Merge pull request #20 from Parisra/Improve-Doc-final-edit

Improve doc final edit
This commit is contained in:
martavp 2022-10-03 10:27:36 +02:00 committed by GitHub
commit 9eea4a8fba
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 69 additions and 31 deletions

View File

@ -32,6 +32,7 @@ sys.path.insert(0, os.path.abspath('../scripts'))
extensions = [ extensions = [
#'sphinx.ext.autodoc', #'sphinx.ext.autodoc',
#'sphinx.ext.autosummary', #'sphinx.ext.autosummary',
'sphinx.ext.autosectionlabel',
'sphinx.ext.intersphinx', 'sphinx.ext.intersphinx',
'sphinx.ext.todo', 'sphinx.ext.todo',
'sphinx.ext.mathjax', 'sphinx.ext.mathjax',

View File

@ -17,7 +17,7 @@ The basic supply (left column) and demand (right column) options in the model ar
.. image:: ../graphics/multisector_figure.png .. image:: ../graphics/multisector_figure.png
.. _Electricity supply and demand:
Electricity supply and demand Electricity supply and demand
============================= =============================
@ -35,11 +35,12 @@ Also unlike PyPSA-Eur, PyPSA-Eur-Sec subtracts existing electrified heating from
The remaining electricity demand for households and services is distributed inside each country proportional to GDP and population. The remaining electricity demand for households and services is distributed inside each country proportional to GDP and population.
.. _Heat demand:
Heat demand Heat demand
=========== ===========
Building heating in residential and services sectors is resolved regionally, both for individual buildings and district heating systems, which include different supply options [To do:link to next section] Building heating in residential and services sectors is resolved regionally, both for individual buildings and district heating systems, which include different supply options (see :ref:`heat-supply`.)
Annual heat demands per country are retrieved from `JRC-IDEES <https://op.europa.eu/en/publication-detail/-/publication/989282db-ad65-11e7-837e-01aa75ed71a1/language-en>`_ and split into space and water heating. For space heating, the annual demands are converted to daily values based on the population-weighted Heating Degree Day (HDD) using the `atlite tool <https://github.com/PyPSA/atlite>`_, where space heat demand is proportional to the difference between the daily average ambient temperature (read from `ERA5 <https://doi.org/10.1002/qj.3803>`_) and a threshold temperature above which space heat demand is zero. A threshold temperature of 15 °C is assumed by default. The daily space heat demand is distributed to the hours of the day following heat demand profiles from `BDEW <https://github.com/oemof/demandlib>`_. These differ for weekdays and weekends/holidays and between residential and services demand. Annual heat demands per country are retrieved from `JRC-IDEES <https://op.europa.eu/en/publication-detail/-/publication/989282db-ad65-11e7-837e-01aa75ed71a1/language-en>`_ and split into space and water heating. For space heating, the annual demands are converted to daily values based on the population-weighted Heating Degree Day (HDD) using the `atlite tool <https://github.com/PyPSA/atlite>`_, where space heat demand is proportional to the difference between the daily average ambient temperature (read from `ERA5 <https://doi.org/10.1002/qj.3803>`_) and a threshold temperature above which space heat demand is zero. A threshold temperature of 15 °C is assumed by default. The daily space heat demand is distributed to the hours of the day following heat demand profiles from `BDEW <https://github.com/oemof/demandlib>`_. These differ for weekdays and weekends/holidays and between residential and services demand.
*Space heating* *Space heating*
@ -82,6 +83,7 @@ In practice, in PyPSA-Eur-Sec, there are heat demand buses to which the correspo
4) Residential rural heat: heating for residential buildings in rural areas with low population density. 4) Residential rural heat: heating for residential buildings in rural areas with low population density.
5) Services rural heat: heating for residential services buildings in rural areas with low population density. Heat demand from agriculture sector is also included here. 5) Services rural heat: heating for residential services buildings in rural areas with low population density. Heat demand from agriculture sector is also included here.
