Merge pull request #147 from PyPSA/agriculture-energy-co2
Add agriculture, forestry and fishing
This commit is contained in:
commit
cecee2c9c7
@ -21,9 +21,9 @@ it.
|
||||
PyPSA-Eur-Sec builds on the electricity generation and transmission
|
||||
model [PyPSA-Eur](https://github.com/PyPSA/pypsa-eur) to add demand
|
||||
and supply for the following sectors: transport, space and water
|
||||
heating, biomass, industry and industrial feedstocks. This completes
|
||||
the energy system and includes all greenhouse gas emitters except
|
||||
waste management, agriculture, forestry and land use.
|
||||
heating, biomass, industry and industrial feedstocks, agriculture,
|
||||
forestry and fishing. This completes the energy system and includes
|
||||
all greenhouse gas emitters except waste management and land use.
|
||||
|
||||
Please see the [documentation](https://pypsa-eur-sec.readthedocs.io/)
|
||||
for installation instructions and other useful information about the snakemake workflow.
|
||||
|
@ -9,7 +9,6 @@ wildcard_constraints:
|
||||
lv="[a-z0-9\.]+",
|
||||
simpl="[a-zA-Z0-9]*",
|
||||
clusters="[0-9]+m?",
|
||||
sectors="[+a-zA-Z0-9]+",
|
||||
opts="[-+a-zA-Z0-9]*",
|
||||
sector_opts="[-+a-zA-Z0-9\.\s]*"
|
||||
|
||||
|
@ -21,13 +21,14 @@ scenario:
|
||||
opts: # only relevant for PyPSA-Eur
|
||||
- ''
|
||||
sector_opts: # this is where the main scenario settings are
|
||||
- Co2L0-3H-T-H-B-I-solar+p3-dist1
|
||||
- Co2L0-3H-T-H-B-I-A-solar+p3-dist1
|
||||
# to really understand the options here, look in scripts/prepare_sector_network.py
|
||||
# Co2Lx specifies the CO2 target in x% of the 1990 values; default will give default (5%);
|
||||
# Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions
|
||||
# xH is the temporal resolution; 3H is 3-hourly, i.e. one snapshot every 3 hours
|
||||
# single letters are sectors: T for land transport, H for building heating,
|
||||
# B for biomass supply, I for industry, shipping and aviation
|
||||
# B for biomass supply, I for industry, shipping and aviation,
|
||||
# A for agriculture, forestry and fishing
|
||||
# solar+c0.5 reduces the capital cost of solar to 50\% of reference value
|
||||
# solar+p3 multiplies the available installable potential by factor 3
|
||||
# co2 stored+e2 multiplies the potential of CO2 sequestration by a factor 2
|
||||
@ -181,6 +182,9 @@ sector:
|
||||
2050: 0.85
|
||||
transport_fuel_cell_efficiency: 0.5
|
||||
transport_internal_combustion_efficiency: 0.3
|
||||
agriculture_machinery_electric_share: 0
|
||||
agriculture_machinery_fuel_efficiency: 0.7 # fuel oil per use
|
||||
agriculture_machinery_electric_efficiency: 0.3 # electricity per use
|
||||
shipping_average_efficiency: 0.4 #For conversion of fuel oil to propulsion in 2011
|
||||
shipping_hydrogen_liquefaction: false # whether to consider liquefaction costs for shipping H2 demands
|
||||
shipping_hydrogen_share: # 1 means all hydrogen FC
|
||||
@ -477,6 +481,10 @@ plotting:
|
||||
CC: k
|
||||
co2: '#123456'
|
||||
co2 vent: '#654321'
|
||||
agriculture heat: '#D07A7A'
|
||||
agriculture machinery oil: '#1e1e1e'
|
||||
agriculture machinery oil emissions: '#111111'
|
||||
agriculture electricity: '#222222'
|
||||
solid biomass for industry co2 from atmosphere: '#654321'
|
||||
solid biomass for industry co2 to stored: '#654321'
|
||||
gas for industry co2 to atmosphere: '#654321'
|
||||
|
@ -86,6 +86,10 @@ Future release
|
||||
spatially disaggregate biomass potentials to PyPSA-Eur regions based on overlaps with NUTS2 regions from ENSPRESO
|
||||
(proportional to area) (`#151 <https://github.com/PyPSA/pypsa-eur-sec/pull/151>`_).
