Merge branch 'master' into bugfixes_manual_load
This commit is contained in:
commit
ac966c0a99
1
.gitignore
vendored
1
.gitignore
vendored
@ -19,6 +19,7 @@ gurobi.log
|
|||||||
/data
|
/data
|
||||||
/data/links_p_nom.csv
|
/data/links_p_nom.csv
|
||||||
/cutouts
|
/cutouts
|
||||||
|
/dask-worker-space
|
||||||
|
|
||||||
doc/_build
|
doc/_build
|
||||||
|
|
||||||
|
@ -70,6 +70,10 @@ Upcoming Release
|
|||||||
|
|
||||||
* Use updated SARAH-2 and ERA5 cutouts with slightly wider scope to east and additional variables.
|
* Use updated SARAH-2 and ERA5 cutouts with slightly wider scope to east and additional variables.
|
||||||
|
|
||||||
|
* Fix crs bug. Change crs 4236 to 4326.
|
||||||
|
|
||||||
|
* Update rasterio version to correctly calculate exclusion raster
|
||||||
|
|
||||||
|
|
||||||
PyPSA-Eur 0.4.0 (22th September 2021)
|
PyPSA-Eur 0.4.0 (22th September 2021)
|
||||||
=====================================
|
=====================================
|
||||||
|
@ -24,7 +24,7 @@ dependencies:
|
|||||||
- yaml
|
- yaml
|
||||||
- pytables
|
- pytables
|
||||||
- lxml
|
- lxml
|
||||||
- powerplantmatching>=0.4.8
|
- powerplantmatching>=0.5.3
|
||||||
- numpy
|
- numpy
|
||||||
- pandas
|
- pandas
|
||||||
- geopandas
|
- geopandas
|
||||||
@ -37,7 +37,7 @@ dependencies:
|
|||||||
- pyomo
|
- pyomo
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- proj
|
- proj
|
||||||
- fiona <= 1.18.20 # Till issue https://github.com/Toblerity/Fiona/issues/1085 is not solved
|
- fiona<=1.18.20 # Till issue https://github.com/Toblerity/Fiona/issues/1085 is not solved
|
||||||
|
|
||||||
# Keep in conda environment when calling ipython
|
# Keep in conda environment when calling ipython
|
||||||
- ipython
|
- ipython
|
||||||
@ -45,7 +45,7 @@ dependencies:
|
|||||||
# GIS dependencies:
|
# GIS dependencies:
|
||||||
- cartopy
|
- cartopy
|
||||||
- descartes
|
- descartes
|
||||||
- rasterio
|
- rasterio<=1.2.9 # 1.2.10 creates error https://github.com/PyPSA/atlite/issues/238
|
||||||
|
|
||||||
# PyPSA-Eur-Sec Dependencies
|
# PyPSA-Eur-Sec Dependencies
|
||||||
- geopy
|
- geopy
|
||||||
|
@ -231,6 +231,7 @@ def mock_snakemake(rulename, **wildcards):
|
|||||||
import os
|
import os
|
||||||
from pypsa.descriptors import Dict
|
from pypsa.descriptors import Dict
|
||||||
from snakemake.script import Snakemake
|
from snakemake.script import Snakemake
|
||||||
|
from packaging.version import Version, parse
|
||||||
|
|
||||||
script_dir = Path(__file__).parent.resolve()
|
script_dir = Path(__file__).parent.resolve()
|
||||||
assert Path.cwd().resolve() == script_dir, \
|
assert Path.cwd().resolve() == script_dir, \
|
||||||
@ -240,7 +241,8 @@ def mock_snakemake(rulename, **wildcards):
|
|||||||
if os.path.exists(p):
|
if os.path.exists(p):
|
||||||
snakefile = p
|
snakefile = p
|
||||||
break
|
break
|
||||||
workflow = sm.Workflow(snakefile, overwrite_configfiles=[])
|
kwargs = dict(rerun_triggers=[]) if parse(sm.__version__) > Version("7.7.0") else {}