.. _heat-supply:
Heat supply Heat supply
======================= =======================
@ -90,7 +92,7 @@ Different supply options are available depending on whether demand is met centra
*Urban central heat* *Urban central heat*
For large-scale district heating systems the following options are available: combined heat and power (CHP) plants consuming gas or biomass from waste and residues with and without carbon capture (CC), large- scale air-sourced heat pumps, gas and oil boilers, resistive heaters, and fuel cell CHPs. Additionally, waste heat from the `Fischer-Tropsch <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L255>`_ and `Sabatier <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L240>`_ processes for the production of synthetic hydrocarbons can supply district heating systems. For large-scale district heating systems the following options are available: combined heat and power (CHP) plants consuming gas or biomass from waste and residues with and without carbon capture (CC), large- scale air-sourced heat pumps, gas and oil boilers, resistive heaters, and fuel cell CHPs. Additionally, waste heat from the `Fischer-Tropsch <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L255>`_ and `Sabatier <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L240>`_ processes for the production of synthetic hydrocarbons can supply district heating systems. For more setailed explanation of these processes, see :ref:`Oil-based products supply` and :ref:`Methane supply`
*Residential and Urban decentral heat* *Residential and Urban decentral heat*
@ -99,7 +101,11 @@ Ground-source heat pumps are only allowed in rural areas because of space constr
Below are more detailed explanations for each heating supply component, all of which are modeled as `Links <https://pypsa.readthedocs.io/en/latest/components.html?highlight=distribution#link>`_. in PyPSA-Eue-Sec. Below are more detailed explanations for each heating supply component, all of which are modeled as `Links <https://pypsa.readthedocs.io/en/latest/components.html?highlight=distribution#link>`_. in PyPSA-Eue-Sec.
Large Combined Heat and Power plants are included in the model if it is specified in the `config file. <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L235>`_. .. _Large-scale CHP:
*Large-scale CHP*
Large Combined Heat and Power plants are included in the model if it is specified in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L235>`_.
CHPs are based on back pressure plants operating with a fixed ratio of electricity to heat output. The efficiencies of each are given on the back pressure line, where the back pressure coefficient cb is the electricity output divided by the heat output. (For a more complete explanation of the operation of CHPs refer to the study by Dahl et al. : `Cost sensitivity of optimal sector-coupled district heating production systems <https://arxiv.org/pdf/1804.07557.pdf>`_. CHPs are based on back pressure plants operating with a fixed ratio of electricity to heat output. The efficiencies of each are given on the back pressure line, where the back pressure coefficient cb is the electricity output divided by the heat output. (For a more complete explanation of the operation of CHPs refer to the study by Dahl et al. : `Cost sensitivity of optimal sector-coupled district heating production systems <https://arxiv.org/pdf/1804.07557.pdf>`_.
@ -115,7 +121,7 @@ Pypsa-eur-sec allows individual buildings to make use of `micro gas CHPs <https:
*Heat pumps* *Heat pumps*
The coefficient of performance (COP) of air- and ground-sourced heat pumps depends on the ambient or soil temperature respectively. Hence, the COP is a time-varying parameter[refer to `Config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L206>`_ file). Generally, the COP will be lower during winter when temperatures are low. Because the ambient temperature is more volatile than the soil temperature, the COP of ground-sourced heat pumps is less variable. Moreover, the COP depends on the difference between the source and sink temperatures: The coefficient of performance (COP) of air- and ground-sourced heat pumps depends on the ambient or soil temperature respectively. Hence, the COP is a time-varying parameter (refer to `Config <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L206>`_ file). Generally, the COP will be lower during winter when temperatures are low. Because the ambient temperature is more volatile than the soil temperature, the COP of ground-sourced heat pumps is less variable. Moreover, the COP depends on the difference between the source and sink temperatures:
$$ &Delta; T = T_(sink) T_(source) $$ $$ &Delta; T = T_(sink) T_(source) $$
@ -181,12 +187,15 @@ renovation include `cost factor <https://github.com/PyPSA/pypsa-eur-sec/blob/3da
Further information are given in the study by Zeyen et al. : `Mitigating heat demand peaks in buildings in a highly renewable European energy system, (2021) <https://arxiv.org/abs/2012.01831>`_. Further information are given in the study by Zeyen et al. : `Mitigating heat demand peaks in buildings in a highly renewable European energy system, (2021) <https://arxiv.org/abs/2012.01831>`_.
