Define methanol energy demand for industry
This commit is contained in:
parent
27009f5060
commit
c3dcff8a35
@ -706,6 +706,7 @@ industry:
|
|||||||
methanol_production_today: 1.5
|
methanol_production_today: 1.5
|
||||||
MWh_elec_per_tMeOH: 0.167
|
MWh_elec_per_tMeOH: 0.167
|
||||||
MWh_CH4_per_tMeOH: 10.25
|
MWh_CH4_per_tMeOH: 10.25
|
||||||
|
MWh_MeOH_per_tMeOH: 5.528
|
||||||
hotmaps_locate_missing: false
|
hotmaps_locate_missing: false
|
||||||
reference_year: 2015
|
reference_year: 2015
|
||||||
|
|
||||||
@ -1146,6 +1147,7 @@ plotting:
|
|||||||
methanolisation: '#83d6d5'
|
methanolisation: '#83d6d5'
|
||||||
methanol: '#468c8b'
|
methanol: '#468c8b'
|
||||||
shipping methanol: '#468c8b'
|
shipping methanol: '#468c8b'
|
||||||
|
industry methanol: '#468c8b'
|
||||||
# co2
|
# co2
|
||||||
CC: '#f29dae'
|
CC: '#f29dae'
|
||||||
CCS: '#f29dae'
|
CCS: '#f29dae'
|
||||||
|
@ -32,5 +32,6 @@ MWh_H2_per_tCl,MWhH2/tCl,float,"The energy amount of hydrogen needed to produce
|
|||||||
methanol_production _today,MtMeOH/a,float,"The amount of methanol produced. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 62"
|
methanol_production _today,MtMeOH/a,float,"The amount of methanol produced. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 62"
|
||||||
MWh_elec_per_tMeOH,MWh/tMeOH,float,"The energy amount of electricity needed to produce a ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 14, page 65"
|
MWh_elec_per_tMeOH,MWh/tMeOH,float,"The energy amount of electricity needed to produce a ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 14, page 65"
|
||||||
MWh_CH4_per_tMeOH,MWhCH4/tMeOH,float,"The energy amount of methane needed to produce a ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 14, page 65"
|
MWh_CH4_per_tMeOH,MWhCH4/tMeOH,float,"The energy amount of methane needed to produce a ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, Table 14, page 65"
|
||||||
|
MWh_MeOH_per_tMeOH,LHV,float,"The energy amount per ton of methanol. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 74."
|
||||||
hotmaps_locate_missing,--,"{true,false}",Locate industrial sites without valid locations based on city and countries.
|
hotmaps_locate_missing,--,"{true,false}",Locate industrial sites without valid locations based on city and countries.
|
||||||
reference_year,year,YYYY,The year used as the baseline for industrial energy demand and production. Data extracted from `JRC-IDEES 2015 <https://data.jrc.ec.europa.eu/dataset/jrc-10110-10001>`_
|
reference_year,year,YYYY,The year used as the baseline for industrial energy demand and production. Data extracted from `JRC-IDEES 2015 <https://data.jrc.ec.europa.eu/dataset/jrc-10110-10001>`_
|
||||||
|
|
@ -39,7 +39,7 @@ agriculture_machinery _oil_share,--,float,The share for agricultural machinery t
|
|||||||
agriculture_machinery _fuel_efficiency,--,float,The efficiency of electric-powered machinery in the conversion of electricity to meet agricultural needs.
|
agriculture_machinery _fuel_efficiency,--,float,The efficiency of electric-powered machinery in the conversion of electricity to meet agricultural needs.
|
||||||
agriculture_machinery _electric_efficiency,--,float,The efficiency of oil-powered machinery in the conversion of oil to meet agricultural needs.
|
agriculture_machinery _electric_efficiency,--,float,The efficiency of oil-powered machinery in the conversion of oil to meet agricultural needs.
|
||||||
Mwh_MeOH_per_MWh_H2,LHV,float,"The energy amount of the produced methanol per energy amount of hydrogen. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
|
Mwh_MeOH_per_MWh_H2,LHV,float,"The energy amount of the produced methanol per energy amount of hydrogen. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
|
||||||
MWh_MeOH_per_tCO2,LHV,float,"The energy amount of the produced methanol per ton of CO2. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
|
MWh_MeOH_per_tCO2,LHV,float,"The energy amount of the produced methanol per ton of CO2. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 66."
|
||||||
MWh_MeOH_per_MWh_e,LHV,float,"The energy amount of the produced methanol per energy amount of electricity. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
|
MWh_MeOH_per_MWh_e,LHV,float,"The energy amount of the produced methanol per energy amount of electricity. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
|
||||||
shipping_hydrogen _liquefaction,--,"{true, false}",Whether to include liquefaction costs for hydrogen demand in shipping.
