Merge pull request #89 from martavp/distribute_CO2budget

Distribute CO2 budget among the planning horizons for the myopic option
This commit is contained in:
Tom Brown 2021-01-18 18:17:15 +01:00 committed by GitHub
commit b133cd6656
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 321 additions and 47 deletions

View File

@ -8,7 +8,7 @@ wildcard_constraints:
clusters="[0-9]+m?",
sectors="[+a-zA-Z0-9]+",
opts="[-+a-zA-Z0-9]*",
sector_opts="[-+a-zA-Z0-9]*"
sector_opts="[-+a-zA-Z0-9\.]*"
@ -292,6 +292,7 @@ rule build_retro_cost:
output:
retro_cost="resources/retro_cost_{network}_s{simpl}_{clusters}.csv",
floor_area="resources/floor_area_{network}_s{simpl}_{clusters}.csv"
resources: mem_mb=1000
script: "scripts/build_retro_cost.py"

View File

@ -24,11 +24,17 @@ scenario:
# B for biomass supply, I for industry, shipping and aviation
# solarx or onwindx changes the available installable potential by factor x
# dist{n} includes distribution grids with investment cost of n times cost in data/costs.csv
# for myopic/perfect foresight cb states the carbon budget in GtCO2 (cumulative
# emissions throughout the transition path in the timeframe determined by the
# planning_horizons), be:beta decay; ex:exponential decay
# cb40ex0 distributes a carbon budget of 40 GtCO2 following an exponential
# decay with initial growth rate 0
planning_horizons : [2030] # investment years for myopic and perfect; or costs year for overnight
# for example, set to [2020, 2030, 2040, 2050] for myopic foresight
# CO2 budget as a fraction of 1990 emissions
# this is over-ridden if CO2Lx is set in sector_opts
# this is also over-ridden if cb is set in sector_opts
co2_budget:
2020: 0.7011648746
2025: 0.5241935484

View File

@ -16,7 +16,7 @@ its dependencies. Clone the repository:
.. code:: bash
projects % git clone git@github.com:PyPSA/pypsa-eur.git
projects % git clone https://github.com/PyPSA/pypsa-eur.git
then download and unpack all the PyPSA-Eur data files by running the following snakemake rule:
@ -32,7 +32,7 @@ Next install the technology assumptions database `technology-data <https://githu
.. code:: bash
projects % git clone git@github.com:PyPSA/technology-data.git
projects % git clone https://github.com/PyPSA/technology-data.git
Clone PyPSA-Eur-Sec repository
@ -42,7 +42,7 @@ Create a parallel directory for `PyPSA-Eur-Sec <https://github.com/PyPSA/pypsa-e
.. code:: bash
projects % git clone git@github.com:PyPSA/pypsa-eur-sec.git
projects % git clone https://github.com/PyPSA/pypsa-eur-sec.git
Environment/package requirements
================================
@ -54,6 +54,13 @@ The requirements are the same as `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>
xarray version >= 0.15.1, you will need the latest master branch of
atlite version 0.0.2.
You can create an enviroment using the environment.yaml file in pypsa-eur/envs:
.../pypsa-eur % conda env create -f envs/environment.yaml
.../pypsa-eur % conda activate pypsa-eur
See details in `PyPSA-Eur Installation <https://pypsa-eur.readthedocs.io/en/latest/installation.html>`_
Data requirements
=================