.. _Hydrogen demand:
Hydrogen demand Hydrogen demand
============================= =============================
Hydrogen is consumed in the industry sector (link to industry) to produce ammonia [link to ammonia industry section] and direct reduced iron (DRI) [link to DRI industry section]. Hydrogen is also consumed to produce synthetic methane [link to section “Methane supply”] and liquid hydrocarbons [link to fossil-oil based supply”] which have multiple uses in industry and other sectors. Hydrogen is consumed in the industry sector (see :ref:`Industry demand`) to produce ammonia (see :ref:`Chemicals Industry`) and direct reduced iron (DRI) (see :ref:`Iron and Steel`). Hydrogen is also consumed to produce synthetic methane (see :ref:`Methane supply`) and liquid hydrocarbons (see :ref:`Oil-based products supply`) which have multiple uses in industry and other sectors.
Hydrogen is also used for transport applications (link to transport), where it is exogenously fixed. It is used in `heavy-duty land transport <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L181>`_ and as liquified hydrogen in the shipping sector [add link to shipping sector]. Furthermore, stationary fuel cells may re-electrify hydrogen (with waste heat as a byproduct) to balance renewable fluctuations [Add a link to the section where we describe the Electricity sector and how storage is modelled there]. The waste heat from the stationary fuel cells can be used in `district-heating systems <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L256>`_. Hydrogen is also used for transport applications (see :ref:`Transportation`), where it is exogenously fixed. It is used in `heavy-duty land transport <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L181>`_ and as liquified hydrogen in the shipping sector (see :ref:`Shipping`). Furthermore, stationary fuel cells may re-electrify hydrogen (with waste heat as a byproduct) to balance renewable fluctuations (see :ref:`Electricity supply and demand`). The waste heat from the stationary fuel cells can be used in `district-heating systems <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L256>`_.
.. _Hydrogen supply:
Hydrogen supply Hydrogen supply
============================= =============================
@ -204,7 +213,7 @@ CO + H_2O → CO_2 + H_2
$$ $$
SMR is included `here <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L245>`_. SMR is included `here <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L245>`_.
PyPSA-Eur-Sec allows this route of H2 production with and without [carbon capture (CC)] (Link to section on Carbon Capture Storage and Utilization). These routes are often referred to as blue and grey hydrogen. Here, methane input can be both of fossil or synthetic origin. PyPSA-Eur-Sec allows this route of H2 production with and without [carbon capture (CC)] (see :ref:`Carbon dioxide capture, usage and sequestration (CCU/S)`). These routes are often referred to as blue and grey hydrogen. Here, methane input can be both of fossil or synthetic origin.
Green hydrogen can be produced by electrolysis to split water into hydrogen and oxygen Green hydrogen can be produced by electrolysis to split water into hydrogen and oxygen
@ -216,17 +225,21 @@ For the electrolysis, alkaline electrolysers are chosen since they have lower co
*Transport* *Transport*
Hydrogen is transported by pipelines. H2 pipelines are endogenously generated, either via a greenfield H2 network, or by `retrofitting natural gas pipelines <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L262>`_). Retrofitting is implemented in such a way that for every unit of decommissioned gas pipeline, a share (60% is used in [link to H2 backbone study]) of its nominal capacity (exogenously determined in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L266>`_.) is available for hydrogen transport. When the gas network is not resolved, this input denotes the potential for gas pipelines repurposed into hydrogen pipelines. Hydrogen is transported by pipelines. H2 pipelines are endogenously generated, either via a greenfield H2 network, or by `retrofitting natural gas pipelines <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L262>`_). Retrofitting is implemented in such a way that for every unit of decommissioned gas pipeline, a share (60% is used in the study by `Neumann et al. <https://arxiv.org/abs/2207.05816>`_) of its nominal capacity (exogenously determined in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L266>`_.) is available for hydrogen transport. When the gas network is not resolved, this input denotes the potential for gas pipelines repurposed into hydrogen pipelines.
New pipelines can be built additionally on all routes where there currently is a gas or electricity network connection. These new pipelines will be built where no sufficient retrofitting options are available. The capacities of new and repurposed pipelines are a result of the optimisation. New pipelines can be built additionally on all routes where there currently is a gas or electricity network connection. These new pipelines will be built where no sufficient retrofitting options are available. The capacities of new and repurposed pipelines are a result of the optimisation.
