Merge pull request #1020 from PyPSA/cleanup_data_structure

Cleaning up data and resources
This commit is contained in:
Fabian Neumann 2024-04-15 11:24:43 +02:00 committed by GitHub
commit a4d58b70f5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 0 additions and 61 deletions

View File

@ -1,25 +0,0 @@
hour,weekday,weekend
0,0.9181438689,0.9421512708
1,0.9172359071,0.9400891069
2,0.9269464481,0.9461062015
3,0.9415047932,0.9535084941
4,0.9656299507,0.9651094993
5,1.0221166443,0.9834676747
6,1.1553090493,1.0124171051
7,1.2093411031,1.0446615927
8,1.1470295942,1.088203419
9,1.0877191341,1.1110334576
10,1.0418327372,1.0926752822
11,1.0062977133,1.055488209
12,0.9837030359,1.0251266112
13,0.9667570278,0.9990015154
14,0.9548320932,0.9782897278
15,0.9509232061,0.9698167237
16,0.9636973319,0.974288587
17,0.9799372563,0.9886456216
18,1.0046501848,1.0084159643
19,1.0079452419,1.0171243296
20,0.9860566481,0.9994722379
21,0.9705228074,0.982761591
22,0.9586485819,0.9698167237
23,0.9335023778,0.9515079292
1 hour weekday weekend
2 0 0.9181438689 0.9421512708
3 1 0.9172359071 0.9400891069
4 2 0.9269464481 0.9461062015
5 3 0.9415047932 0.9535084941
6 4 0.9656299507 0.9651094993
7 5 1.0221166443 0.9834676747
8 6 1.1553090493 1.0124171051
9 7 1.2093411031 1.0446615927
10 8 1.1470295942 1.088203419
11 9 1.0877191341 1.1110334576
12 10 1.0418327372 1.0926752822
13 11 1.0062977133 1.055488209
14 12 0.9837030359 1.0251266112
15 13 0.9667570278 0.9990015154
16 14 0.9548320932 0.9782897278
17 15 0.9509232061 0.9698167237
18 16 0.9636973319 0.974288587
19 17 0.9799372563 0.9886456216
20 18 1.0046501848 1.0084159643
21 19 1.0079452419 1.0171243296
22 20 0.9860566481 0.9994722379
23 21 0.9705228074 0.982761591
24 22 0.9586485819 0.9698167237
25 23 0.9335023778 0.9515079292

View File

@ -1,31 +0,0 @@
ct,TWh
AT,
BA,
BE,
BG,
CH,
CZ,
DE,4500
DK,700
EE,
ES,350
FI,
FR,
GB,1050
GR,120
HR,
HU,
IE,
IT,
LT,
LU,
LV,
NL,150
NO,
PL,120
PT,400
RO,
RS,
SE,
SI,
SK,
1 ct TWh
2 AT
3 BA
4 BE
5 BG
6 CH
7 CZ
8 DE 4500
9 DK 700
10 EE
11 ES 350
12 FI
13 FR
14 GB 1050
15 GR 120
16 HR
17 HU
18 IE
19 IT
20 LT
21 LU
22 LV
23 NL 150
24 NO
25 PL 120
26 PT 400
27 RO
28 RS
29 SE
30 SI
31 SK

View File

@ -1,14 +1,12 @@
description,file/folder,licence,source
JRC IDEES database,jrc-idees-2015/,CC BY 4.0,https://ec.europa.eu/jrc/en/potencia/jrc-idees
urban/rural fraction,urban_percent.csv,unknown,unknown
JRC biomass potentials,biomass/,unknown,https://doi.org/10.2790/39014
JRC ENSPRESO biomass potentials,remote,CC BY 4.0,https://data.jrc.ec.europa.eu/dataset/74ed5a04-7d74-4807-9eab-b94774309d9f
EEA emission statistics,eea/UNFCCC_v23.csv,EEA standard re-use policy,https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
Eurostat Energy Balances,eurostat-energy_balances-*/,Eurostat,https://ec.europa.eu/eurostat/web/energy/data/energy-balances
Swiss energy statistics from Swiss Federal Office of Energy,switzerland-sfoe/,unknown,http://www.bfe.admin.ch/themen/00526/00541/00542/02167/index.html?dossier_id=02169
BASt emobility statistics,emobility/,unknown,http://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Stundenwerte.html?nn=626916
BDEW heating profile,heat_load_profile_BDEW.csv,unknown,https://github.com/oemof/demandlib
heating profiles for Aarhus,heat_load_profile_DK_AdamJensen.csv,unknown,Adam Jensen MA thesis at Aarhus University
co2 budgets,co2_budget.csv,CC BY 4.0,https://arxiv.org/abs/2004.11009
existing heating potentials,existing_infrastructure/existing_heating_raw.csv,unknown,https://energy.ec.europa.eu/publications/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment-fossilrenewables-1_en
IRENA existing VRE capacities,existing_infrastructure/{solar|onwind|offwind}_capcity_IRENA.csv,unknown,https://www.irena.org/Statistics/Download-Data

1 description file/folder licence source
2 JRC IDEES database jrc-idees-2015/ CC BY 4.0 https://ec.europa.eu/jrc/en/potencia/jrc-idees
3 urban/rural fraction urban_percent.csv unknown unknown
JRC biomass potentials biomass/ unknown https://doi.org/10.2790/39014
4 JRC ENSPRESO biomass potentials remote CC BY 4.0 https://data.jrc.ec.europa.eu/dataset/74ed5a04-7d74-4807-9eab-b94774309d9f
5 EEA emission statistics eea/UNFCCC_v23.csv EEA standard re-use policy https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
6 Eurostat Energy Balances eurostat-energy_balances-*/ Eurostat https://ec.europa.eu/eurostat/web/energy/data/energy-balances
7 Swiss energy statistics from Swiss Federal Office of Energy switzerland-sfoe/ unknown http://www.bfe.admin.ch/themen/00526/00541/00542/02167/index.html?dossier_id=02169
8 BASt emobility statistics emobility/ unknown http://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Stundenwerte.html?nn=626916
9 BDEW heating profile heat_load_profile_BDEW.csv unknown https://github.com/oemof/demandlib
heating profiles for Aarhus heat_load_profile_DK_AdamJensen.csv unknown Adam Jensen MA thesis at Aarhus University
10 co2 budgets co2_budget.csv CC BY 4.0 https://arxiv.org/abs/2004.11009
11 existing heating potentials existing_infrastructure/existing_heating_raw.csv unknown https://energy.ec.europa.eu/publications/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment-fossilrenewables-1_en
12 IRENA existing VRE capacities existing_infrastructure/{solar|onwind|offwind}_capcity_IRENA.csv unknown https://www.irena.org/Statistics/Download-Data

View File

@ -360,7 +360,6 @@ rule build_hydro_profile:
+ ".nc",
output:
profile=resources("profile_hydro.nc"),
eia_hydro=resources("eia_hydro_stats.csv"),
log:
logs("build_hydro_profile.log"),
resources:

View File

@ -198,8 +198,6 @@ if __name__ == "__main__":
fn = snakemake.input.era5_runoff
eia_stats = approximate_missing_eia_stats(eia_stats, fn, countries)
eia_stats.to_csv(snakemake.output.eia_hydro)
contained_years = pd.date_range(freq="YE", **snakemake.params.snapshots).year
norm_year = config_hydro.get("eia_norm_year")
missing_years = contained_years.difference(eia_stats.index)