|
||||||
|
workflow = sm.Workflow(snakefile, overwrite_configfiles=[], **kwargs)
|
||||||
workflow.include(snakefile)
|
workflow.include(snakefile)
|
||||||
workflow.global_resources = {}
|
workflow.global_resources = {}
|
||||||
rule = workflow.get_rule(rulename)
|
rule = workflow.get_rule(rulename)
|
||||||
|
@ -47,9 +47,10 @@ from _helpers import configure_logging
|
|||||||
import pypsa
|
import pypsa
|
||||||
import os
|
import os
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
import geopandas as gpd
|
import geopandas as gpd
|
||||||
|
from shapely.geometry import Polygon
|
||||||
from vresutils.graph import voronoi_partition_pts
|
from scipy.spatial import Voronoi
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -61,6 +62,53 @@ def save_to_geojson(s, fn):
|
|||||||
s.to_file(fn, driver='GeoJSON', schema=schema)
|
s.to_file(fn, driver='GeoJSON', schema=schema)
|
||||||
|
|
||||||
|
|
||||||
|
def voronoi_partition_pts(points, outline):
|
||||||
|
"""
|
||||||
|
Compute the polygons of a voronoi partition of `points` within the
|
||||||
|
polygon `outline`. Taken from
|
||||||
|
https://github.com/FRESNA/vresutils/blob/master/vresutils/graph.py
|
||||||
|
Attributes
|
||||||
|
----------
|
||||||
|
points : Nx2 - ndarray[dtype=float]
|
||||||
|
outline : Polygon
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
polygons : N - ndarray[dtype=Polygon|MultiPolygon]
|
||||||
|
"""
|
||||||
|
|
||||||
|
points = np.asarray(points)
|
||||||
|
|
||||||
|
if len(points) == 1:
|
||||||
|
polygons = [outline]
|
||||||
|
else:
|
||||||
|
xmin, ymin = np.amin(points, axis=0)
|
||||||
|
xmax, ymax = np.amax(points, axis=0)
|
||||||
|
xspan = xmax - xmin
|
||||||
|
yspan = ymax - ymin
|
||||||
|
|
||||||
|
# to avoid any network positions outside all Voronoi cells, append
|
||||||
|
# the corners of a rectangle framing these points
|
||||||
|
vor = Voronoi(np.vstack((points,
|
||||||
|
[[xmin-3.*xspan, ymin-3.*yspan],
|
||||||
|
[xmin-3.*xspan, ymax+3.*yspan],
|
||||||
|
[xmax+3.*xspan, ymin-3.*yspan],
|
||||||
|
[xmax+3.*xspan, ymax+3.*yspan]])))
|
||||||
|
|
||||||
|
polygons = []
|
||||||
|
for i in range(len(points)):
|
||||||
|
poly = Polygon(vor.vertices[vor.regions[vor.point_region[i]]])
|
||||||
|
|
||||||
|
if not poly.is_valid:
|
||||||
|
poly = poly.buffer(0)
|
||||||
|
|
||||||
|
poly = poly.intersection(outline)
|
||||||
|
|
||||||
|
polygons.append(poly)
|
||||||
|
|
||||||
|
|
||||||
|
return np.array(polygons, dtype=object)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
if 'snakemake' not in globals():
|
if 'snakemake' not in globals():
|
||||||
from _helpers import mock_snakemake
|
from _helpers import mock_snakemake
|
||||||
|
@ -40,7 +40,7 @@ Description
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
from _helpers import configure_logging, retrieve_snakemake_keys
|
from _helpers import configure_logging
|
||||||
|
|
||||||
import atlite
|
import atlite
|
||||||
import geopandas as gpd
|