|
||||
* Compatibility with ``xarray`` version 0.19.
|
||||
* Added option to include emissions and energy demands of agriculture, forestry and fishing sector via the letter ``A`` in the ``{sector_opts}`` wildcard.
|
||||
Demands are separated into electricity, heat and oil for machinery.
|
||||
Fuel-switching for machinery from oil to electricity can be set exogenously in the ``config.yaml``
|
||||
`#147 <https://github.com/PyPSA/PyPSA/pull/147>`_.
|
||||
* Separate basic chemicals into HVC, chlorine, methanol and ammonia [`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_].
|
||||
* Add option to specify reuse, primary production, and mechanical and chemical recycling fraction of platics [`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_].
|
||||
* Include today's district heating shares in myopic optimisation and add option to specify exogenous path for district heating share increase under ``sector: district_heating:`` [`#149 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/149>`_].
|
||||
|
@ -43,7 +43,7 @@ Heat demand is split into:
|
||||
|
||||
* ``urban central``: large-scale district heating networks in urban areas with dense heat demand
|
||||
* ``residential/services urban decentral``: heating for individual buildings in urban areas
|
||||
* ``residential/services rural``: heating for individual buildings in rural areas
|
||||
* ``residential/services rural``: heating for individual buildings in rural areas, agriculture heat uses
|
||||
|
||||
|
||||
Heat supply
|
||||
@ -189,7 +189,7 @@ Only wastes and residues from the JRC ENSPRESO biomass dataset.
|
||||
Oil product demand
|
||||
=====================
|
||||
|
||||
Transport fuels and naphtha as a feedstock for the chemicals industry.
|
||||
Transport fuels, agriculture machinery and naphtha as a feedstock for the chemicals industry.
|
||||
|
||||
Oil product supply
|
||||
======================
|
||||
|
@ -117,6 +117,7 @@ to_ipcc = {
|
||||
"total energy": "1 - Energy",
|
||||
"industrial processes": "2 - Industrial Processes and Product Use",
|
||||
"agriculture": "3 - Agriculture",
|
||||
"agriculture, forestry and fishing": '1.A.4.c - Agriculture/Forestry/Fishing',
|
||||
"LULUCF": "4 - Land Use, Land-Use Change and Forestry",
|
||||
"waste management": "5 - Waste management",
|
||||
"other": "6 - Other Sector",
|
||||
@ -182,7 +183,7 @@ def idees_per_country(ct, year):
|
||||
|
||||
ct_idees = idees_rename.get(ct, ct)
|
||||
fn_residential = f"{base_dir}/JRC-IDEES-2015_Residential_{ct_idees}.xlsx"
|
||||
fn_services = f"{base_dir}/JRC-IDEES-2015_Tertiary_{ct_idees}.xlsx"
|
||||
fn_tertiary = f"{base_dir}/JRC-IDEES-2015_Tertiary_{ct_idees}.xlsx"
|
||||
fn_transport = f"{base_dir}/JRC-IDEES-2015_Transport_{ct_idees}.xlsx"
|
||||
|
||||
# residential
|
||||
@ -213,14 +214,14 @@ def idees_per_country(ct, year):
|
||||
ct_totals["electricity residential"] = df[47]
|
||||
|
||||
assert df.index[46] == "Derived heat"
|
||||
ct_totals["Derived heat residential"] = df[46]
|
||||
ct_totals["derived heat residential"] = df[46]
|
||||
|
||||
assert df.index[50] == 'Thermal uses'
|
||||
ct_totals["thermal uses residential"] = df[50]
|
||||
|
||||
# services
|
||||
|
||||
df = pd.read_excel(fn_services, "SER_hh_fec", index_col=0)[year]
|
||||
df = pd.read_excel(fn_tertiary, "SER_hh_fec", index_col=0)[year]
|
||||
|
||||
ct_totals["total services space"] = df["Space heating"]
|
||||
|
||||
@ -237,7 +238,7 @@ def idees_per_country(ct, year):
|
||||
assert df.index[31] == "Electricity"
|
||||
ct_totals["electricity services cooking"] = df[31]
|
||||
|
||||
df = pd.read_excel(fn_services, "SER_summary", index_col=0)[year]
|
||||
df = pd.read_excel(fn_tertiary, "SER_summary", index_col=0)[year]
|
||||
|
||||
row = "Energy consumption by fuel - Eurostat structure (ktoe)"
|
||||
ct_totals["total services"] = df[row]
|
||||
@ -251,6 +252,35 @@ def idees_per_country(ct, year):
|
||||