*Storage* *Storage*
Hydrogen can be stored in overground steel tanks or `underground salt caverns <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L250>`_. For the latter, energy storage capacities in every country are limited to the potential estimation for onshore salt caverns within `50 km <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L251>`_ of shore to avoid environmental issues associated with brine solution disposal. Underground storage potentials for hydrogen in European salt caverns is acquired from `Caglayan et al. <https://doi.org/10.1016/j.ijhydene.2019.12.161>`_ Hydrogen can be stored in overground steel tanks or `underground salt caverns <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L250>`_. For the latter, energy storage capacities in every country are limited to the potential estimation for onshore salt caverns within `50 km <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L251>`_ of shore to avoid environmental issues associated with brine solution disposal. Underground storage potentials for hydrogen in European salt caverns is acquired from `Caglayan et al. <https://doi.org/10.1016/j.ijhydene.2019.12.161>`_
.. _Methane demand:
Methane demand Methane demand
==================================== ====================================
Methane is used in individual and large-scale gas boilers, in CHP plants with and without carbon capture, in OCGT and CCGT power plants, and in some industry subsectors for the provision of high temperature heat[LINK TO INDUSTRY OVERVIEW]. Methane is not used in the trans- port sector because of engine slippage. Methane is used in individual and large-scale gas boilers, in CHP plants with and without carbon capture, in OCGT and CCGT power plants, and in some industry subsectors for the provision of high temperature heat (see :ref:`Industry demand`). Methane is not used in the trans- port sector because of engine slippage.
.. _Methane supply:
Methane supply Methane supply
=================================== ===================================
@ -249,11 +262,14 @@ The following figure shows the unclustered European gas transmission network bas
.. image:: ../graphics/gas_pipeline_figure.png .. image:: ../graphics/gas_pipeline_figure.png
.. _Biomass supply:
Biomass Supply Biomass Supply
===================== =====================
Biomass supply potentials for each European country are taken from the `JRC ENSPRESO database <http://data.europa.eu/89h/74ed5a04-7d74-4807-9eab-b94774309d9f>`_ where data is available for various years (2010, 2020, 2030, 2040 and 2050) and scenarios (low, medium, high). No biomass import from outside Europe is assumed. More information on the data set can be found `here <https://publications.jrc.ec.europa.eu/repository/handle/JRC98626>`_. Biomass supply potentials for each European country are taken from the `JRC ENSPRESO database <http://data.europa.eu/89h/74ed5a04-7d74-4807-9eab-b94774309d9f>`_ where data is available for various years (2010, 2020, 2030, 2040 and 2050) and scenarios (low, medium, high). No biomass import from outside Europe is assumed. More information on the data set can be found `here <https://publications.jrc.ec.europa.eu/repository/handle/JRC98626>`_.
.. _Biomass demand:
Biomass demand Biomass demand
===================== =====================
@ -264,7 +280,7 @@ Biomass supply potentials for every NUTS2 region are taken from the `JRC ENSPRES
The desired scenario can be selected in the pypsa-eur-sec `configuration <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L108>`_. The script for building the biomass potentials from the JRC ENSPRESO data base is located `here <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/build_biomass_potentials.py#L43>`_. Consult the script to see the keywords that specify the scenario options. The desired scenario can be selected in the pypsa-eur-sec `configuration <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L108>`_. The script for building the biomass potentials from the JRC ENSPRESO data base is located `here <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/build_biomass_potentials.py#L43>`_. Consult the script to see the keywords that specify the scenario options.
The `configuration <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L108>`_ also allows the user to define how the various types of biomass are used in the model by using the following categories: biogas, solid biomass, and not included.Feedstocks categorized as biogas, typically manure and sludge waste, are available to the model as biogas, which can be upgraded to biomethane. Feedstocks categorized as solid biomass, e.g. secondary forest residues or municipal waste . are available for combustion in combined-heat-and power (CHP) plants and for medium temperature heat (below 500 °C) applications in industry. It can also converted to gas or liquid fuels. The `configuration <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L108>`_ also allows the user to define how the various types of biomass are used in the model by using the following categories: biogas, solid biomass, and not included. Feedstocks categorized as biogas, typically manure and sludge waste, are available to the model as biogas, which can be upgraded to biomethane. Feedstocks categorized as solid biomass, e.g. secondary forest residues or municipal waste, are available for combustion in combined-heat-and power (CHP) plants and for medium temperature heat (below 500 °C) applications in industry. It can also converted to gas or liquid fuels.
Feedstocks labeled as not included are ignored by the model. Feedstocks labeled as not included are ignored by the model.
