[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
This commit is contained in:
parent
3298572ced
commit
ace51b9e55
@ -137,6 +137,7 @@ def input_eurostat(w):
|
||||
else:
|
||||
return "data/bundle-sector/eurostat-energy_balances-april_2023_edition"
|
||||
|
||||
|
||||
def solved_previous_horizon(w):
|
||||
planning_horizons = config_provider("scenario", "planning_horizons")(w)
|
||||
i = planning_horizons.index(int(w.planning_horizons))
|
||||
|
@ -8,6 +8,7 @@ Build total energy demands per country using JRC IDEES, eurostat, and EEA data.
|
||||
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
from functools import partial
|
||||
|
||||
import country_converter as coco
|
||||
@ -16,7 +17,6 @@ import numpy as np
|
||||
import pandas as pd
|
||||
from _helpers import configure_logging, mute_print, set_scenario_config
|
||||
from tqdm import tqdm
|
||||
import os
|
||||
|
||||
cc = coco.CountryConverter()
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -123,9 +123,9 @@ def build_eurostat(input_eurostat, countries, report_year, year):
|
||||
"""
|
||||
if report_year != 2023:
|
||||
filenames = {
|
||||
2016: f"/{year}-Energy-Balances-June2016edition.xlsx",
|
||||
2017: f"/{year}-ENERGY-BALANCES-June2017edition.xlsx",
|
||||
}
|
||||
2016: f"/{year}-Energy-Balances-June2016edition.xlsx",
|
||||
2017: f"/{year}-ENERGY-BALANCES-June2017edition.xlsx",
|
||||
}
|
||||
|
||||
with mute_print():
|
||||
dfs = pd.read_excel(
|
||||
@ -151,62 +151,85 @@ def build_eurostat(input_eurostat, countries, report_year, year):
|
||||
|
||||
# convert ktoe/a to TWh/a
|
||||
df *= 11.63 / 1e3
|
||||
|
||||
|
||||
else:
|
||||
# read in every country file in countries
|
||||
eurostat = pd.DataFrame()
|
||||
countries = [country if country != 'GB' else 'UK' for country in countries]
|
||||
countries = [country if country != 'GR' else 'EL' for country in countries]
|
||||
countries = [country if country != "GB" else "UK" for country in countries]
|
||||
countries = [country if country != "GR" else "EL" for country in countries]
|
||||
for country in countries:
|
||||
filename = f"/{country}-Energy-balance-sheets-April-2023-edition.xlsb"
|
||||
if os.path.exists(input_eurostat + filename):
|
||||
df = pd.read_excel(
|
||||
input_eurostat + filename,
|
||||
engine='pyxlsb',
|
||||
engine="pyxlsb",
|
||||
sheet_name=str(year),
|
||||
skiprows=4,
|
||||
index_col=list(range(4)))
|
||||
index_col=list(range(4)),
|
||||
)
|
||||
# replace entry 'Z' with 0
|
||||
df.replace('Z', 0, inplace=True)
|
||||
df.replace("Z", 0, inplace=True)
|
||||
# write 'International aviation' to the 2nd level of the multiindex
|
||||
index_number = (df.index.get_level_values(1) == 'International aviation').argmax()
|
||||
new_index = ('-', 'International aviation', 'International aviation', 'ktoe')
|
||||
index_number = (
|
||||
df.index.get_level_values(1) == "International aviation"
|
||||
).argmax()
|
||||
new_index = (
|
||||
"-",
|
||||
"International aviation",
|
||||
"International aviation",
|
||||
"ktoe",
|
||||
)
|
||||
modified_index = list(df.index)
|
||||
modified_index[index_number] = new_index
|
||||
df.index = pd.MultiIndex.from_tuples(modified_index, names=df.index.names)
|
||||
df.index = pd.MultiIndex.from_tuples(
|
||||
modified_index, names=df.index.names
|
||||
)
|
||||
# drop the annoying subhead line
|
||||
df.drop(df[df[year] == year].index, inplace=True)
|
||||
# replace 'Z' with 0
|
||||
df = df.replace('Z', 0)
|
||||
df = df.replace("Z", 0)
|
||||
# add country to the multiindex
|
||||
new_tuple = [(country, *idx) for idx in df.index]
|
||||
