Merge pull request #733 from LukasFrankenQ/master
Enhanced Geothermal Systems
This commit is contained in:
commit
c519f4c116
@ -621,6 +621,13 @@ sector:
|
||||
solar: 3
|
||||
offwind-ac: 3
|
||||
offwind-dc: 3
|
||||
enhanced_geothermal:
|
||||
enable: false
|
||||
flexible: true
|
||||
max_hours: 240
|
||||
max_boost: 0.25
|
||||
var_cf: true
|
||||
sustainability_factor: 0.0025
|
||||
|
||||
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry
|
||||
industry:
|
||||
@ -1184,6 +1191,9 @@ plotting:
|
||||
waste: '#e3d37d'
|
||||
other: '#000000'
|
||||
geothermal: '#ba91b1'
|
||||
geothermal heat: '#ba91b1'
|
||||
geothermal district heat: '#d19D00'
|
||||
geothermal organic rankine cycle: '#ffbf00'
|
||||
AC: "#70af1d"
|
||||
AC-AC: "#70af1d"
|
||||
AC line: "#70af1d"
|
||||
|
1
data/egs_costs.json
Normal file
1
data/egs_costs.json
Normal file
File diff suppressed because one or more lines are too long
@ -145,3 +145,11 @@ limit_max_growth,,,
|
||||
-- -- {carrier},GW,float,The historic maximum growth of a carrier
|
||||
-- max_relative_growth,,,
|
||||
-- -- {carrier},p.u.,float,The historic maximum relative growth of a carrier
|
||||
,,,
|
||||
enhanced_geothermal,,,
|
||||
-- enable,--,"{true, false}",Add option to include Enhanced Geothermal Systems
|
||||
-- flexible,--,"{true, false}",Add option for flexible operation (see Ricks et al. 2024)
|
||||
-- max_hours,--,int,The maximum hours the reservoir can be charged under flexible operation
|
||||
-- max_boost,--,float,The maximum boost in power output under flexible operation
|
||||
-- var_cf,--,"{true, false}",Add option for variable capacity factor (see Ricks et al. 2024)
|
||||
-- sustainability_factor,--,float,Share of sourced heat that is replenished by the earth's core (see details in `build_egs_potentials.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_egs_potentials.py>`_)
|
||||
|
|
@ -7,8 +7,15 @@
|
||||
Release Notes
|
||||
##########################################
|
||||
|
||||
.. Upcoming Release
|
||||
.. ================
|
||||
Upcoming Release
|
||||
================
|
||||
|
||||
* Added Enhanced Geothermal Systems for generation of electricity and district heat.
|
||||
Cost and available capacity assumptions based on `Aghahosseini et al. (2020)
|
||||
<https://www.sciencedirect.com/science/article/pii/S0306261920312551>`__.
|
||||
See configuration ``sector: enhanced_geothermal`` for details; by default switched off.
|
||||
|
||||
|
||||
PyPSA-Eur 0.11.0 (25th May 2024)
|
||||
=====================================
|
||||
|
||||
@ -808,7 +815,7 @@ PyPSA-Eur 0.9.0 (5th January 2024)
|
||||
|
||||
* The minimum PyPSA version is now 0.26.1.
|
||||
|
||||
* Update to ``tsam>=0.2.3`` for performance improvents in temporal clustering.
|
||||
* Update to ``tsam>=0.2.3`` for performance improvements in temporal clustering.
|
||||
|
||||
* Pin ``snakemake`` version to below 8.0.0, as the new version is not yet
|
||||
supported. The next release will switch to the requirement ``snakemake>=8``.