@ -275,13 +291,13 @@ A `typical use case for biomass <https://arxiv.org/abs/2109.09563>`_ would be th
*Solid biomass conversion and use* *Solid biomass conversion and use*
Solid biomass can be used directly to provide process heat up to 500˚C in the industry. It can also be burned in CHP plants and boilers associated with heating systems. These technologies are described elsewhere [link to heat and industry sections]. Solid biomass can be used directly to provide process heat up to 500˚C in the industry. It can also be burned in CHP plants and boilers associated with heating systems. These technologies are described elsewhere (see :ref:`Large-scale CHP` and :ref:`Industry demand`).
Solid biomass can be converted to syngas if the option is enabled in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L274>`_. In this case the model will enable the technology BioSNG both with and without the option for carbon capture [link to technology data]. Solid biomass can be converted to syngas if the option is enabled in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L274>`_. In this case the model will enable the technology BioSNG both with and without the option for carbon capture (see `Technology-data repository <https://github.com/PyPSA/technology-data>`_ ).
Liquefaction of solid biomass `can be enabled <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L273>`_ allowing the model to convert it into liquid hydrocarbons that can replace conventional oil products. This technology also comes with and without carbon capture [link to technology data]. Liquefaction of solid biomass `can be enabled <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L273>`_ allowing the model to convert it into liquid hydrocarbons that can replace conventional oil products. This technology also comes with and without carbon capture (see `Technology-data repository <https://github.com/PyPSA/technology-data>`_ ).
*Transport of solid biomass* *Transport of solid biomass*
@ -291,19 +307,21 @@ The transport of solid biomass can either be assumed unlimited between countries
*Biogas transport and use* *Biogas transport and use*
Biogas will be aggregated into a common European resources if a gas network is not modeled explicitly, i.e., the `gas_network <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L261>`_ option is set to false. If, on the other hand, a gas network is included, the biogas potential will be associated with each node of origin. Biogas will be aggregated into a common European resources if a gas network is not modeled explicitly, i.e., the `gas_network <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L261>`_ option is set to false. If, on the other hand, a gas network is included, the biogas potential will be associated with each node of origin.
The model can only use biogas by first upgrading it to natural gas quality [link to tech description] (bio methane) which is fed into the general gas network. The model can only use biogas by first upgrading it to natural gas quality [see :ref:`Methane supply`] (bio methane) which is fed into the general gas network.
.. _Oil-based products demand:
Oil-based products demand Oil-based products demand
======================== ========================
Naphtha is used as a feedstock in the chemicals industry[LINK TO CHEMICAL INDUSTRY]. Furthermore, kerosene is used as transport fuel in the aviation sector[LINK TO AVIATION SECTOR]. Non-electrified agriculture machinery also consumes gasoline. Naphtha is used as a feedstock in the chemicals industry (see :ref:`Chemicals Industry`). Furthermore, kerosene is used as transport fuel in the aviation sector (see :ref:`Aviation`). Non-electrified agriculture machinery also consumes gasoline.
Land transport [LINK TO LAND TRANSPORT] that is not electrified or converted into using H2-fuel cells also consumes oil-based products. While there is regional distribution of demand, the carrier is copperplated in the model, which means that transport costs and constraints are neglected. Land transport [(see :ref:`Land transport`) that is not electrified or converted into using H2-fuel cells also consumes oil-based products. While there is regional distribution of demand, the carrier is copperplated in the model, which means that transport costs and constraints are neglected.
.. _Oil-based products supply:
Oil-based products supply Oil-based products supply
======================== ========================
Oil-based products can be either of fossil origin or synthetically produced by combining H2 [link to hydrogen] and captured CO2 [link to carbon capture] in Fischer-Tropsch plants Oil-based products can be either of fossil origin or synthetically produced by combining H2 (see :ref:`Hydrogen supply`) and captured CO2 (see :ref:`Carbon dioxide capture, usage and sequestration (CCU/S)`) in Fischer-Tropsch plants
$$ $$
𝑛CO+(2𝑛+1)H_2 → C_{n}H_{2n + 2} +𝑛H_2O 𝑛CO+(2𝑛+1)H_2 → C_{n}H_{2n + 2} +𝑛H_2O
@ -316,6 +334,7 @@ with costs as included from the `technology-data repository <https://github.com/
Liquid hydrocarbons are assumed to be transported freely among the model region since future demand is predicted to be low, transport costs for liquids are low and no bottlenecks are expected. Liquid hydrocarbons are assumed to be transported freely among the model region since future demand is predicted to be low, transport costs for liquids are low and no bottlenecks are expected.