new_mindex = pd.MultiIndex.from_tuples(new_tuple, names=['country', None, 'name', None, 'unit'])
|
||||
new_mindex = pd.MultiIndex.from_tuples(
|
||||
new_tuple, names=["country", None, "name", None, "unit"]
|
||||
)
|
||||
df.index = new_mindex
|
||||
# make numeric values where possible
|
||||
df = df.apply(pd.to_numeric, errors='coerce')
|
||||
df = df.apply(pd.to_numeric, errors="coerce")
|
||||
# drop non-numeric columns
|
||||
non_numeric_cols = df.columns[df.dtypes != float]
|
||||
df.drop(non_numeric_cols, axis=1, inplace=True)
|
||||
# concatenate the dataframes
|
||||
eurostat = pd.concat([eurostat, df], axis=0)
|
||||
|
||||
|
||||
eurostat.drop(["Unnamed: 4", year, "Unnamed: 6"], axis=1, inplace=True)
|
||||
# Renaming some indices
|
||||
rename = {
|
||||
'Households': 'Residential',
|
||||
'Commercial & public services': 'Services',
|
||||
'Domestic navigation': 'Domestic Navigation'
|
||||
"Households": "Residential",
|
||||
"Commercial & public services": "Services",
|
||||
"Domestic navigation": "Domestic Navigation",
|
||||
}
|
||||
for name, rename in rename.items():
|
||||
eurostat.index = eurostat.index.set_levels(
|
||||
eurostat.index.levels[3].where(eurostat.index.levels[3] != name, rename),
|
||||
level=3)
|
||||
new_index = eurostat.index.set_levels(eurostat.index.levels[2].where(eurostat.index.levels[2] != 'International maritime bunkers', 'Bunkers'), level=2)
|
||||
eurostat.index.levels[3].where(
|
||||
eurostat.index.levels[3] != name, rename
|
||||
),
|
||||
level=3,
|
||||
)
|
||||
new_index = eurostat.index.set_levels(
|
||||
eurostat.index.levels[2].where(
|
||||
eurostat.index.levels[2] != "International maritime bunkers", "Bunkers"
|
||||
),
|
||||
level=2,
|
||||
)
|
||||
eurostat.index = new_index
|
||||
|
||||
eurostat.rename(columns={'Total': 'Total all products'}, inplace=True)
|
||||
eurostat.index = eurostat.index.set_levels(eurostat.index.levels[0].where(eurostat.index.levels[0] != 'UK', 'GB'), level=0)
|
||||
|
||||
eurostat.rename(columns={"Total": "Total all products"}, inplace=True)
|
||||
eurostat.index = eurostat.index.set_levels(
|
||||
eurostat.index.levels[0].where(eurostat.index.levels[0] != "UK", "GB"),
|
||||
level=0,
|
||||
)
|
||||
|
||||
df = eurostat * 11.63 / 1e3
|
||||
|
||||
return df
|
||||
@ -751,7 +774,9 @@ def build_co2_totals(countries, eea_co2, eurostat_co2, report_year):
|
||||
"industrial non-elec": (ct, "+", "Industry"),
|
||||
# does not include non-energy emissions
|
||||
"agriculture": (eurostat_co2.index.get_level_values(0) == ct)
|
||||
& eurostat_co2.index.isin(["Agriculture / Forestry", "Fishing"], level=3),
|
||||
& eurostat_co2.index.isin(
|
||||
["Agriculture / Forestry", "Fishing"], level=3
|
||||
),
|
||||
}
|
||||
else:
|
||||
mappings = {
|
||||
@ -768,7 +793,9 @@ def build_co2_totals(countries, eea_co2, eurostat_co2, report_year):
|
||||
"industrial non-elec": (ct, "+", "Industry sector"),
|
||||
# does not include non-energy emissions
|
||||
"agriculture": (eurostat_co2.index.get_level_values(0) == ct)
|
||||
& eurostat_co2.index.isin(["Agriculture & forestry", "Fishing"], level=3),
|
||||
& eurostat_co2.index.isin(
|
||||
["Agriculture & forestry", "Fishing"], level=3
|
||||
),
|
||||
}
|
||||
|
||||
for i, mi in mappings.items():
|
||||
@ -812,20 +839,26 @@ def build_transport_data(countries, population, idees):
|
||||
|
||||
return transport_data
|
||||
|
||||
|
||||
def rescale(idees_countries, energy, eurostat):
|
||||
'''
|
||||
Takes JRC IDEES data from 2015 and rescales it by the ratio of the
|
||||
eurostat data and the 2015 eurostat data.