|
||||
|
@ -902,6 +902,34 @@ def input_profile_offwind(w):
|
||||
}
|
||||
|
||||
|
||||
rule build_egs_potentials:
|
||||
params:
|
||||
snapshots=config_provider("snapshots"),
|
||||
sector=config_provider("sector"),
|
||||
costs=config_provider("costs"),
|
||||
input:
|
||||
egs_cost="data/egs_costs.json",
|
||||
regions=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"),
|
||||
air_temperature=(
|
||||
resources("temp_air_total_elec_s{simpl}_{clusters}.nc")
|
||||
if config_provider("sector", "enhanced_geothermal", "var_cf")
|
||||
else []
|
||||
),
|
||||
output:
|
||||
egs_potentials=resources("egs_potentials_s{simpl}_{clusters}.csv"),
|
||||
egs_overlap=resources("egs_overlap_s{simpl}_{clusters}.csv"),
|
||||
egs_capacity_factors=resources("egs_capacity_factors_s{simpl}_{clusters}.csv"),
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=2000,
|
||||
log:
|
||||
logs("build_egs_potentials_s{simpl}_{clusters}.log"),
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_egs_potentials.py"
|
||||
|
||||
|
||||
rule prepare_sector_network:
|
||||
params:
|
||||
time_resolution=config_provider("clustering", "temporal", "resolution_sector"),
|
||||
@ -1022,6 +1050,21 @@ rule prepare_sector_network:
|
||||
if config_provider("sector", "solar_thermal")(w)
|
||||
else []
|
||||
),
|
||||
egs_potentials=lambda w: (
|
||||
resources("egs_potentials_s{simpl}_{clusters}.csv")
|
||||
if config_provider("sector", "enhanced_geothermal", "enable")(w)
|
||||
else []
|
||||
),
|
||||
egs_overlap=lambda w: (
|
||||
resources("egs_overlap_s{simpl}_{clusters}.csv")
|
||||
if config_provider("sector", "enhanced_geothermal", "enable")(w)
|
||||
else []
|
||||
),
|
||||
egs_capacity_factors=lambda w: (
|
||||
resources("egs_capacity_factors_s{simpl}_{clusters}.csv")
|
||||
if config_provider("sector", "enhanced_geothermal", "enable")(w)
|
||||
else []
|
||||
),
|
||||
output:
|
||||
RESULTS
|
||||
+ "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
|
249
scripts/build_egs_potentials.py
Normal file
249
scripts/build_egs_potentials.py
Normal file
@ -0,0 +1,249 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2023 @LukasFranken, The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
This rule extracts potential and cost for electricity generation through
|
||||
enhanced geothermal systems.
|
||||
|
||||
For this, we use data from "From hot rock to useful energy..." by Aghahosseini, Breyer (2020)
|
||||
'https://doi.org/10.1016/j.apenergy.2020.115769'
|
||||
Note that we input data used here is not the same as in the paper, but was passed on by the authors.
|
||||
|
||||
The data provides a lon-lat gridded map of Europe (1° x 1°), with each grid cell assigned
|
||||
a heat potential (in GWh) and a cost (in EUR/MW).
|
||||
|
||||
This scripts overlays that map with the network's regions, and builds a csv with CAPEX, OPEX and p_nom_max
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import json
|
||||
|
||||
import geopandas as gpd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
from shapely.geometry import Polygon
|
||||
|
||||
|
||||
def prepare_egs_data(egs_file):
|
||||
"""
|
||||
Processes the original .json file EGS data to a more human-readable format.
|
||||
"""
|
||||
with open(egs_file) as f:
|
||||
jsondata = json.load(f)
|
||||
|
||||
def point_to_square(p, lon_extent=1.0, lat_extent=1.0):
|
||||
try:
|
||||
x, y = p.coords.xy[0][0], p.coords.xy[1][0]
|
||||
except IndexError:
|
||||
return p
|
||||
|
||||
return Polygon(
|
||||
[
|
||||
[x - lon_extent / 2, y - lat_extent / 2],
|
||||
[x - lon_extent / 2, y + lat_extent / 2],
|
||||
[x + lon_extent / 2, y + lat_extent / 2],
|
||||
[x + lon_extent / 2, y - lat_extent / 2],
|
||||
]
|
||||
)
|
||||
|
||||
years = [2015, 2020, 2025, 2030, 2035, 2040, 2045, 2050]
|
||||
lcoes = ["LCOE50", "LCOE100", "LCOE150"]
|
||||
|
||||
egs_data = dict()
|
||||
|
||||
for year in years:
|
||||
df = pd.DataFrame(columns=["Lon", "Lat", "CAPEX", "HeatSust", "PowerSust"])
|
||||
|
||||
for lcoe in lcoes:
|
||||
for country_data in jsondata[lcoe]:
|
||||
try:
|
||||
country_df = pd.DataFrame(
|
||||
columns=df.columns,
|
||||
index=range(len(country_data[0][years.index(year)]["Lon"])),
|
||||
)
|
||||
except TypeError:
|
||||
country_df = pd.DataFrame(columns=df.columns, index=range(0))
|
||||
|
||||
for col in df.columns:
|
||||
country_df[col] = country_data[0][years.index(year)][col]
|
||||
|
||||
if country_df.dropna().empty:
|
||||
continue
|
||||
elif df.empty:
|
||||
df = country_df.dropna()
|
||||
else:
|
||||
df = pd.concat((df, country_df.dropna()), ignore_index=True)
|
||||
|
||||
gdf = gpd.GeoDataFrame(
|
||||
df.drop(columns=["Lon", "Lat"]), geometry=gpd.points_from_xy(df.Lon, df.Lat)
|
||||
).reset_index(drop=True)
|
||||
|
||||
gdf["geometry"] = gdf.geometry.apply(lambda geom: point_to_square(geom))
|
||||
egs_data[year] = gdf
|
||||
|
||||
return egs_data
|
||||
|
||||
|
||||
def prepare_capex(prepared_data):
|
||||
"""
|
||||
The source paper provides only data for year and regions where LCOE <
|
||||
100Euro/MWh. However, this implementations starts with the costs for 2020
|
||||
for all regions and then adjusts the costs according to the user's chosen
|
||||
setting in the config file.