View File

@ -6,7 +6,7 @@ Myopic transition path
The myopic code can be used to investigate progressive changes in a network, for instance, those taking place throughout a transition path. The capacities installed in a certain time step are maintained in the network until their operational lifetime expires.
The myopic approach was initially developed and used in the paper `Early decarbonisation of the European Energy system pays off (2020) <https://arxiv.org/abs/2004.11009>`__ but the current implementation complies with the pypsa-eur-sec standard working flow and is compatible with using the higher resolution electricity transmission model `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`__ rather than a one-node-per-country model.
The myopic approach was initially developed and used in the paper `Early decarbonisation of the European Energy system pays off (2020) <https://www.nature.com/articles/s41467-020-20015-4>`__ but the current implementation complies with the pypsa-eur-sec standard working flow and is compatible with using the higher resolution electricity transmission model `PyPSA-Eur <https://github.com/PyPSA/pypsa-eur>`__ rather than a one-node-per-country model.
The current code applies the myopic approach to generators, storage technologies and links in the power sector and the space and water heating sector.
@ -61,12 +61,15 @@ Wildcards
The {planning_horizons} wildcard indicates the timesteps in which the network is optimized, e.g. planning_horizons: [2020, 2030, 2040, 2050]
Options
=============
The total carbon budget for the entire transition path can be indicated in the ``scenario.sector_opts`` in ``config.yaml``.
The carbon budget can be split among the ``planning_horizons`` following an exponential or beta decay.
E.g. ``'cb40ex0'`` splits the a carbon budget equal to 40 GtCO_2 following an exponential decay whose initial linear growth rate $r$ is zero
**{co2_budget_name} wildcard**
$e(t) = e_0 (1+ (r+m)t) e^(-mt)$
The {co2_budget_name} wildcard indicates the name of the co2 budget.
A csv file is used as input including the planning_horizons as index, the name of co2_budget as column name, and the maximum co2 emissions (relative to 1990) as values.
See details in Supplementary Note 1 of the paper `Early decarbonisation of the European Energy system pays off (2020) <https://www.nature.com/articles/s41467-020-20015-4>`__
Rules overview
=================
@ -74,17 +77,17 @@ Rules overview
General myopic code structure
===============================
The myopic code solves the network for the time steps included in planning_horizons in a recursive loop, so that:
The myopic code solves the network for the time steps included in ``planning_horizons`` in a recursive loop, so that:
1.The existing capacities (those installed before the base year are added as fixed capacities with p_nom=value, p_nom_extendable=False). E.g. for baseyear=2020, capacities installed before 2020 are added. In addition, the network comprises additional generator, storage, and link capacities with p_nom_extendable=True. The non-solved network is saved in ``results/run_name/networks/prenetworks-brownfield``.
The base year is the first element in planning_horizons. Step 1 is implemented with the rule add_baseyear for the base year and with the rule add_brownfield for the remaining planning_horizons.
The base year is the first element in ``planning_horizons``. Step 1 is implemented with the rule add_baseyear for the base year and with the rule add_brownfield for the remaining planning_horizons.
2.The 2020 network is optimized. The solved network is saved in results/run_name/networks/postnetworks
2.The 2020 network is optimized. The solved network is saved in ``results/run_name/networks/postnetworks``
3.For the next planning horizon, e.g. 2030, the capacities from a previous time step are added if they are still in operation (i.e., if they fulfil planning horizon <= commissioned year + lifetime). In addition, the network comprises additional generator, storage, and link capacities with p_nom_extendable=True. The non-solved network is saved in ``results/run_name/networks/prenetworks-brownfield``.
Steps 2 and 3 are solved recursively for all the planning_horizons included in the configuration file.
Steps 2 and 3 are solved recursively for all the planning_horizons included in ``config.yaml``.
rule add_existing baseyear
@ -110,8 +113,8 @@ Then, the resulting network is saved in ``results/run_name/networks/prenetworks-
rule add_brownfield
===================
The rule add_brownfield loads the network in results/run_name/networks/prenetworks and performs the following operation:
The rule add_brownfield loads the network in ``results/run_name/networks/prenetworks`` and performs the following operation:
1.Read the capacities optimized in the previous time step and add them to the network if they are still in operation (i.e., if they fulfil planning horizon < commissioned year + lifetime)
1.Read the capacities optimized in the previous time step and add them to the network if they are still in operation (i.e., if they fulfill planning horizon < commissioned year + lifetime)
Then, the resulting network is saved in ``results/run_name/networks/prenetworks_brownfield``.