|
||||
"""
|
||||
Takes JRC IDEES data from 2015 and rescales it by the ratio of the eurostat
|
||||
data and the 2015 eurostat data.
|
||||
|
||||
missing data: ['passenger car efficiency', 'passenger cars']
|
||||
'''
|
||||
"""
|
||||
# read in the eurostat data for 2015
|
||||
eurostat_2015 = build_eurostat(input_eurostat, countries, 2023, 2015)[["Total all products", "Electricity"]]
|
||||
eurostat_2015 = build_eurostat(input_eurostat, countries, 2023, 2015)[
|
||||
["Total all products", "Electricity"]
|
||||
]
|
||||
# eurostat_2015 = eurostat_2015.rename(index={'GB': 'UK'}, level=0)
|
||||
eurostat_year = eurostat[["Total all products", "Electricity"]]
|
||||
# calculate the ratio of the two data sets
|
||||
ratio = eurostat_year / eurostat_2015
|
||||
ratio = ratio.droplevel([1,4])
|
||||
ratio.rename(columns={"Total all products": "total", "Electricity": "ele"}, inplace=True)
|
||||
ratio = ratio.droplevel([1, 4])
|
||||
ratio.rename(
|
||||
columns={"Total all products": "total", "Electricity": "ele"}, inplace=True
|
||||
)
|
||||
ratio = ratio.rename(index={"GB": "UK"}, level=0)
|
||||
|
||||
residential_total = [
|
||||
@ -892,54 +925,55 @@ def rescale(idees_countries, energy, eurostat):
|
||||
]
|
||||
|
||||
avia_inter = [
|
||||
'total aviation passenger',
|
||||
'total aviation freight',
|
||||
'total international aviation passenger',
|
||||
'total international aviation freight',
|
||||
'total international aviation'
|
||||
"total aviation passenger",
|
||||
"total aviation freight",
|
||||
"total international aviation passenger",
|
||||
"total international aviation freight",
|
||||
"total international aviation",
|
||||
]
|
||||
avia_domestic = [
|
||||
'total domestic aviation passenger',
|
||||
'total domestic aviation freight',
|
||||
'total domestic aviation',
|
||||
"total domestic aviation passenger",
|
||||
"total domestic aviation freight",
|
||||
"total domestic aviation",
|
||||
]
|
||||
navigation = [
|
||||
"total domestic navigation",
|
||||
]
|
||||
|
||||
idees_countries = idees_countries.repalce({'GB': 'UK', 'GR': 'EL'})
|
||||
|
||||
idees_countries = idees_countries.repalce({"GB": "UK", "GR": "EL"})
|
||||
|
||||
for country in idees_countries:
|
||||
res = ratio.loc[(country, slice(None), 'Residential')]
|
||||
energy.loc[country, residential_total] *= res[['total']].iloc[0,0]
|
||||
energy.loc[country, residential_ele] *= res[['ele']].iloc[0,0]
|
||||
res = ratio.loc[(country, slice(None), "Residential")]
|
||||
energy.loc[country, residential_total] *= res[["total"]].iloc[0, 0]
|
||||
energy.loc[country, residential_ele] *= res[["ele"]].iloc[0, 0]
|
||||
|
||||
ser = ratio.loc[(country, slice(None), 'Services')]
|
||||
energy.loc[country, service_total] *= ser[['total']].iloc[0,0]
|
||||
energy.loc[country, service_ele] *= ser[['ele']].iloc[0,0]
|
||||
ser = ratio.loc[(country, slice(None), "Services")]
|
||||
energy.loc[country, service_total] *= ser[["total"]].iloc[0, 0]
|
||||