|
||||
|
||||
As such, for regions where cost data is available only from, say,
|
||||
2035, we need to reverse-engineer the costs for 2020. This is done
|
||||
in the following (unfortunately verbose) function.
|
||||
"""
|
||||
|
||||
default_year = 2020
|
||||
|
||||
# obtains all available CAPEX data
|
||||
capex_df = pd.DataFrame(columns=prepared_data.keys())
|
||||
|
||||
for year in capex_df.columns:
|
||||
|
||||
year_data = prepared_data[year].groupby("geometry").mean().reset_index()
|
||||
|
||||
for g in year_data.geometry:
|
||||
|
||||
if not g in year_data.geometry.tolist():
|
||||
# weird but apparently necessary
|
||||
continue
|
||||
|
||||
capex_df.loc[g, year] = year_data.loc[
|
||||
year_data.geometry == g, "CAPEX"
|
||||
].values[0]
|
||||
|
||||
capex_df = capex_df.loc[:, default_year:]
|
||||
|
||||
# fill up missing values assuming cost reduction factors similar to existing values
|
||||
for sooner, later in zip(capex_df.columns[::-1][1:], capex_df.columns[::-1]):
|
||||
|
||||
missing_mask = capex_df[sooner].isna()
|
||||
cr_factor = (
|
||||
capex_df.loc[~missing_mask, later] / capex_df.loc[~missing_mask, sooner]
|
||||
)
|
||||
|
||||
capex_df.loc[missing_mask, sooner] = (
|
||||
capex_df.loc[missing_mask, later] / cr_factor.mean()
|
||||
)
|
||||
|
||||
# harmonice capacity and CAPEX
|
||||
p_nom_max = prepared_data[2050].groupby("geometry")["PowerSust"].mean()
|
||||
p_nom_max = p_nom_max.loc[p_nom_max > 0]
|
||||
|
||||
capex_df = capex_df.loc[p_nom_max.index]
|
||||
|
||||
data = (
|
||||
pd.concat((capex_df[default_year], p_nom_max), axis=1)
|
||||
.reset_index()
|
||||
.rename(columns={2020: "CAPEX"})
|
||||
)
|
||||
return gpd.GeoDataFrame(data, geometry=data.geometry)
|
||||
|
||||
|
||||
def get_capacity_factors(network_regions_file, air_temperatures_file):
|
||||
"""
|
||||
Performance of EGS is higher for lower temperatures, due to more efficient
|
||||
air cooling Data from Ricks et al.: The Role of Flexible Geothermal Power
|
||||
in Decarbonized Elec Systems.