View File

@ -2,6 +2,9 @@
Release Notes
##########################################
Future release
===================
*For the myopic option, a carbon budget and a type of decay (exponential or beta) can be selected in the config file to distribute the budget across the planning_horizons.
PyPSA-Eur-Sec 0.4.0 (11th December 2020)
=========================================

View File

@ -106,7 +106,7 @@ Thermal energy storage using hot water tanks
Small for decentral applications.
Big pit storage for district heating.
Big water pit storage for district heating.
Hydrogen demand
@ -122,7 +122,7 @@ Industry (ammonia, precursor to hydrocarbons for chemicals and iron/steel).
Hydrogen supply
=================
SMR, SMR+CCS, electrolysers.
Steam Methane Reforming (SMR), SMR+CCS, electrolysers.
Methane demand

View File

@ -390,12 +390,12 @@ def build_energy_totals():
return clean_df
def build_eea_co2():
def build_eea_co2(year=1990):
# see ../notebooks/compute_1990_Europe_emissions_for_targets.ipynb
#https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-14
#downloaded 190222 (modified by EEA last on 181130)
fn = "data/eea/UNFCCC_v21.csv"
#https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
#downloaded 201228 (modified by EEA last on 201221)
fn = "data/eea/UNFCCC_v23.csv"
df = pd.read_csv(fn, encoding="latin-1")
df.loc[df["Year"] == "1985-1987","Year"] = 1986
df["Year"] = df["Year"].astype(int)
@ -418,16 +418,14 @@ def build_eea_co2():
e['waste management'] = '5 - Waste management'
e['other'] = '6 - Other Sector'
e['indirect'] = 'ind_CO2 - Indirect CO2'
e["total wL"] = "Total (with LULUCF, with indirect CO2)"
e["total woL"] = "Total (without LULUCF, with indirect CO2)"
e["total wL"] = "Total (with LULUCF)"
e["total woL"] = "Total (without LULUCF)"
pol = "CO2" #["All greenhouse gases - (CO2 equivalent)","CO2"]
cts = ["CH","EUA","NO"] + eu28_eea
year = 1990
emissions = df.loc[idx[cts,pol,year,e.values],"emissions"].unstack("Sector_name").rename(columns=pd.Series(e.index,e.values)).rename(index={"All greenhouse gases - (CO2 equivalent)" : "GHG"},level=1)
#only take level 0, since level 1 (pol) and level 2 (year) are trivial
@ -467,7 +465,7 @@ def build_eurostat_co2(year=1990):
return eurostat_co2
def build_co2_totals(year=1990):
def build_co2_totals(eea_co2, eurostat_co2, year=1990):
co2 = eea_co2.reindex(["EU28","NO","CH","BA","RS","AL","ME","MK"] + eu28)
@ -486,10 +484,6 @@ def build_co2_totals(year=1990):
#doesn't include non-energy emissions
co2.loc[ct,'agriculture'] = eurostat_co2[ct,"+","+","Agriculture / Forestry"].sum()
co2.to_csv(snakemake.output.co2_name)
return co2
@ -547,7 +541,7 @@ if __name__ == "__main__":
snakemake.output['transport_name'] = "data/transport_data.csv"
snakemake.input = Dict()
snakemake.input['nuts3_shapes'] = 'resources/nuts3_shapes.geojson'
snakemake.input['nuts3_shapes'] = '../pypsa-eur/resources/nuts3_shapes.geojson'
nuts3 = gpd.read_file(snakemake.input.nuts3_shapes).set_index('index')
population = nuts3['pop'].groupby(nuts3.country).sum()
@ -566,6 +560,7 @@ if __name__ == "__main__":
eurostat_co2 = build_eurostat_co2()
build_co2_totals()
co2=build_co2_totals(eea_co2, eurostat_co2, year)
co2.to_csv(snakemake.output.co2_name)
build_transport_data()