|
shipping_hydrogen _liquefaction,--,"{true, false}",Whether to include liquefaction costs for hydrogen demand in shipping.
|
||||||
,,,
|
,,,
|
||||||
|
|
@ -280,6 +280,8 @@ Upcoming Release
|
|||||||
|
|
||||||
* Fix gas network retrofitting in `add_brownfield`.
|
* Fix gas network retrofitting in `add_brownfield`.
|
||||||
|
|
||||||
|
* Change the methanol energy demand of industry to the low-carbon route defined by `DECHEMA report <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`__.
|
||||||
|
|
||||||
PyPSA-Eur 0.10.0 (19th February 2024)
|
PyPSA-Eur 0.10.0 (19th February 2024)
|
||||||
=====================================
|
=====================================
|
||||||
|
|
||||||
|
@ -459,8 +459,7 @@ Statistics for the production of ammonia, which is commonly used as a fertilizer
|
|||||||
|
|
||||||
The Haber-Bosch process is not explicitly represented in the model, such that demand for ammonia enters the model as a demand for hydrogen ( 6.5 MWh :math:`_{H_2}` / t :math:`_{NH_3}` ) and electricity ( 1.17 MWh :math:`_{el}` /t :math:`_{NH_3}` ) (see `Wang et. al <https://doi.org/10.1016/j.joule.2018.04.017>`__). Today, natural gas dominates in Europe as the source for the hydrogen used in the Haber-Bosch process, but the model can choose among the various hydrogen supply options described in the hydrogen section (see :ref:`Hydrogen supply`)
|
The Haber-Bosch process is not explicitly represented in the model, such that demand for ammonia enters the model as a demand for hydrogen ( 6.5 MWh :math:`_{H_2}` / t :math:`_{NH_3}` ) and electricity ( 1.17 MWh :math:`_{el}` /t :math:`_{NH_3}` ) (see `Wang et. al <https://doi.org/10.1016/j.joule.2018.04.017>`__). Today, natural gas dominates in Europe as the source for the hydrogen used in the Haber-Bosch process, but the model can choose among the various hydrogen supply options described in the hydrogen section (see :ref:`Hydrogen supply`)
|
||||||
|
|
||||||
The total production and specific energy consumption of chlorine and methanol is taken from a `DECHEMA report <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`__. According to this source, the production of chlorine amounts to 9.58 MtCl/a, which is assumed to require electricity at 3.6 MWh :math:`_{el}`/t of chlorine and yield hydrogen at 0.937 MWh :math:`_{H_2}`/t of chlorine in the chloralkali process. The production of methanol adds up to 1.5 MtMeOH/a, requiring electricity at 0.167 MWh :math:`_{el}`/t of methanol and methane at 10.25 MWh :math:`_{CH_4}`/t of methanol.
|
The total production and specific energy consumption of chlorine and methanol is taken from a `DECHEMA report <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`__. According to this source, the production of chlorine amounts to 9.58 MtCl/a, which is assumed to require electricity at 3.6 MWh :math:`_{el}`/t of chlorine and yield hydrogen at 0.937 MWh :math:`_{H_2}`/t of chlorine in the chloralkali process. The production of methanol adds up to 1.5 MtMeOH/a. Low-carbon methanol production (or methanolisation) by hydrogenation of :math:`CO_2` requires hydrogen at 6.299 MWh :math:`_{H_2}`/t of methanol, carbon dioxide at 1.373 t :math:`_{CO_2}`/t of methanol and electricity at 1.5 MWh :math:`_{el}`/t of methanol. The energy content of methanol is 5.528 MWh :math:`_{MeOH}`/t of methanol. These values are set exogenously in the config file.
|
||||||
|
|
||||||
|
|
||||||
The production of ammonia, methanol, and chlorine production is deducted from the JRC IDEES basic chemicals, leaving the production totals of high-value chemicals. For this, we assume that the liquid hydrocarbon feedstock comes from synthetic or fossil- origin naphtha (14 MWh :math:`_{naphtha}`/t of HVC, similar to `Lechtenböhmer et al <https://doi.org/10.1016/j.energy.2016.07.110>`__), ignoring the methanol-to-olefin route. Furthermore, we assume the following transformations of the energy-consuming processes in the production of plastics: the final energy consumption in steam processing is converted to methane since requires temperature above 500 °C (4.1 MWh :math:`_{CH_4}` /t of HVC, see `Rehfeldt et al. <https://doi.org/10.1007/s12053-017-9571-y>`__); and the remaining processes are electrified using the current efficiency of microwave for high-enthalpy heat processing, electric furnaces, electric process cooling and electric generic processes (2.85 MWh :math:`_{el}`/t of HVC).