import geopandas as gpd
|
||||||
@ -73,20 +73,17 @@ if __name__ == "__main__":
|
|||||||
snakemake = mock_snakemake('build_natura_raster')
|
snakemake = mock_snakemake('build_natura_raster')
|
||||||
configure_logging(snakemake)
|
configure_logging(snakemake)
|
||||||
|
|
||||||
paths, config, wildcards, logs, out = retrieve_snakemake_keys(snakemake)
|
cutouts = snakemake.input.cutouts
|
||||||
|
|
||||||
cutouts = paths.cutouts
|
|
||||||
xs, Xs, ys, Ys = zip(*(determine_cutout_xXyY(cutout) for cutout in cutouts))
|
xs, Xs, ys, Ys = zip(*(determine_cutout_xXyY(cutout) for cutout in cutouts))
|
||||||
bounds = transform_bounds(4326, 3035, min(xs), min(ys), max(Xs), max(Ys))
|
bounds = transform_bounds(4326, 3035, min(xs), min(ys), max(Xs), max(Ys))
|
||||||
transform, out_shape = get_transform_and_shape(bounds, res=100)
|
transform, out_shape = get_transform_and_shape(bounds, res=100)
|
||||||
|
|
||||||
# adjusted boundaries
|
# adjusted boundaries
|
||||||
shapes = gpd.read_file(paths.natura).to_crs(3035)
|
shapes = gpd.read_file(snakemake.input.natura).to_crs(3035)
|
||||||
raster = ~geometry_mask(shapes.geometry, out_shape[::-1], transform)
|
raster = ~geometry_mask(shapes.geometry, out_shape[::-1], transform)
|
||||||
raster = raster.astype(rio.uint8)
|
raster = raster.astype(rio.uint8)
|
||||||
|
|
||||||
with rio.open(out[0], 'w', driver='GTiff', dtype=rio.uint8,
|
with rio.open(snakemake.output[0], 'w', driver='GTiff', dtype=rio.uint8,
|
||||||
count=1, transform=transform, crs=3035, compress='lzw',
|
count=1, transform=transform, crs=3035, compress='lzw',
|
||||||
width=raster.shape[1], height=raster.shape[0]) as dst:
|
width=raster.shape[1], height=raster.shape[0]) as dst:
|
||||||
dst.write(raster, indexes=1)
|
dst.write(raster, indexes=1)
|
||||||
|
|
||||||
|
@ -189,6 +189,7 @@ import logging
|
|||||||
from pypsa.geo import haversine
|
from pypsa.geo import haversine
|
||||||
from shapely.geometry import LineString
|
from shapely.geometry import LineString
|
||||||
import time
|
import time
|
||||||
|
from dask.distributed import Client, LocalCluster
|
||||||
|
|
||||||
from _helpers import configure_logging
|
from _helpers import configure_logging
|
||||||
|
|
||||||
@ -203,7 +204,7 @@ if __name__ == '__main__':
|
|||||||
pgb.streams.wrap_stderr()
|
pgb.streams.wrap_stderr()
|
||||||
|
|
||||||
nprocesses = int(snakemake.threads)
|
nprocesses = int(snakemake.threads)
|
||||||
noprogress = not snakemake.config['atlite'].get('show_progress', True)
|
noprogress = not snakemake.config['atlite'].get('show_progress', False)
|
||||||
config = snakemake.config['renewable'][snakemake.wildcards.technology]
|
config = snakemake.config['renewable'][snakemake.wildcards.technology]
|
||||||
resource = config['resource'] # pv panel config / wind turbine config
|
resource = config['resource'] # pv panel config / wind turbine config
|
||||||
correction_factor = config.get('correction_factor', 1.)
|
correction_factor = config.get('correction_factor', 1.)