assert df.index[53] == 'Thermal uses'
|
||||
ct_totals["thermal uses services"] = df[53]
|
||||
|
||||
|
||||
# agriculture, forestry and fishing
|
||||
|
||||
start = "Detailed split of energy consumption (ktoe)"
|
||||
end = "Market shares of energy uses (%)"
|
||||
|
||||
df = pd.read_excel(fn_tertiary, "AGR_fec", index_col=0).loc[start:end, year]
|
||||
|
||||
rows = [
|
||||
"Lighting",
|
||||
"Ventilation",
|
||||
"Specific electricity uses",
|
||||
"Pumping devices (electric)"
|
||||
]
|
||||
ct_totals["total agriculture electricity"] = df[rows].sum()
|
||||
|
||||
rows = ["Specific heat uses", "Low enthalpy heat"]
|
||||
ct_totals["total agriculture heat"] = df[rows].sum()
|
||||
|
||||
rows = [
|
||||
"Motor drives",
|
||||
"Farming machine drives (diesel oil incl. biofuels)",
|
||||
"Pumping devices (diesel oil incl. biofuels)",
|
||||
]
|
||||
ct_totals["total agriculture machinery"] = df[rows].sum()
|
||||
|
||||
row = "Agriculture, forestry and fishing"
|
||||
ct_totals["total agriculture"] = df[row]
|
||||
|
||||
# transport
|
||||
|
||||
df = pd.read_excel(fn_transport, "TrRoad_ene", index_col=0)[year]
|
||||
@ -568,10 +598,13 @@ def build_eea_co2(year=1990):
|
||||
"international aviation",
|
||||
"domestic navigation",
|
||||
"international navigation",
|
||||
"agriculture, forestry and fishing"
|
||||
]
|
||||
emissions["industrial non-elec"] = emissions["total energy"] - emissions[to_subtract].sum(axis=1)
|
||||
|
||||
to_drop = ["total energy", "total wL", "total woL"]
|
||||
emissions["agriculture"] += emissions["agriculture, forestry and fishing"]
|
||||
|
||||
to_drop = ["total energy", "total wL", "total woL", "agriculture, forestry and fishing"]
|
||||
emissions.drop(columns=to_drop, inplace=True)
|
||||
|
||||
# convert from Gg to Mt
|
||||
@ -616,7 +649,7 @@ def build_co2_totals(countries, eea_co2, eurostat_co2):
|
||||
# does not include industrial process emissions or fuel processing/refining
|
||||
"industrial non-elec": (ct, "+", "Industry"),
|
||||
# does not include non-energy emissions
|
||||
"agriculture": (ct, "+", "+", "Agriculture / Forestry"),
|
||||
"agriculture": (eurostat_co2.index.get_level_values(0) == ct) & eurostat_co2.index.isin(["Agriculture / Forestry", "Fishing"], level=3),
|
||||
}
|
||||
|
||||
for i, mi in mappings.items():
|
||||
|
@ -92,6 +92,10 @@ def emission_sectors_from_opts(opts):
|
||||
"domestic navigation",
|
||||
"international navigation"
|
||||
]
|
||||
if "A" in opts:
|
||||
sectors += [
|
||||
"agriculture"
|
||||
]
|
||||
|
||||
return sectors
|
||||
|
||||
@ -882,8 +886,9 @@ def insert_electricity_distribution_grid(n, costs):
|
||||
capital_cost=costs.at['electricity distribution grid', 'fixed'] * cost_factor
|
||||
)
|
||||
|
||||
# this catches regular electricity load and "industry electricity"
|
||||
loads = n.loads.index[n.loads.carrier.str.contains("electricity")]
|
||||
# this catches regular electricity load and "industry electricity" and
|
||||
# "agriculture machinery electric" and "agriculture electricity"
|
||||
loads = n.loads.index[n.loads.carrier.str.contains("electric")]
|
||||
n.loads.loc[loads, "bus"] += " low voltage"
|
||||
|
||||
bevs = n.links.index[n.links.carrier == "BEV charger"]
|
||||
@ -1321,8 +1326,8 @@ def add_land_transport(n, costs):
|
||||
|
||||
co2 = ice_share / ice_efficiency * transport[nodes].sum().sum() / 8760 * costs.at["oil", 'CO2 intensity']
|
||||
|
||||
n.madd("Load",
|
||||
["land transport oil emissions"],
|
||||
n.add("Load",
|
||||
"land transport oil emissions",
|
||||
bus="co2 atmosphere",
|
||||
carrier="land transport oil emissions",
|
||||
p_set=-co2
|
||||
@ -2161,6 +2166,71 @@ def add_waste_heat(n):
|
||||
n.links.loc[urban_central + " H2 Fuel Cell", "efficiency2"] = 0.95 - n.links.loc[urban_central + " H2 Fuel Cell", "efficiency"]
|
||||
|
||||
|
||||
def add_agriculture(n, costs):
|
||||
|
||||
logger.info('Add agriculture, forestry and fishing sector.')