|
||||
"""
|
||||
|
||||
# these values are taken from the paper's
|
||||
# Supplementary Figure 20 from https://zenodo.org/records/7093330
|
||||
# and relate deviations of the ambient temperature from the year-average
|
||||
# ambient temperature to EGS capacity factors.
|
||||
delta_T = [-15, -10, -5, 0, 5, 10, 15, 20]
|
||||
cf = [1.17, 1.13, 1.07, 1, 0.925, 0.84, 0.75, 0.65]
|
||||
|
||||
x = np.linspace(-15, 20, 200)
|
||||
y = np.interp(x, delta_T, cf)
|
||||
|
||||
upper_x = np.linspace(20, 25, 50)
|
||||
m_upper = (y[-1] - y[-2]) / (x[-1] - x[-2])
|
||||
upper_y = upper_x * m_upper - x[-1] * m_upper + y[-1]
|
||||
|
||||
lower_x = np.linspace(-20, -15, 50)
|
||||
m_lower = (y[1] - y[0]) / (x[1] - x[0])
|
||||
lower_y = lower_x * m_lower - x[0] * m_lower + y[0]
|
||||
|
||||
x = np.hstack((lower_x, x, upper_x))
|
||||
y = np.hstack((lower_y, y, upper_y))
|
||||
|
||||
network_regions = gpd.read_file(network_regions_file).set_crs(epsg=4326)
|
||||
index = network_regions["name"]
|
||||
|
||||
air_temp = xr.open_dataset(air_temperatures_file)
|
||||
|
||||
snapshots = pd.date_range(freq="h", **snakemake.params.snapshots)
|
||||
capacity_factors = pd.DataFrame(index=snapshots)
|
||||
|
||||
# bespoke computation of capacity factors for each bus.
|
||||
# Considering the respective temperatures, we compute
|
||||
# the deviation from the average temperature and relate it
|
||||
# to capacity factors based on the data from above.
|
||||
for bus in index:
|
||||
temp = air_temp.sel(name=bus).to_dataframe()["temperature"]
|
||||
capacity_factors[bus] = np.interp((temp - temp.mean()).values, x, y)
|
||||
|
||||
return capacity_factors
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_egs_potentials",
|
||||
simpl="",
|
||||
clusters=37,
|
||||
)
|
||||
|
||||
egs_config = snakemake.params["sector"]["enhanced_geothermal"]
|
||||
costs_config = snakemake.params["costs"]
|
||||
|
||||
egs_data = prepare_egs_data(snakemake.input.egs_cost)
|
||||
egs_data = prepare_capex(egs_data)
|
||||
|
||||
egs_regions = egs_data.geometry
|
||||
|
||||
network_regions = (
|
||||
gpd.read_file(snakemake.input.regions)
|
||||
.set_index("name", drop=True)
|
||||
.set_crs(epsg=4326)
|
||||
)
|
||||
|
||||
overlap_matrix = pd.DataFrame(
|
||||
index=network_regions.index,
|
||||
columns=egs_data.index,
|
||||
)
|
||||
|
||||
for name, polygon in network_regions.geometry.items():
|
||||
overlap_matrix.loc[name] = (
|
||||
egs_regions.intersection(polygon).area
|
||||
) / egs_regions.area
|
||||
|
||||
overlap_matrix.to_csv(snakemake.output["egs_overlap"])