|
||||||
@ -216,6 +217,8 @@ if __name__ == '__main__':
|
|||||||
if correction_factor != 1.:
|
if correction_factor != 1.:
|
||||||
logger.info(f'correction_factor is set as {correction_factor}')
|
logger.info(f'correction_factor is set as {correction_factor}')
|
||||||
|
|
||||||
|
cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1)
|
||||||
|
client = Client(cluster, asynchronous=True)
|
||||||
|
|
||||||
cutout = atlite.Cutout(snakemake.input['cutout'])
|
cutout = atlite.Cutout(snakemake.input['cutout'])
|
||||||
regions = gpd.read_file(snakemake.input.regions).set_index('name').rename_axis('bus')
|
regions = gpd.read_file(snakemake.input.regions).set_index('name').rename_axis('bus')
|
||||||
@ -240,7 +243,7 @@ if __name__ == '__main__':
|
|||||||
# use named function np.greater with partially frozen argument instead
|
# use named function np.greater with partially frozen argument instead
|
||||||
# and exclude areas where: -max_depth > grid cell depth
|
# and exclude areas where: -max_depth > grid cell depth
|
||||||
func = functools.partial(np.greater,-config['max_depth'])
|
func = functools.partial(np.greater,-config['max_depth'])
|
||||||
excluder.add_raster(snakemake.input.gebco, codes=func, crs=4236, nodata=-1000)
|
excluder.add_raster(snakemake.input.gebco, codes=func, crs=4326, nodata=-1000)
|
||||||
|
|
||||||
if 'min_shore_distance' in config:
|
if 'min_shore_distance' in config:
|
||||||
buffer = config['min_shore_distance']
|
buffer = config['min_shore_distance']
|
||||||
@ -266,7 +269,7 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
potential = capacity_per_sqkm * availability.sum('bus') * area
|
potential = capacity_per_sqkm * availability.sum('bus') * area
|
||||||
func = getattr(cutout, resource.pop('method'))
|
func = getattr(cutout, resource.pop('method'))
|
||||||
resource['dask_kwargs'] = {'num_workers': nprocesses}
|
resource['dask_kwargs'] = {"scheduler": client}
|
||||||
capacity_factor = correction_factor * func(capacity_factor=True, **resource)
|
capacity_factor = correction_factor * func(capacity_factor=True, **resource)
|
||||||
layout = capacity_factor * area * capacity_per_sqkm
|
layout = capacity_factor * area * capacity_per_sqkm
|
||||||
profile, capacities = func(matrix=availability.stack(spatial=['y','x']),
|
profile, capacities = func(matrix=availability.stack(spatial=['y','x']),
|
||||||
|
@ -281,7 +281,14 @@ def clustering_for_n_clusters(n, n_clusters, custom_busmap=False, aggregate_carr
|
|||||||
aggregate_generators_carriers=aggregate_carriers,
|
aggregate_generators_carriers=aggregate_carriers,
|
||||||
aggregate_one_ports=["Load", "StorageUnit"],
|
aggregate_one_ports=["Load", "StorageUnit"],
|
||||||
line_length_factor=line_length_factor,
|
line_length_factor=line_length_factor,
|
||||||
generator_strategies={'p_nom_max': p_nom_max_strategy, 'p_nom_min': pd.Series.sum},
|
generator_strategies={'p_nom_max': p_nom_max_strategy,
|
||||||
|
'p_nom_min': pd.Series.sum,
|
||||||
|
'p_min_pu': pd.Series.mean,
|
||||||
|
'marginal_cost': pd.Series.mean,
|
||||||
|
'committable': np.any,
|
||||||
|
'ramp_limit_up': pd.Series.max,
|
||||||
|
'ramp_limit_down': pd.Series.max,
|
||||||
|
},
|
||||||
scale_link_capital_costs=False)
|
scale_link_capital_costs=False)
|
||||||
|
|
||||||
if not n.links.empty:
|
if not n.links.empty:
|
||||||
|
@ -171,6 +171,9 @@ def calculate_capacity(n,label,capacity):
|
|||||||
if 'p_nom_opt' in c.df.columns:
|
if 'p_nom_opt' in c.df.columns:
|
||||||
c_capacities = abs(c.df.p_nom_opt.multiply(c.df.sign)).groupby(c.df.carrier).sum()