|
The production of ammonia, methanol, and chlorine production is deducted from the JRC IDEES basic chemicals, leaving the production totals of high-value chemicals. For this, we assume that the liquid hydrocarbon feedstock comes from synthetic or fossil- origin naphtha (14 MWh :math:`_{naphtha}`/t of HVC, similar to `Lechtenböhmer et al <https://doi.org/10.1016/j.energy.2016.07.110>`__), ignoring the methanol-to-olefin route. Furthermore, we assume the following transformations of the energy-consuming processes in the production of plastics: the final energy consumption in steam processing is converted to methane since requires temperature above 500 °C (4.1 MWh :math:`_{CH_4}` /t of HVC, see `Rehfeldt et al. <https://doi.org/10.1007/s12053-017-9571-y>`__); and the remaining processes are electrified using the current efficiency of microwave for high-enthalpy heat processing, electric furnaces, electric process cooling and electric generic processes (2.85 MWh :math:`_{el}`/t of HVC).
|
||||||
|
|
||||||
@ -573,7 +572,7 @@ The `demand for aviation <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c99
|
|||||||
|
|
||||||
**Shipping**
|
**Shipping**
|
||||||
|
|
||||||
Shipping energy demand is covered by a combination of oil and hydrogen. Other fuel options, like methanol or ammonia, are currently not included in PyPSA-Eur-Sec. The share of shipping that is assumed to be supplied by hydrogen can be selected in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L198>`__.
|
Shipping energy demand is covered by a combination of oil, hydrogen and methanol. Other fuel options, like ammonia, are currently not included in PyPSA-Eur-Sec. The share of shipping that is assumed to be supplied by hydrogen or methanol can be selected in the `config file <https://github.com/PyPSA/pypsa-eur/blob/master/config/config.default.yaml#L475>`__.
|
||||||
|
|
||||||
To estimate the `hydrogen demand <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2090>`__, the average fuel efficiency of the fleet is used in combination with the efficiency of the fuel cell defined in the technology-data repository. The average fuel efficiency is set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L196>`__.
|
To estimate the `hydrogen demand <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2090>`__, the average fuel efficiency of the fleet is used in combination with the efficiency of the fuel cell defined in the technology-data repository. The average fuel efficiency is set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L196>`__.
|
||||||
|
|
||||||
@ -581,6 +580,8 @@ The consumed hydrogen comes from the general hydrogen bus where it can be produc
|
|||||||
|
|
||||||
The energy demand for liquefaction of the hydrogen used for shipping can be `included <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L197>`__. If this option is selected, liquifaction will happen at the `node where the shipping demand occurs <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2064>`__.
|
The energy demand for liquefaction of the hydrogen used for shipping can be `included <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L197>`__. If this option is selected, liquifaction will happen at the `node where the shipping demand occurs <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2064>`__.
|
||||||
|
|
||||||
|
The consumed methanol comes from the general methanol bus where it is produced through methanolisation (see :ref:`Chemicals Industry`).