|
||||
|
||||
# the share of heat that is replenished from the earth's core.
|
||||
# we are not constraining ourselves to the sustainable share, but
|
||||
# inversely apply it to our underlying data, which refers to the
|
||||
# sustainable heat. Source: Relative magnitude of sustainable heat vs
|
||||
# nonsustainable heat in the paper "From hot rock to useful energy..."
|
||||
sustainability_factor = egs_config["sustainability_factor"]
|
||||
egs_data["p_nom_max"] = egs_data["PowerSust"] / sustainability_factor
|
||||
|
||||
egs_data[["p_nom_max", "CAPEX"]].to_csv(snakemake.output["egs_potentials"])
|
||||
|
||||
capacity_factors = get_capacity_factors(
|
||||
snakemake.input["regions"],
|
||||
snakemake.input["air_temperature"],
|
||||
)
|
||||
|
||||
capacity_factors.to_csv(snakemake.output["egs_capacity_factors"])
|
217
scripts/prepare_sector_network.py
Executable file → Normal file
217
scripts/prepare_sector_network.py
Executable file → Normal file
@ -196,6 +196,11 @@ def define_spatial(nodes, options):
|
||||
spatial.lignite.nodes = ["EU lignite"]
|
||||
spatial.lignite.locations = ["EU"]
|
||||
|
||||
# deep geothermal
|
||||
spatial.geothermal_heat = SimpleNamespace()
|
||||
spatial.geothermal_heat.nodes = ["EU enhanced geothermal systems"]
|
||||
spatial.geothermal_heat.locations = ["EU"]
|
||||
|
||||
return spatial
|
||||
|
||||
|
||||
@ -976,7 +981,7 @@ def insert_electricity_distribution_grid(n, costs):
|
||||
.get("efficiency_static")
|
||||
):
|
||||
logger.info(
|
||||
f"Deducting distribution losses from electricity demand: {100*(1-efficiency)}%"
|
||||
f"Deducting distribution losses from electricity demand: {np.around(100*(1-efficiency), decimals=2)}%"
|
||||
)
|
||||
n.loads_t.p_set.loc[:, n.loads.carrier == "electricity"] *= efficiency
|
||||
|
||||
@ -3726,6 +3731,210 @@ def lossy_bidirectional_links(n, carrier, efficiencies={}):
|
||||
)
|
||||
|
||||
|
||||
def add_enhanced_geothermal(n, egs_potentials, egs_overlap, costs):
|
||||
"""
|
||||
Adds EGS potential to model.
|
||||
|
||||
Built in scripts/build_egs_potentials.py
|
||||
"""
|
||||
|
||||
if len(spatial.geothermal_heat.nodes) > 1:
|
||||
logger.warning(
|
||||
"'add_enhanced_geothermal' not implemented for multiple geothermal nodes."
|
||||
)
|
||||
logger.info(
|
||||
"[EGS] implemented with 2020 CAPEX from Aghahosseini et al 2021: 'From hot rock to...'."
|
||||
)
|
||||
logger.info(
|
||||
"[EGS] Recommended usage scales CAPEX to future cost expectations using config 'adjustments'."
|
||||
)
|
||||
logger.info("[EGS] During this the relevant carriers are:")
|
||||
logger.info("[EGS] drilling part -> 'geothermal heat'")
|
||||
logger.info(
|
||||
"[EGS] electricity generation part -> 'geothermal organic rankine cycle'"
|
||||
)
|
||||
logger.info("[EGS] district heat distribution part -> 'geothermal district heat'")
|
||||
|
||||
egs_config = snakemake.params["sector"]["enhanced_geothermal"]
|
||||
costs_config = snakemake.config["costs"]
|
||||
|
||||
# matrix defining the overlap between gridded geothermal potential estimation, and bus regions
|
||||
overlap = pd.read_csv(egs_overlap, index_col=0)
|
||||
overlap.columns = overlap.columns.astype(int)
|
||||
egs_potentials = pd.read_csv(egs_potentials, index_col=0)
|
||||
|
||||
Nyears = n.snapshot_weightings.generators.sum() / 8760
|
||||
dr = costs_config["fill_values"]["discount rate"]
|
||||
lt = costs.at["geothermal", "lifetime"]
|
||||
FOM = costs.at["geothermal", "FOM"]
|
||||
|
||||
egs_annuity = calculate_annuity(lt, dr)
|
||||
|
||||
# under egs optimism, the expected cost reductions also cover costs for ORC
|
||||
# hence, the ORC costs are no longer taken from technology-data
|
||||
orc_capex = costs.at["organic rankine cycle", "investment"]
|
||||
|
||||
# cost for ORC is subtracted, as it is already included in the geothermal cost.
|
||||
# The orc cost are attributed to a separate link representing the ORC.
|
||||
# also capital_cost conversion Euro/kW -> Euro/MW
|
||||
|
||||
egs_potentials["capital_cost"] = (
|
||||
(egs_annuity + FOM / (1.0 + FOM))
|
||||
* (egs_potentials["CAPEX"] * 1e3 - orc_capex)
|
||||
* Nyears
|
||||
)
|
||||
|
||||
assert (
|
||||
egs_potentials["capital_cost"] > 0
|
||||
).all(), "Error in EGS cost, negative values found."