|
c_capacities = abs(c.df.p_nom_opt.multiply(c.df.sign)).groupby(c.df.carrier).sum()
|
||||||
capacity = include_in_summary(capacity, [c.list_name], label, c_capacities)
|
capacity = include_in_summary(capacity, [c.list_name], label, c_capacities)
|
||||||
|
elif 'e_nom_opt' in c.df.columns:
|
||||||
|
c_capacities = abs(c.df.e_nom_opt.multiply(c.df.sign)).groupby(c.df.carrier).sum()
|
||||||
|
capacity = include_in_summary(capacity, [c.list_name], label, c_capacities)
|
||||||
|
|
||||||
for c in n.iterate_components(n.passive_branch_components):
|
for c in n.iterate_components(n.passive_branch_components):
|
||||||
c_capacities = c.df['s_nom_opt'].groupby(c.df.carrier).sum()
|
c_capacities = c.df['s_nom_opt'].groupby(c.df.carrier).sum()
|
||||||
@ -185,11 +188,11 @@ def calculate_capacity(n,label,capacity):
|
|||||||
def calculate_supply(n, label, supply):
|
def calculate_supply(n, label, supply):
|
||||||
"""calculate the max dispatch of each component at the buses where the loads are attached"""
|
"""calculate the max dispatch of each component at the buses where the loads are attached"""
|
||||||
|
|
||||||
load_types = n.loads.carrier.value_counts().index
|
load_types = n.buses.carrier.unique()
|
||||||
|
|
||||||
for i in load_types:
|
for i in load_types:
|
||||||
|
|
||||||
buses = n.loads.bus[n.loads.carrier == i].values
|
buses = n.buses.query("carrier == @i").index
|
||||||
|
|
||||||
bus_map = pd.Series(False,index=n.buses.index)
|
bus_map = pd.Series(False,index=n.buses.index)
|
||||||
|
|
||||||
@ -232,11 +235,11 @@ def calculate_supply(n, label, supply):
|
|||||||
def calculate_supply_energy(n, label, supply_energy):
|
def calculate_supply_energy(n, label, supply_energy):
|
||||||
"""calculate the total dispatch of each component at the buses where the loads are attached"""
|
"""calculate the total dispatch of each component at the buses where the loads are attached"""
|
||||||
|
|
||||||
load_types = n.loads.carrier.value_counts().index
|
load_types = n.buses.carrier.unique()
|
||||||
|
|
||||||
for i in load_types:
|
for i in load_types:
|
||||||
|
|
||||||
buses = n.loads.bus[n.loads.carrier == i].values
|
buses = n.buses.query("carrier == @i").index
|
||||||
|
|
||||||
bus_map = pd.Series(False,index=n.buses.index)
|
bus_map = pd.Series(False,index=n.buses.index)
|
||||||
|
|
||||||
|
@ -19,7 +19,7 @@ Description
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
import logging
|
import logging
|
||||||
from _helpers import configure_logging, retrieve_snakemake_keys
|
from _helpers import configure_logging
|
||||||
|
|
||||||
import pypsa
|
import pypsa
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -53,13 +53,11 @@ if __name__ == "__main__":
|
|||||||
clusts= '5,full', country= 'all')
|
clusts= '5,full', country= 'all')
|
||||||
configure_logging(snakemake)
|
configure_logging(snakemake)
|
||||||
|
|
||||||
paths, config, wildcards, logs, out = retrieve_snakemake_keys(snakemake)
|
|
||||||
|
|
||||||
plot_kwds = dict(drawstyle="steps-post")
|
plot_kwds = dict(drawstyle="steps-post")
|
||||||
|
|
||||||
clusters = wildcards.clusts.split(',')
|
clusters = snakemake.wildcards.clusts.split(',')
|
||||||
techs = wildcards.techs.split(',')
|
techs = snakemake.wildcards.techs.split(',')
|
||||||
country = wildcards.country
|
country = snakemake.wildcards.country
|
||||||
if country == 'all':
|
if country == 'all':
|
||||||
country = None
|
country = None
|
||||||
else:
|
else:
|
||||||
@ -68,7 +66,7 @@ if __name__ == "__main__":
|
|||||||
fig, axes = plt.subplots(1, len(techs))
|