|
||||||
|
|
||||||
.. _Carbon dioxide capture, usage and sequestration (CCU/S):
|
.. _Carbon dioxide capture, usage and sequestration (CCU/S):
|
||||||
|
|
||||||
Carbon dioxide capture, usage and sequestration (CCU/S)
|
Carbon dioxide capture, usage and sequestration (CCU/S)
|
||||||
|
@ -68,6 +68,7 @@ index = [
|
|||||||
"heat",
|
"heat",
|
||||||
"naphtha",
|
"naphtha",
|
||||||
"ammonia",
|
"ammonia",
|
||||||
|
"methanol",
|
||||||
"process emission",
|
"process emission",
|
||||||
"process emission from feedstock",
|
"process emission from feedstock",
|
||||||
]
|
]
|
||||||
@ -456,8 +457,7 @@ def chemicals_industry():
|
|||||||
|
|
||||||
sector = "Methanol"
|
sector = "Methanol"
|
||||||
df[sector] = 0.0
|
df[sector] = 0.0
|
||||||
df.loc["methane", sector] = params["MWh_CH4_per_tMeOH"]
|
df.loc["methanol", sector] = params["MWh_MeOH_per_tMeOH"]
|
||||||
df.loc["elec", sector] = params["MWh_elec_per_tMeOH"]
|
|
||||||
|
|
||||||
# Other chemicals
|
# Other chemicals
|
||||||
|
|
||||||
|
@ -146,10 +146,12 @@ def define_spatial(nodes, options):
|
|||||||
|
|
||||||
if options["regional_methanol_demand"]:
|
if options["regional_methanol_demand"]:
|
||||||
spatial.methanol.demand_locations = nodes
|
spatial.methanol.demand_locations = nodes
|
||||||
|
spatial.methanol.industry = nodes + " industry methanol"
|
||||||
spatial.methanol.shipping = nodes + " shipping methanol"
|
spatial.methanol.shipping = nodes + " shipping methanol"
|
||||||
else:
|
else:
|
||||||
spatial.methanol.demand_locations = ["EU"]
|
spatial.methanol.demand_locations = ["EU"]
|
||||||
spatial.methanol.shipping = ["EU shipping methanol"]
|
spatial.methanol.shipping = ["EU shipping methanol"]
|
||||||
|
spatial.methanol.industry = ["EU industry methanol"]
|
||||||
|
|
||||||
# oil
|
# oil
|
||||||
spatial.oil = SimpleNamespace()
|
spatial.oil = SimpleNamespace()
|
||||||
@ -2760,57 +2762,97 @@ def add_industry(n, costs):
|
|||||||
p_set=p_set_hydrogen,
|
p_set=p_set_hydrogen,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
n.madd(
|
||||||
|
"Bus",
|
||||||
|
spatial.methanol.nodes,
|
||||||
|
carrier="methanol",
|
||||||
|
location=spatial.methanol.locations,
|
||||||
|
unit="MWh_LHV",
|
||||||
|
)
|
||||||
|
|
||||||
|
n.madd(
|
||||||
|
"Store",
|
||||||
|
spatial.methanol.nodes,
|
||||||
|
suffix=" Store",
|
||||||
|
bus=spatial.methanol.nodes,
|
||||||
|
e_nom_extendable=True,
|
||||||
|
e_cyclic=True,
|
||||||
|
carrier="methanol",
|
||||||
|
)
|
||||||
|
|
||||||
|
n.madd(
|
||||||
|
"Bus",
|
||||||
|
spatial.methanol.industry,
|
||||||
|
carrier="industry methanol",
|
||||||
|
location=spatial.methanol.demand_locations,
|
||||||
|
unit="MWh_LHV",
|
||||||
|
)
|
||||||
|
|
||||||
|
p_set_methanol = (
|
||||||
|
industrial_demand["methanol"]
|
||||||
|
.rename(lambda x: x + " industry methanol")
|
||||||
|
/ nhours
|
||||||
|
)
|
||||||
|
|
||||||
|
if not options["regional_methanol_demand"]:
|
||||||
|
p_set_methanol = p_set_methanol.sum()
|
||||||
|
|
||||||
|
n.madd(
|
||||||
|
"Load",
|
||||||
|
spatial.methanol.industry,
|
||||||
|
bus=spatial.methanol.industry,
|
||||||
|
carrier="industry methanol",
|
||||||
|
p_set=p_set_methanol,
|
||||||
|
)
|
||||||
|
|
||||||
|
n.madd(
|
||||||
|
"Link",
|
||||||
|
spatial.methanol.industry,
|
||||||
|
bus0=spatial.methanol.nodes,
|
||||||
|
bus1=spatial.methanol.industry,
|
||||||
|
bus2="co2 atmosphere",
|
||||||
|
carrier="industry methanol",
|
||||||
|
p_nom_extendable=True,
|
||||||
|
efficiency2=1
|
||||||
|
/ options[
|
||||||
|
"MWh_MeOH_per_tCO2"
|
||||||
|
],
|
||||||
|
# CO2 intensity methanol based on stoichiometric calculation with 22.7 GJ/t methanol (32 g/mol), CO2 (44 g/mol), 277.78 MWh/TJ = 0.218 t/MWh
|