|
||||
|
||||
orc_annuity = calculate_annuity(costs.at["organic rankine cycle", "lifetime"], dr)
|
||||
orc_capital_cost = (orc_annuity + FOM / (1 + FOM)) * orc_capex * Nyears
|
||||
|
||||
efficiency_orc = costs.at["organic rankine cycle", "efficiency"]
|
||||
efficiency_dh = costs.at["geothermal", "district heat-input"]
|
||||
|
||||
# p_nom_max conversion GW -> MW
|
||||
egs_potentials["p_nom_max"] = egs_potentials["p_nom_max"] * 1000.0
|
||||
|
||||
# not using add_carrier_buses, as we are not interested in a Store
|
||||
n.add("Carrier", "geothermal heat")
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
spatial.geothermal_heat.nodes,
|
||||
carrier="geothermal heat",
|
||||
unit="MWh_th",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Generator",
|
||||
spatial.geothermal_heat.nodes,
|
||||
bus=spatial.geothermal_heat.nodes,
|
||||
carrier="geothermal heat",
|
||||
p_nom_extendable=True,
|
||||
)
|
||||
|
||||
if egs_config["var_cf"]:
|
||||
efficiency = pd.read_csv(
|
||||
snakemake.input.egs_capacity_factors, parse_dates=True, index_col=0
|
||||
)
|
||||
logger.info("Adding Enhanced Geothermal with time-varying capacity factors.")
|
||||
else:
|
||||
efficiency = 1.0
|
||||
|
||||
# if urban central heat exists, adds geothermal as CHP
|
||||
as_chp = "urban central heat" in n.loads.carrier.unique()
|
||||
|
||||
if as_chp:
|
||||
logger.info("Adding EGS as Combined Heat and Power.")
|
||||
|
||||
else:
|
||||
logger.info("Adding EGS for Electricity Only.")
|
||||
|
||||
for bus, bus_overlap in overlap.iterrows():
|
||||
if not bus_overlap.sum():
|
||||
continue
|
||||
|
||||
overlap = bus_overlap.loc[bus_overlap > 0.0]
|
||||
bus_egs = egs_potentials.loc[overlap.index]
|
||||
|
||||
if not len(bus_egs):
|
||||
continue
|
||||
|
||||
bus_egs["p_nom_max"] = bus_egs["p_nom_max"].multiply(bus_overlap)
|
||||
bus_egs = bus_egs.loc[bus_egs.p_nom_max > 0.0]
|
||||
|
||||
appendix = " " + pd.Index(np.arange(len(bus_egs)).astype(str))
|
||||
|
||||
# add surface bus
|
||||
n.madd(
|
||||
"Bus",
|
||||
pd.Index([f"{bus} geothermal heat surface"]),
|
||||
location=bus,
|
||||
unit="MWh_th",
|
||||
carrier="geothermal heat",
|
||||
)
|
||||
|
||||
bus_egs.index = np.arange(len(bus_egs)).astype(str)
|
||||
well_name = f"{bus} enhanced geothermal" + appendix
|
||||
|
||||
if egs_config["var_cf"]:
|
||||
bus_eta = pd.concat(
|
||||
(efficiency[bus].rename(idx) for idx in well_name),
|
||||
axis=1,
|
||||
)
|
||||
else:
|
||||
bus_eta = efficiency
|
||||
|
||||
p_nom_max = bus_egs["p_nom_max"]
|
||||
capital_cost = bus_egs["capital_cost"]
|
||||
bus1 = pd.Series(f"{bus} geothermal heat surface", well_name)
|
||||
|
||||
# adding geothermal wells as multiple generators to represent supply curve
|
||||
n.madd(
|
||||
"Link",
|
||||
well_name,
|
||||
bus0=spatial.geothermal_heat.nodes,
|
||||
bus1=bus1,
|
||||
carrier="geothermal heat",
|
||||
p_nom_extendable=True,
|
||||
p_nom_max=p_nom_max.set_axis(well_name) / efficiency_orc,
|
||||
capital_cost=capital_cost.set_axis(well_name) * efficiency_orc,
|
||||
efficiency=bus_eta,
|
||||
)
|
||||
|
||||
# adding Organic Rankine Cycle as a single link
|
||||
n.add(
|
||||
"Link",
|
||||
bus + " geothermal organic rankine cycle",
|
||||
bus0=f"{bus} geothermal heat surface",
|
||||
bus1=bus,
|
||||
p_nom_extendable=True,
|
||||
carrier="geothermal organic rankine cycle",
|
||||
capital_cost=orc_capital_cost * efficiency_orc,
|
||||
efficiency=efficiency_orc,
|
||||
)
|
||||
|
||||
if as_chp and bus + " urban central heat" in n.buses.index:
|
||||
n.add(
|
||||
"Link",
|
||||
bus + " geothermal heat district heat",
|
||||
bus0=f"{bus} geothermal heat surface",
|
||||
bus1=bus + " urban central heat",
|
||||
carrier="geothermal district heat",
|
||||
capital_cost=orc_capital_cost
|
||||
* efficiency_orc
|
||||
* costs.at["geothermal", "district heat surcharge"]
|
||||
/ 100.0,
|
||||
efficiency=efficiency_dh,
|
||||
p_nom_extendable=True,
|
||||
)
|
||||
elif as_chp and not bus + " urban central heat" in n.buses.index:
|
||||
n.links.at[bus + " geothermal organic rankine cycle", "efficiency"] = (
|
||||
efficiency_orc
|
||||
)
|
||||
|
||||
if egs_config["flexible"]:
|
||||
# this StorageUnit represents flexible operation using the geothermal reservoir.
|
||||
# Hence, it is counter-intuitive to install it at the surface bus,
|
||||
# this is however the more lean and computationally efficient solution.
|
||||
|
||||
max_hours = egs_config["max_hours"]
|
||||
boost = egs_config["max_boost"]
|
||||
|
||||
n.add(
|
||||
"StorageUnit",
|
||||
bus + " geothermal reservoir",
|
||||
bus=f"{bus} geothermal heat surface",
|
||||
carrier="geothermal heat",
|
||||
p_nom_extendable=True,
|
||||
p_min_pu=-boost,
|
||||
max_hours=max_hours,
|
||||
cyclic_state_of_charge=True,
|
||||
)
|
||||
|
||||
|
||||
# %%
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
@ -3857,6 +4066,12 @@ if __name__ == "__main__":
|
||||
if options["electricity_distribution_grid"]:
|
||||
insert_electricity_distribution_grid(n, costs)
|
||||
|
||||
if options["enhanced_geothermal"].get("enable", False):
|
||||
logger.info("Adding Enhanced Geothermal Systems (EGS).")
|
||||
add_enhanced_geothermal(
|
||||
n, snakemake.input["egs_potentials"], snakemake.input["egs_overlap"], costs
|
||||
)
|
||||
|
||||
maybe_adjust_costs_and_potentials(n, snakemake.params["adjustments"])
|
||||
|
||||
if options["gas_distribution_grid"]:
|
||||
|
@ -948,6 +948,25 @@ def add_pipe_retrofit_constraint(n):
|
||||
n.model.add_constraints(lhs == rhs, name="Link-pipe_retrofit")
|
||||
|
||||
|
||||
def add_flexible_egs_constraint(n):
|
||||
"""
|
||||
Upper bounds the charging capacity of the geothermal reservoir according to
|
||||
the well capacity.
|
||||
"""
|
||||
well_index = n.links.loc[n.links.carrier == "geothermal heat"].index
|
||||
storage_index = n.storage_units.loc[
|
||||
n.storage_units.carrier == "geothermal heat"
|
||||
].index
|
||||
|
||||
p_nom_rhs = n.model["Link-p_nom"].loc[well_index]
|
||||
p_nom_lhs = n.model["StorageUnit-p_nom"].loc[storage_index]
|
||||
|
||||
n.model.add_constraints(
|
||||
p_nom_lhs <= p_nom_rhs,
|
||||
name="upper_bound_charging_capacity_of_geothermal_reservoir",
|
||||
)
|
||||
|
||||
|
||||
def add_co2_atmosphere_constraint(n, snapshots):
|
||||
glcs = n.global_constraints[n.global_constraints.type == "co2_atmosphere"]
|
||||
|
||||
@ -1013,6 +1032,9 @@ def extra_functionality(n, snapshots):
|
||||
else:
|
||||
add_co2_atmosphere_constraint(n, snapshots)
|
||||
|
||||
if config["sector"]["enhanced_geothermal"]["enable"]:
|
||||
add_flexible_egs_constraint(n)
|
||||
|
||||
if snakemake.params.custom_extra_functionality:
|
||||
source_path = snakemake.params.custom_extra_functionality
|
||||
assert os.path.exists(source_path), f"{source_path} does not exist"
|
||||
|
Loading…
Reference in New Issue
Block a user