fig, axes = plt.subplots(1, len(techs))
|
||||||
|
|
||||||
for j, cluster in enumerate(clusters):
|
for j, cluster in enumerate(clusters):
|
||||||
net = pypsa.Network(paths[j])
|
net = pypsa.Network(snakemake.input[j])
|
||||||
|
|
||||||
for i, tech in enumerate(techs):
|
for i, tech in enumerate(techs):
|
||||||
cum_p_nom_max(net, tech, country).plot(x="p_max_pu", y="cum_p_nom_max",
|
cum_p_nom_max(net, tech, country).plot(x="p_max_pu", y="cum_p_nom_max",
|
||||||
@ -81,4 +79,4 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
plt.legend(title="Cluster level")
|
plt.legend(title="Cluster level")
|
||||||
|
|
||||||
fig.savefig(out[0], transparent=True, bbox_inches='tight')
|
fig.savefig(snakemake.output[0], transparent=True, bbox_inches='tight')
|
||||||
|
@ -21,7 +21,7 @@ Description
|
|||||||
|
|
||||||
import os
|
import os
|
||||||
import logging
|
import logging
|
||||||
from _helpers import configure_logging, retrieve_snakemake_keys
|
from _helpers import configure_logging
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
@ -170,12 +170,12 @@ if __name__ == "__main__":
|
|||||||
attr='', ext='png', country='all')
|
attr='', ext='png', country='all')
|
||||||
configure_logging(snakemake)
|
configure_logging(snakemake)
|
||||||
|
|
||||||
paths, config, wildcards, logs, out = retrieve_snakemake_keys(snakemake)
|
config = snakemake.config
|
||||||
|
|
||||||
summary = wildcards.summary
|
summary = snakemake.wildcards.summary
|
||||||
try:
|
try:
|
||||||
func = globals()[f"plot_{summary}"]
|
func = globals()[f"plot_{summary}"]
|
||||||
except KeyError:
|
except KeyError:
|
||||||
raise RuntimeError(f"plotting function for {summary} has not been defined")
|
raise RuntimeError(f"plotting function for {summary} has not been defined")
|
||||||
|
|
||||||
func(os.path.join(paths[0], f"{summary}.csv"), config, out[0])
|
func(os.path.join(snakemake.input[0], f"{summary}.csv"), config, snakemake.output[0])
|
||||||
|
@ -37,7 +37,7 @@ Description
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
from _helpers import configure_logging, retrieve_snakemake_keys
|
from _helpers import configure_logging
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
@ -63,8 +63,6 @@ if __name__ == "__main__":
|
|||||||
snakemake = mock_snakemake('prepare_links_p_nom', simpl='', network='elec')
|
snakemake = mock_snakemake('prepare_links_p_nom', simpl='', network='elec')
|
||||||
configure_logging(snakemake)
|
configure_logging(snakemake)
|
||||||
|
|
||||||
paths, config, wildcards, logs, out = retrieve_snakemake_keys(snakemake)
|
|
||||||
|
|
||||||
links_p_nom = pd.read_html('https://en.wikipedia.org/wiki/List_of_HVDC_projects', header=0, match="SwePol")[0]
|
links_p_nom = pd.read_html('https://en.wikipedia.org/wiki/List_of_HVDC_projects', header=0, match="SwePol")[0]
|
||||||
|
|
||||||
mw = "Power (MW)"
|
mw = "Power (MW)"
|
||||||
@ -76,4 +74,4 @@ if __name__ == "__main__":
|
|||||||
links_p_nom['x1'], links_p_nom['y1'] = extract_coordinates(links_p_nom['Converterstation 1'])
|
links_p_nom['x1'], links_p_nom['y1'] = extract_coordinates(links_p_nom['Converterstation 1'])
|
||||||
links_p_nom['x2'], links_p_nom['y2'] = extract_coordinates(links_p_nom['Converterstation 2'])
|
links_p_nom['x2'], links_p_nom['y2'] = extract_coordinates(links_p_nom['Converterstation 2'])
|
||||||
|
|
||||||
links_p_nom.dropna(subset=['x1', 'y1', 'x2', 'y2']).to_csv(out[0], index=False)
|
links_p_nom.dropna(subset=['x1', 'y1', 'x2', 'y2']).to_csv(snakemake.output[0], index=False)
|
||||||
|
Loading…
Reference in New Issue
Block a user