||||||
|
)
|
||||||
|
|
||||||
|
n.madd(
|
||||||
|
"Link",
|
||||||
|
spatial.h2.locations + " methanolisation",
|
||||||
|
bus0=spatial.h2.nodes,
|
||||||
|
bus1=spatial.methanol.nodes,
|
||||||
|
bus2=nodes,
|
||||||
|
bus3=spatial.co2.nodes,
|
||||||
|
carrier="methanolisation",
|
||||||
|
p_nom_extendable=True,
|
||||||
|
p_min_pu=options.get("min_part_load_methanolisation", 0),
|
||||||
|
capital_cost=costs.at["methanolisation", "fixed"]
|
||||||
|
* options["MWh_MeOH_per_MWh_H2"], # EUR/MW_H2/a
|
||||||
|
marginal_cost=options["MWh_MeOH_per_MWh_H2"]
|
||||||
|
* costs.at["methanolisation", "VOM"],
|
||||||
|
lifetime=costs.at["methanolisation", "lifetime"],
|
||||||
|
efficiency=options["MWh_MeOH_per_MWh_H2"],
|
||||||
|
efficiency2=-options["MWh_MeOH_per_MWh_H2"] / options["MWh_MeOH_per_MWh_e"],
|
||||||
|
efficiency3=-options["MWh_MeOH_per_MWh_H2"] / options["MWh_MeOH_per_tCO2"],
|
||||||
|
)
|
||||||
|
|
||||||
if shipping_methanol_share:
|
if shipping_methanol_share:
|
||||||
n.madd(
|
|
||||||
"Bus",
|
|
||||||
spatial.methanol.nodes,
|
|
||||||
carrier="methanol",
|
|
||||||
location=spatial.methanol.locations,
|
|
||||||
unit="MWh_LHV",
|
|
||||||
)
|
|
||||||
|
|
||||||
n.madd(
|
|
||||||
"Store",
|
|
||||||
spatial.methanol.nodes,
|
|
||||||
suffix=" Store",
|
|
||||||
bus=spatial.methanol.nodes,
|
|
||||||
e_nom_extendable=True,
|
|
||||||
e_cyclic=True,
|
|
||||||
carrier="methanol",
|
|
||||||
)
|
|
||||||
|
|
||||||
n.madd(
|
|
||||||
"Link",
|
|
||||||
spatial.h2.locations + " methanolisation",
|
|
||||||
bus0=spatial.h2.nodes,
|
|
||||||
bus1=spatial.methanol.nodes,
|
|
||||||
bus2=nodes,
|
|
||||||
bus3=spatial.co2.nodes,
|
|
||||||
carrier="methanolisation",
|
|
||||||
p_nom_extendable=True,
|
|
||||||
p_min_pu=options.get("min_part_load_methanolisation", 0),
|
|
||||||
capital_cost=costs.at["methanolisation", "fixed"]
|
|
||||||
* options["MWh_MeOH_per_MWh_H2"], # EUR/MW_H2/a
|
|
||||||
marginal_cost=options["MWh_MeOH_per_MWh_H2"]
|
|
||||||
* costs.at["methanolisation", "VOM"],
|
|
||||||
lifetime=costs.at["methanolisation", "lifetime"],
|
|
||||||
efficiency=options["MWh_MeOH_per_MWh_H2"],
|
|
||||||
efficiency2=-options["MWh_MeOH_per_MWh_H2"] / options["MWh_MeOH_per_MWh_e"],
|
|
||||||
efficiency3=-options["MWh_MeOH_per_MWh_H2"] / options["MWh_MeOH_per_tCO2"],
|
|
||||||
)
|
|
||||||
|
|
||||||
efficiency = (
|
efficiency = (
|
||||||
options["shipping_oil_efficiency"] / options["shipping_methanol_efficiency"]
|
options["shipping_oil_efficiency"] / options["shipping_methanol_efficiency"]
|
||||||
)
|
)
|
||||||
|
|
||||||
p_set_methanol = (
|
p_set_methanol_shipping = (
|
||||||
shipping_methanol_share
|
shipping_methanol_share
|
||||||
* p_set.rename(lambda x: x + " shipping methanol")
|
* p_set.rename(lambda x: x + " shipping methanol")
|
||||||
* efficiency
|
* efficiency
|
||||||
)
|
)
|
||||||
|
|
||||||
if not options["regional_methanol_demand"]:
|
if not options["regional_methanol_demand"]:
|
||||||
p_set_methanol = p_set_methanol.sum()
|
p_set_methanol_shipping = p_set_methanol_shipping.sum()
|
||||||
|
|
||||||
n.madd(
|
n.madd(
|
||||||
"Bus",
|
"Bus",
|
||||||
@ -2825,7 +2867,7 @@ def add_industry(n, costs):
|
|||||||
spatial.methanol.shipping,
|
spatial.methanol.shipping,
|
||||||
bus=spatial.methanol.shipping,
|
bus=spatial.methanol.shipping,
|
||||||
carrier="shipping methanol",
|
carrier="shipping methanol",
|
||||||
p_set=p_set_methanol,
|
p_set=p_set_methanol_shipping,
|
||||||
)
|
)
|
||||||
|
|
||||||
n.madd(
|
n.madd(
|
||||||
|
Loading…
Reference in New Issue
Block a user