View File

@ -196,7 +196,25 @@ def calculate_costs(n,label,costs):
return costs
def calculate_cumulative_cost():
planning_horizons = snakemake.config['scenario']['planning_horizons']
cumulative_cost = pd.DataFrame(index = df["costs"].sum().index,
columns=pd.Series(data=np.arange(0,0.1, 0.01), name='social discount rate'))
#discount cost and express them in money value of planning_horizons[0]
for r in cumulative_cost.columns:
cumulative_cost[r]=[df["costs"].sum()[index]/((1+r)**(index[-1]-planning_horizons[0])) for index in cumulative_cost.index]
#integrate cost throughout the transition path
for r in cumulative_cost.columns:
for cluster in cumulative_cost.index.get_level_values(level=0).unique():
for lv in cumulative_cost.index.get_level_values(level=1).unique():
for sector_opts in cumulative_cost.index.get_level_values(level=2).unique():
cumulative_cost.loc[(cluster, lv, sector_opts,'cumulative cost'),r] = np.trapz(cumulative_cost.loc[idx[cluster, lv, sector_opts,planning_horizons],r].values, x=planning_horizons)
return cumulative_cost
def calculate_nodal_capacities(n,label,nodal_capacities):
#Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff
for c in n.iterate_components(n.branch_components|n.controllable_one_port_components^{"Load"}):
@ -564,16 +582,17 @@ if __name__ == "__main__":
snakemake.config = yaml.safe_load(f)
#overwrite some options
snakemake.config["run"] = "test"
snakemake.config["run"] = "version-8"
snakemake.config["scenario"]["lv"] = [1.0]
snakemake.config["scenario"]["sector_opts"] = ["Co2L0-168H-T-H-B-I-solar3-dist1"]
snakemake.config["scenario"]["sector_opts"] = ["3H-T-H-B-I-solar3-dist1"]
snakemake.config["planning_horizons"] = ['2020', '2030', '2040', '2050']
snakemake.input = Dict()
snakemake.input['heat_demand_name'] = 'data/heating/daily_heat_demand.h5'
snakemake.input['costs'] = snakemake.config['costs_dir'] + "costs_{}.csv".format(snakemake.config['scenario']['planning_horizons'][0])
snakemake.output = Dict()
for item in outputs:
snakemake.output[item] = snakemake.config['summary_dir'] + '/{name}/csvs/{item}.csv'.format(name=snakemake.config['run'],item=item)
snakemake.output['cumulative_cost'] = snakemake.config['summary_dir'] + '/{name}/csvs/cumulative_cost.csv'.format(name=snakemake.config['run'])
networks_dict = {(cluster, lv, opt+sector_opt, planning_horizon) :
snakemake.config['results_dir'] + snakemake.config['run'] + '/postnetworks/elec_s{simpl}_{cluster}_lv{lv}_{opt}_{sector_opt}_{planning_horizon}.nc'\
.format(simpl=simpl,
@ -592,6 +611,7 @@ if __name__ == "__main__":
print(networks_dict)
Nyears = 1
costs_db = prepare_costs(snakemake.input.costs,
snakemake.config['costs']['USD2013_to_EUR2013'],
snakemake.config['costs']['discountrate'],
@ -603,3 +623,10 @@ if __name__ == "__main__":
df["metrics"].loc["total costs"] = df["costs"].sum()
to_csv(df)
if snakemake.config["foresight"]=='myopic':
cumulative_cost=calculate_cumulative_cost()
cumulative_cost.to_csv(snakemake.config['summary_dir'] + '/' + snakemake.config['run'] + '/csvs/cumulative_cost.csv')