.. _Industry demand:
Industry demand Industry demand
================ ================
@ -323,7 +342,9 @@ Industry demand
Industry demand is split into a dozen different sectors with specific energy demands, process Industry demand is split into a dozen different sectors with specific energy demands, process
emissions of carbon dioxide, as well as existing and prospective mitigation strategies. emissions of carbon dioxide, as well as existing and prospective mitigation strategies.
Subsection overview (link to section overview) provides a general description of the modelling approach for the industry sector. The following subsections describe the current energy demands, available mitigation strategies, and whether mitigation is exogenously fixed or co-optimised with the other components of the model for each industry subsector in more detail. See details for Iron and Steel (link to subsection Iron and Steel), Chemicals Industry (link to subsection Chemicals Industry), Ammonia (link to subsection Ammonia), Non-metallic Mineral products (link to subsection Non-metallic products), Non-ferrous Metals (link to subsection Non-ferrous Metals), Other Industry Subsectors (link to subsection Other Industry Subsectors). The Subsection overview below provides a general description of the modelling approach for the industry sector. The following subsections describe the current energy demands, available mitigation strategies, and whether mitigation is exogenously fixed or co-optimised with the other components of the model for each industry subsector in more detail. See details for Iron and Steel (see :ref:`Iron and Steel`), Chemicals Industry and Ammonia (see :ref:`Chemicals Industry`), Non-metallic Mineral products , Non-ferrous Metals , and other Industry Subsectors.
.. _Overview:
*Overview* *Overview*
@ -356,6 +377,8 @@ Inside each country the industrial demand is then distributed using the `Hotmaps
.. image:: ../graphics/hotmaps.png .. image:: ../graphics/hotmaps.png
.. _Iron and Steel:
*Iron and Steel* *Iron and Steel*
Two alternative routes are used today to manufacture steel in Europe. The primary route (integrated steelworks) represents 60% of steel production, while the secondary route (electric arc furnaces, EAF), represents the other 40% `(Lechtenböhmer et. al) <https://doi.org/10.1016/j.energy.2016.07.110>`_. Two alternative routes are used today to manufacture steel in Europe. The primary route (integrated steelworks) represents 60% of steel production, while the secondary route (electric arc furnaces, EAF), represents the other 40% `(Lechtenböhmer et. al) <https://doi.org/10.1016/j.energy.2016.07.110>`_.
@ -401,7 +424,9 @@ This circumvents the process emissions associated with the use of coke. For hydr
The share of steel produced via the primary route is exogenously set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L279>`_. The share of steel obtained via hydrogen-based DRI plus EAF is also set exogenously in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L287>`_. The remaining share is manufactured through the secondary route using scrap metal in EAF. Bioenergy as alternative to coke in blast furnaces is not considered in the model (`Mandova et.al <https://doi.org/10.1016/j.biombioe.2018.04.021>`_, `Suopajärvi et.al <https://doi.org/10.1016/j.apenergy.2018.01.060>`_). The share of steel produced via the primary route is exogenously set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L279>`_. The share of steel obtained via hydrogen-based DRI plus EAF is also set exogenously in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L287>`_. The remaining share is manufactured through the secondary route using scrap metal in EAF. Bioenergy as alternative to coke in blast furnaces is not considered in the model (`Mandova et.al <https://doi.org/10.1016/j.biombioe.2018.04.021>`_, `Suopajärvi et.al <https://doi.org/10.1016/j.apenergy.2018.01.060>`_).
For the remaining subprocesses in this sector, the following transformations are assumed. Methane is used as energy source for the smelting process. Activities associated with furnaces, refining and rolling, and product finishing are electrified assuming the current efficiency values for these cases. These transformations result in changes in process emissions as outlined in the process emissions figure presented in the industry overview section (add link to the overview section). For the remaining subprocesses in this sector, the following transformations are assumed. Methane is used as energy source for the smelting process. Activities associated with furnaces, refining and rolling, and product finishing are electrified assuming the current efficiency values for these cases. These transformations result in changes in process emissions as outlined in the process emissions figure presented in the industry overview section (see :ref:`Overview`).
