type} resistive heater", "efficiency"]
|
||||
),
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name, "lifetime"],
|
||||
lifetime=costs.at[f"{name_type} resistive heater", "lifetime"],
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
nodes,
|
||||
suffix=f" {name} gas boiler-{grouping_year}",
|
||||
bus0=spatial.gas.nodes,
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus1=nodes + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " gas boiler",
|
||||
efficiency=costs.at[f"{name_type} gas boiler", "efficiency"],
|
||||
@ -572,8 +493,7 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
* costs.at[f"{name_type} gas boiler", "fixed"]
|
||||
),
|
||||
p_nom=(
|
||||
0.5
|
||||
* nodal_df[f"{heat_type} gas boiler"][nodes[name]]
|
||||
existing_heating[(name, "gas boiler")][nodes]
|
||||
* ratio
|
||||
/ costs.at[f"{name_type} gas boiler", "efficiency"]
|
||||
),
|
||||
@ -583,20 +503,20 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
nodes,
|
||||
suffix=f" {name} oil boiler-{grouping_year}",
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus1=nodes + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " oil boiler",
|
||||
efficiency=costs.at["decentral oil boiler", "efficiency"],
|
||||
efficiency2=costs.at["oil", "CO2 intensity"],
|
||||
capital_cost=costs.at["decentral oil boiler", "efficiency"]
|
||||
* costs.at["decentral oil boiler", "fixed"],
|
||||
p_nom=0.5
|
||||
* nodal_df[f"{heat_type} oil boiler"][nodes[name]]
|
||||
* ratio
|
||||
/ costs.at["decentral oil boiler", "efficiency"],
|
||||
p_nom= (
|
||||
existing_heating[(name, "oil boiler")][nodes]
|
||||
* ratio
|
||||
/ costs.at["decentral oil boiler", "efficiency"]),
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[f"{name_type} gas boiler", "lifetime"],
|
||||
)
|
||||
@ -624,6 +544,8 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
|
||||
# drop assets which are at the end of their lifetime
|
||||
links_i = n.links[(n.links.build_year + n.links.lifetime <= baseyear)].index
|
||||
logger.info("Removing following links because at end of their lifetime:")
|
||||
logger.info(links_i)
|
||||
n.mremove("Link", links_i)
|
||||
|
||||
|
||||
|
108
scripts/build_existing_heating_distribution.py
Normal file
108
scripts/build_existing_heating_distribution.py
Normal file
@ -0,0 +1,108 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Builds table of existing heat generation capacities for initial planning
|
||||
horizon.
|
||||
"""
|
||||
import pandas as pd
|
||||
import sys
|
||||
from pypsa.descriptors import Dict
|
||||
import numpy as np
|
||||
import country_converter as coco
|
||||
|
||||
cc = coco.CountryConverter()
|
||||
|
||||
|
||||
def build_existing_heating():
|
||||
# retrieve existing heating capacities
|
||||
techs = [
|
||||
"gas boiler",
|
||||
"oil boiler",
|
||||
"resistive heater",
|
||||
"air heat pump",
|
||||
"ground heat pump",
|
||||
]
|
||||
|
||||
existing_heating = pd.read_csv(snakemake.input.existing_heating,
|
||||
index_col=0,
|
||||
header=0)
|
||||
|
||||
# data for Albania, Montenegro and Macedonia not included in database existing_heating.loc["Albania"] = np.nan
|
||||
existing_heating.loc["Montenegro"] = np.nan
|
||||
existing_heating.loc["Macedonia"] = np.nan
|
||||
|
||||
existing_heating.fillna(0.0, inplace=True)
|
||||
|
||||
# convert GW to MW
|
||||
existing_heating *= 1e3
|
||||
|
||||
existing_heating.index = cc.convert(existing_heating.index, to="iso2")
|
||||
|
||||
# coal and oil boilers are assimilated to oil boilers
|
||||
existing_heating["oil boiler"] = existing_heating["oil boiler"] + existing_heating["coal boiler"]
|
||||
existing_heating.drop(["coal boiler"], axis=1, inplace=True)
|
||||
|
||||
# distribute technologies to nodes by population
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,
|
||||
index_col=0)
|
||||
|
||||
nodal_heating = existing_heating.loc[pop_layout.ct]
|
||||
nodal_heating.index = pop_layout.index
|
||||
nodal_heating = nodal_heating.multiply(pop_layout.fraction, axis=0)
|
||||
|
||||
district_heat_info = pd.read_csv(snakemake.input.district_heat_share,
|
||||
index_col=0)
|
||||
dist_fraction = district_heat_info["district fraction of node"]
|
||||
urban_fraction = district_heat_info["urban fraction"]
|
||||
|
||||
energy_layout = pd.read_csv(snakemake.input.clustered_pop_energy_layout,
|
||||
index_col=0)
|
||||
|
||||
uses = ["space", "water"]
|
||||
sectors = ["residential", "services"]
|
||||
|
||||
nodal_sectoral_totals = pd.DataFrame(dtype=float)
|
||||
|
||||
for sector in sectors:
|
||||
nodal_sectoral_totals[sector] = energy_layout[[f"total {sector} {use}" for use in uses]].sum(axis=1)
|
||||
|
||||
nodal_sectoral_fraction = nodal_sectoral_totals.div(nodal_sectoral_totals.sum(axis=1),
|
||||
axis=0)
|
||||
|
||||
|
||||
nodal_heat_name_fraction = pd.DataFrame(dtype=float)
|
||||
|
||||
nodal_heat_name_fraction["urban central"] = dist_fraction
|
||||
|
||||
for sector in sectors:
|
||||
|
||||
nodal_heat_name_fraction[f"{sector} rural"] = nodal_sectoral_fraction[sector]*(1 - urban_fraction)
|
||||
nodal_heat_name_fraction[f"{sector} urban decentral"] = nodal_sectoral_fraction[sector]*(urban_fraction - dist_fraction)
|
||||
|
||||
|
||||
nodal_heat_name_tech = pd.concat({name : nodal_heating .multiply(nodal_heat_name_fraction[name],
|
||||
axis=0) for name in nodal_heat_name_fraction.columns},
|
||||
axis=1,
|
||||
names=["heat name","technology"])
|
||||
|
||||
|
||||
#move all ground HPs to rural, all air to urban
|
||||
|
||||
for sector in sectors:
|
||||
nodal_heat_name_tech[(f"{sector} rural","ground heat pump")] += (nodal_heat_name_tech[("urban central","ground heat pump")]*nodal_sectoral_fraction[sector]
|
||||
+ nodal_heat_name_tech[(f"{sector} urban decentral","ground heat pump")])
|
||||
nodal_heat_name_tech[(f"{sector} urban decentral","ground heat pump")] = 0.
|
||||
|
||||
nodal_heat_name_tech[(f"{sector} urban decentral","air heat pump")] += nodal_heat_name_tech[(f"{sector} rural","air heat pump")]
|
||||
nodal_heat_name_tech[(f"{sector} rural","air heat pump")] = 0.
|
||||
|
||||
nodal_heat_name_tech[("urban central","ground heat pump")] = 0.
|
||||
|
||||
nodal_heat_name_tech.to_csv(snakemake.output.existing_heating_distribution)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
build_existing_heating()
|
Loading…
Reference in New Issue
Block a user