View File

@ -1,6 +1,6 @@
import numpy as np
import pandas as pd
#allow plotting without Xwindows
@ -9,7 +9,7 @@ matplotlib.use('Agg')
import matplotlib.pyplot as plt
from prepare_sector_network import co2_emissions_year
#consolidate and rename
def rename_techs(label):
@ -237,7 +237,137 @@ def plot_balances():
fig.savefig(snakemake.output.balances[:-10] + k + ".pdf",transparent=True)
def historical_emissions(cts):
"""
read historical emissions to add them to the carbon budget plot
"""
#https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
#downloaded 201228 (modified by EEA last on 201221)
fn = "data/eea/UNFCCC_v23.csv"
df = pd.read_csv(fn, encoding="latin-1")
df.loc[df["Year"] == "1985-1987","Year"] = 1986
df["Year"] = df["Year"].astype(int)
df = df.set_index(['Year', 'Sector_name', 'Country_code', 'Pollutant_name']).sort_index()
e = pd.Series()
e["electricity"] = '1.A.1.a - Public Electricity and Heat Production'
e['residential non-elec'] = '1.A.4.b - Residential'
e['services non-elec'] = '1.A.4.a - Commercial/Institutional'
e['rail non-elec'] = "1.A.3.c - Railways"
e["road non-elec"] = '1.A.3.b - Road Transportation'
e["domestic navigation"] = "1.A.3.d - Domestic Navigation"
e['international navigation'] = '1.D.1.b - International Navigation'
e["domestic aviation"] = '1.A.3.a - Domestic Aviation'
e["international aviation"] = '1.D.1.a - International Aviation'
e['total energy'] = '1 - Energy'
e['industrial processes'] = '2 - Industrial Processes and Product Use'
e['agriculture'] = '3 - Agriculture'
e['LULUCF'] = '4 - Land Use, Land-Use Change and Forestry'
e['waste management'] = '5 - Waste management'
e['other'] = '6 - Other Sector'
e['indirect'] = 'ind_CO2 - Indirect CO2'
e["total wL"] = "Total (with LULUCF)"
e["total woL"] = "Total (without LULUCF)"
pol = ["CO2"] # ["All greenhouse gases - (CO2 equivalent)"]
cts
if "GB" in cts:
cts.remove("GB")
cts.append("UK")
year = np.arange(1990,2018).tolist()
idx = pd.IndexSlice
co2_totals = df.loc[idx[year,e.values,cts,pol],"emissions"].unstack("Year").rename(index=pd.Series(e.index,e.values))
co2_totals = (1/1e6)*co2_totals.groupby(level=0, axis=0).sum() #Gton CO2
co2_totals.loc['industrial non-elec'] = co2_totals.loc['total energy'] - co2_totals.loc[['electricity', 'services non-elec','residential non-elec', 'road non-elec',
'rail non-elec', 'domestic aviation', 'international aviation', 'domestic navigation',
'international navigation']].sum()
emissions = co2_totals.loc["electricity"]
if "T" in opts:
emissions += co2_totals.loc[[i+ " non-elec" for i in ["rail","road"]]].sum()
if "H" in opts:
emissions += co2_totals.loc[[i+ " non-elec" for i in ["residential","services"]]].sum()
if "I" in opts:
emissions += co2_totals.loc[["industrial non-elec","industrial processes",
"domestic aviation","international aviation",
"domestic navigation","international navigation"]].sum()
return emissions
def plot_carbon_budget_distribution():
"""
Plot historical carbon emissions in the EU and decarbonization path
"""
import matplotlib.gridspec as gridspec
import seaborn as sns; sns.set()
sns.set_style('ticks')
plt.style.use('seaborn-ticks')
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.rcParams['xtick.labelsize'] = 20
plt.rcParams['ytick.labelsize'] = 20