|
||||
|
||||
nodes = pop_layout.index
|
||||
|
||||
# electricity
|
||||
|
||||
n.madd("Load",
|
||||
nodes,
|
||||
suffix=" agriculture electricity",
|
||||
bus=nodes,
|
||||
carrier='agriculture electricity',
|
||||
p_set=nodal_energy_totals.loc[nodes, "total agriculture electricity"] * 1e6 / 8760
|
||||
)
|
||||
|
||||
# heat
|
||||
|
||||
n.madd("Load",
|
||||
nodes,
|
||||
suffix=" agriculture heat",
|
||||
bus=nodes + " services rural heat",
|
||||
carrier="agriculture heat",
|
||||
p_set=nodal_energy_totals.loc[nodes, "total agriculture heat"] * 1e6 / 8760
|
||||
)
|
||||
|
||||
# machinery
|
||||
|
||||
electric_share = get(options["agriculture_machinery_electric_share"], investment_year)
|
||||
assert electric_share <= 1.
|
||||
ice_share = 1 - electric_share
|
||||
|
||||
machinery_nodal_energy = nodal_energy_totals.loc[nodes, "total agriculture machinery"]
|
||||
|
||||
if electric_share > 0:
|
||||
|
||||
efficiency_gain = options["agriculture_machinery_fuel_efficiency"] / options["agriculture_machinery_electric_efficiency"]
|
||||
|
||||
n.madd("Load",
|
||||
nodes,
|
||||
suffix=" agriculture machinery electric",
|
||||
bus=nodes,
|
||||
carrier="agriculture machinery electric",
|
||||
p_set=electric_share / efficiency_gain * machinery_nodal_energy * 1e6 / 8760,
|
||||
)
|
||||
|
||||
if ice_share > 0:
|
||||
|
||||
n.add("Load",
|
||||
"agriculture machinery oil",
|
||||
bus="EU oil",
|
||||
carrier="agriculture machinery oil",
|
||||
p_set=ice_share * machinery_nodal_energy.sum() * 1e6 / 8760
|
||||
)
|
||||
|
||||
co2 = ice_share * machinery_nodal_energy.sum() * 1e6 / 8760 * costs.at["oil", 'CO2 intensity']
|
||||
|
||||
n.add("Load",
|
||||
"agriculture machinery oil emissions",
|
||||
bus="co2 atmosphere",
|
||||
carrier="agriculture machinery oil emissions",
|
||||
p_set=-co2
|
||||
)
|
||||
|
||||
|
||||
def decentral(n):
|
||||
"""Removes the electricity transmission system."""
|
||||
n.lines.drop(n.lines.index, inplace=True)
|
||||
@ -2297,6 +2367,9 @@ if __name__ == "__main__":
|
||||
if "I" in opts and "H" in opts:
|
||||
add_waste_heat(n)
|
||||
|
||||
if "A" in opts: # requires H and I
|
||||
add_agriculture(n, costs)
|
||||
|
||||
if options['dac']:
|
||||
add_dac(n, costs)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user