energy.loc[country, service_ele] *= ser[["ele"]].iloc[0, 0]
|
||||
|
||||
agri = ratio.loc[(country, slice(None), 'Agriculture & forestry')]
|
||||
energy.loc[country, agri_total] *= agri[['total']].iloc[0,0]
|
||||
energy.loc[country, agri_ele] *= agri[['ele']].iloc[0,0]
|
||||
agri = ratio.loc[(country, slice(None), "Agriculture & forestry")]
|
||||
energy.loc[country, agri_total] *= agri[["total"]].iloc[0, 0]
|
||||
energy.loc[country, agri_ele] *= agri[["ele"]].iloc[0, 0]
|
||||
|
||||
road = ratio.loc[(country, slice(None), 'Road')]
|
||||
energy.loc[country, road_total] *= road[['total']].iloc[0,0]
|
||||
energy.loc[country, road_ele] *= road[['ele']].iloc[0,0]
|
||||
road = ratio.loc[(country, slice(None), "Road")]
|
||||
energy.loc[country, road_total] *= road[["total"]].iloc[0, 0]
|
||||
energy.loc[country, road_ele] *= road[["ele"]].iloc[0, 0]
|
||||
|
||||
rail = ratio.loc[(country, slice(None), 'Rail')]
|
||||
energy.loc[country, rail_total] *= rail[['total']].iloc[0,0]
|
||||
energy.loc[country, rail_ele] *= rail[['ele']].iloc[0,0]
|
||||
rail = ratio.loc[(country, slice(None), "Rail")]
|
||||
energy.loc[country, rail_total] *= rail[["total"]].iloc[0, 0]
|
||||
energy.loc[country, rail_ele] *= rail[["ele"]].iloc[0, 0]
|
||||
|
||||
avi_d = ratio.loc[(country, slice(None), 'Domestic aviation')]
|
||||
avi_i = ratio.loc[(country, 'International aviation', slice(None))]
|
||||
energy.loc[country, avia_inter] *= avi_i[['total']].iloc[0,0]
|
||||
energy.loc[country, avia_domestic] *= avi_d[['total']].iloc[0,0]
|
||||
avi_d = ratio.loc[(country, slice(None), "Domestic aviation")]
|
||||
avi_i = ratio.loc[(country, "International aviation", slice(None))]
|
||||
energy.loc[country, avia_inter] *= avi_i[["total"]].iloc[0, 0]
|
||||
energy.loc[country, avia_domestic] *= avi_d[["total"]].iloc[0, 0]
|
||||
|
||||
nav = ratio.loc[(country, slice(None), 'Domestic Navigation')]
|
||||
energy.loc[country, navigation] *= nav[['total']].iloc[0,0]
|
||||
nav = ratio.loc[(country, slice(None), "Domestic Navigation")]
|
||||
energy.loc[country, navigation] *= nav[["total"]].iloc[0, 0]
|
||||
|
||||
return energy
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
@ -970,14 +1004,16 @@ if __name__ == "__main__":
|
||||
idees = build_idees(idees_countries, data_year)
|
||||
|
||||
energy = build_energy_totals(countries, eurostat, swiss, idees)
|
||||
|
||||
|
||||
if data_year > 2015:
|
||||
energy = rescale(idees_countries, energy, eurostat)
|
||||
|
||||
|
||||
energy.to_csv(snakemake.output.energy_name)
|
||||
|
||||
# use rescaled idees data to calculate district heat share
|
||||
district_heat_share = build_district_heat_share(countries, energy.loc[idees_countries])
|
||||
district_heat_share = build_district_heat_share(
|
||||
countries, energy.loc[idees_countries]
|
||||
)
|
||||
district_heat_share.to_csv(snakemake.output.district_heat_share)
|
||||
|
||||
base_year_emissions = params["base_emissions_year"]
|
||||
|
Loading…
Reference in New Issue
Block a user