plt.figure(figsize=(10, 7))
gs1 = gridspec.GridSpec(1, 1)
ax1 = plt.subplot(gs1[0,0])
ax1.set_ylabel('CO$_2$ emissions (Gt per year)',fontsize=22)
ax1.set_ylim([0,5])
ax1.set_xlim([1990,snakemake.config['scenario']['planning_horizons'][-1]+1])
path_cb = snakemake.config['results_dir'] + snakemake.config['run'] + '/csvs/'
countries=pd.read_csv(path_cb + 'countries.csv', index_col=1)
cts=countries.index.to_list()
e_1990 = co2_emissions_year(cts, opts, year=1990)
CO2_CAP=pd.read_csv(path_cb + 'carbon_budget_distribution.csv',
index_col=0)
ax1.plot(e_1990*CO2_CAP[o],linewidth=3,
color='dodgerblue', label=None)
emissions = historical_emissions(cts)
ax1.plot(emissions, color='black', linewidth=3, label=None)
#plot commited and uder-discussion targets
#(notice that historical emissions include all countries in the
# network, but targets refer to EU)
ax1.plot([2020],[0.8*emissions[1990]],
marker='*', markersize=12, markerfacecolor='black',
markeredgecolor='black')
ax1.plot([2030],[0.45*emissions[1990]],
marker='*', markersize=12, markerfacecolor='white',
markeredgecolor='black')
ax1.plot([2030],[0.6*emissions[1990]],
marker='*', markersize=12, markerfacecolor='black',
markeredgecolor='black')
ax1.plot([2050, 2050],[x*emissions[1990] for x in [0.2, 0.05]],
color='gray', linewidth=2, marker='_', alpha=0.5)
ax1.plot([2050],[0.01*emissions[1990]],
marker='*', markersize=12, markerfacecolor='white',
linewidth=0, markeredgecolor='black',
label='EU under-discussion target', zorder=10,
clip_on=False)
ax1.plot([2050],[0.125*emissions[1990]],'ro',
marker='*', markersize=12, markerfacecolor='black',
markeredgecolor='black', label='EU commited target')
ax1.legend(fancybox=True, fontsize=18, loc=(0.01,0.01),
facecolor='white', frameon=True)
path_cb_plot = snakemake.config['results_dir'] + snakemake.config['run'] + '/graphs/'
plt.savefig(path_cb_plot+'carbon_budget_plot.pdf', dpi=300)
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
@ -249,13 +379,16 @@ if __name__ == "__main__":
snakemake.config = yaml.safe_load(f)
snakemake.input = Dict()
snakemake.output = Dict()
snakemake.wildcards = Dict()
#snakemake.wildcards['sector_opts']='3H-T-H-B-I-solar3-dist1-cb48be3'
for item in ["costs", "energy"]:
snakemake.input[item] = snakemake.config['summary_dir'] + '/{name}/csvs/{item}.csv'.format(name=snakemake.config['run'],item=item)
snakemake.output[item] = snakemake.config['summary_dir'] + '/{name}/graphs/{item}.pdf'.format(name=snakemake.config['run'],item=item)
snakemake.input["balances"] = snakemake.config['summary_dir'] + '/test/csvs/supply_energy.csv'
snakemake.output["balances"] = snakemake.config['summary_dir'] + '/test/graphs/balances-energy.csv'
snakemake.input["balances"] = snakemake.config['summary_dir'] + '/{name}/csvs/supply_energy.csv'.format(name=snakemake.config['run'],item=item)
snakemake.output["balances"] = snakemake.config['summary_dir'] + '/{name}/graphs/balances-energy.csv'.format(name=snakemake.config['run'],item=item)
n_header = 4
plot_costs()
@ -263,3 +396,9 @@ if __name__ == "__main__":
plot_energy()
plot_balances()
for sector_opts in snakemake.config['scenario']['sector_opts']:
opts=sector_opts.split('-')
for o in opts:
if "cb" in o:
plot_carbon_budget_distribution()

View File

@ -20,6 +20,8 @@ import pytz
from vresutils.costdata import annuity
from scipy.stats import beta
from build_energy_totals import build_eea_co2, build_eurostat_co2, build_co2_totals
#First tell PyPSA that links can have multiple outputs by
#overriding the component_attrs. This can be done for
@ -45,6 +47,83 @@ override_component_attrs["Generator"].loc["lifetime"] = ["float","years",np.nan,
override_component_attrs["Store"].loc["build_year"] = ["integer","year",np.nan,"build year","Input (optional)"]
override_component_attrs["Store"].loc["lifetime"] = ["float","years",np.nan,"lifetime","Input (optional)"]
def co2_emissions_year(cts, opts, year):
"""
calculate co2 emissions in one specific year (e.g. 1990 or 2018).
"""
eea_co2 = build_eea_co2(year)
#TODO: read Eurostat data from year>2014, this only affects the estimation of
# CO2 emissions for "BA","RS","AL","ME","MK"
if year > 2014:
eurostat_co2 = build_eurostat_co2(year=2014)
else:
eurostat_co2 = build_eurostat_co2(year)
co2_totals=build_co2_totals(eea_co2, eurostat_co2, year)
co2_emissions = co2_totals.loc[cts, "electricity"].sum()
if "T" in opts:
co2_emissions += co2_totals.loc[cts, [i+ " non-elec" for i in ["rail","road"]]].sum().sum()
if "H" in opts:
co2_emissions += co2_totals.loc[cts, [i+ " non-elec" for i in ["residential","services"]]].sum().sum()
if "I" in opts:
co2_emissions += co2_totals.loc[cts, ["industrial non-elec","industrial processes",
"domestic aviation","international aviation",
"domestic navigation","international navigation"]].sum().sum()
co2_emissions *=0.001 #MtCO2 to GtCO2
return co2_emissions
def build_carbon_budget(o):
#distribute carbon budget following beta or exponential transition path
if "be" in o:
#beta decay
carbon_budget = float(o[o.find("cb")+2:o.find("be")])
be=float(o[o.find("be")+2:])
if "ex" in o:
#exponential decay
carbon_budget = float(o[o.find("cb")+2:o.find("ex")])
r=float(o[o.find("ex")+2:])
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
pop_layout["ct"] = pop_layout.index.str[:2]
cts = pop_layout.ct.value_counts().index
e_1990 = co2_emissions_year(cts, opts, year=1990)
#emissions at the beginning of the path (last year available 2018)
e_0 = co2_emissions_year(cts, opts, year=2018)
#emissions in 2019 and 2020 assumed equal to 2018 and substracted
carbon_budget -= 2*e_0
planning_horizons = snakemake.config['scenario']['planning_horizons']
CO2_CAP = pd.DataFrame(index = pd.Series(data=planning_horizons,
name='planning_horizon'),
columns=pd.Series(data=[],
name='paths',
dtype='float'))
t_0 = planning_horizons[0]
if "be" in o:
#beta decay
t_f = t_0 + (2*carbon_budget/e_0).round(0) # final year in the path
#emissions (relative to 1990)
CO2_CAP[o] = [(e_0/e_1990)*(1-beta.cdf((t-t_0)/(t_f-t_0), be, be)) for t in planning_horizons]
if "ex" in o:
#exponential decay without delay
T=carbon_budget/e_0
m=(1+np.sqrt(1+r*T))/T
CO2_CAP[o] = [(e_0/e_1990)*(1+(m+r)*(t-t_0))*np.exp(-m*(t-t_0)) for t in planning_horizons]
CO2_CAP.to_csv(path_cb + 'carbon_budget_distribution.csv', sep=',',
line_terminator='\n', float_format='%.3f')
countries=pd.Series(data=cts)
countries.to_csv(path_cb + 'countries.csv', sep=',',
line_terminator='\n', float_format='%.3f')
def add_lifetime_wind_solar(n):
"""
Add lifetime for solar and wind generators
@ -1775,15 +1854,15 @@ def get_parameter(item):
return item
#%%
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils.snakemake import MockSnakemake
snakemake = MockSnakemake(
wildcards=dict(network='elec', simpl='', clusters='37', lv='1.0',
opts='', planning_horizons='2030', co2_budget_name="go",
sector_opts='Co2L0-120H-T-H-B-I-solar3-dist1'),
opts='', planning_horizons='2020',
sector_opts='120H-T-H-B-I-solar3-dist1-cb48be3'),
input=dict( network='../pypsa-eur/networks/{network}_s{simpl}_{clusters}_ec_lv{lv}_{opts}.nc',
energy_totals_name='resources/energy_totals.csv',
co2_totals_name='resources/co2_totals.csv',
@ -1819,10 +1898,10 @@ if __name__ == "__main__":
solar_thermal_total="resources/solar_thermal_total_{network}_s{simpl}_{clusters}.nc",
solar_thermal_urban="resources/solar_thermal_urban_{network}_s{simpl}_{clusters}.nc",
solar_thermal_rural="resources/solar_thermal_rural_{network}_s{simpl}_{clusters}.nc",
retro_cost_energy = "resources/retro_cost_{network}_s{simpl}_{clusters}.csv",
retro_cost_energy = "resources/retro_cost_{network}_s{simpl}_{clusters}.csv",
floor_area = "resources/floor_area_{network}_s{simpl}_{clusters}.csv"
),
output=['pypsa-eur-sec/results/test/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{co2_budget_name}_{planning_horizons}.nc']
output=['results/version-cb48be3/prenetworks/{network}_s{simpl}_{clusters}_lv{lv}__{sector_opts}_{planning_horizons}.nc']
)
import yaml
with open('config.yaml', encoding='utf8') as f:
@ -1926,6 +2005,20 @@ if __name__ == "__main__":
limit = get_parameter(snakemake.config["co2_budget"])
print("CO2 limit set to",limit)
for o in opts:
if "cb" in o:
path_cb = snakemake.config['results_dir'] + snakemake.config['run'] + '/csvs/'
if not os.path.exists(path_cb):
os.makedirs(path_cb)
try:
CO2_CAP=pd.read_csv(path_cb + 'carbon_budget_distribution.csv', index_col=0)
except:
build_carbon_budget(o)
CO2_CAP=pd.read_csv(path_cb + 'carbon_budget_distribution.csv', index_col=0)
limit=CO2_CAP.loc[investment_year]
print("overriding CO2 limit with scenario limit",limit)
for o in opts:
if "Co2L" in o:
limit = o[o.find("Co2L")+4:]