.. _Chemicals Industry:
*Chemicals Industry* *Chemicals Industry*
@ -409,7 +434,7 @@ The chemicals industry includes a wide range of diverse industries, including th
The chemicals industry includes a wide range of diverse industries, including the production of basic organic compounds (olefins, alcohols, aromatics), basic inorganic compounds (ammonia, chlorine), polymers (plastics), and end-user products (cosmetics, pharmaceutics). The chemicals industry includes a wide range of diverse industries, including the production of basic organic compounds (olefins, alcohols, aromatics), basic inorganic compounds (ammonia, chlorine), polymers (plastics), and end-user products (cosmetics, pharmaceutics).
The chemicals industry consumes large amounts of fossil-fuel based feedstocks (see `Levi et. al <https://pubs.acs.org/doi/10.1021/acs.est.7b04573>`_), which can also be produced from renewables as outlined for hydrogen (LINK TO HYDROGEN SUPPLY), for methane (LINK TO METHANE SUPPLY), and for oil-based products (LINK TO OIL-BASED PRODUCTS SUPPLY). The ratio between synthetic and fossil-based fuels used in the industry is an endogenous result of the opti- misation. The chemicals industry consumes large amounts of fossil-fuel based feedstocks (see `Levi et. al <https://pubs.acs.org/doi/10.1021/acs.est.7b04573>`_), which can also be produced from renewables as outlined for hydrogen (see :ref:`Hydrogen supply`), for methane (see :ref:`Methane supply`), and for oil-based products (see :ref:`Oil-based products supply`). The ratio between synthetic and fossil-based fuels used in the industry is an endogenous result of the opti- misation.
The basic chemicals consumption data from the `JRC IDEES <https://op.europa.eu/en/publication-detail/-/publication/989282db-ad65-11e7-837e-01aa75ed71a1/language-en>`_ database comprises high- value chemicals (ethylene, propylene and BTX), chlorine, methanol and ammonia. However, it is necessary to separate out these chemicals because their current and future production routes are different. The basic chemicals consumption data from the `JRC IDEES <https://op.europa.eu/en/publication-detail/-/publication/989282db-ad65-11e7-837e-01aa75ed71a1/language-en>`_ database comprises high- value chemicals (ethylene, propylene and BTX), chlorine, methanol and ammonia. However, it is necessary to separate out these chemicals because their current and future production routes are different.
@ -420,13 +445,22 @@ N_2 + 3H_2 → 2NH_3
$$ $$
The Haber-Bosch process is not explicitly represented in the model, such that demand for ammonia enters the model as a demand for hydrogen ( $6.5 MWh_{H_2}$ / t $_{NH_3}$ ) and electricity ( $1.17 MWh_{el}$ /t $_{NH_3}$ ) (see `Wang et. al <https://doi.org/10.1016/j.joule.2018.04.017>`_). Today, natural gas dominates in Europe as the source for the hydrogen used in the Haber-Bosch process, but the model can choose among the various hydrogen supply options described in the hydrogen section (LINK TO HYDROGEN SUPPLY) The Haber-Bosch process is not explicitly represented in the model, such that demand for ammonia enters the model as a demand for hydrogen ( $6.5 MWh_{H_2}$ / t $_{NH_3}$ ) and electricity ( $1.17 MWh_{el}$ /t $_{NH_3}$ ) (see `Wang et. al <https://doi.org/10.1016/j.joule.2018.04.017>`_). Today, natural gas dominates in Europe as the source for the hydrogen used in the Haber-Bosch process, but the model can choose among the various hydrogen supply options described in the hydrogen section (see :ref:`Hydrogen supply`)
Agriculture demand
=========================
Energy demands for the agriculture, forestry and fishing sector per country are taken from the `JRC-IDEES database <http://data.europa.eu/89h/jrc-10110-10001>`_. Missing countries are filled with `Eurostat data <https://ec.europa.eu/eurostat/web/energy/data/energy-balances>`_. Agricultural energy demands are split into electricity (lighting, ventilation, specific electricity uses, electric pumping devices), heat (specific heat uses, low enthalpy heat), and machinery oil (motor drives, farming machine drives, diesel-fueled pumping devices). Heat demand is assigned at “services rural heat” buses. Time series for demands are assumed to be constant and distributed inside countries by population.
.. _Transportation:
Transportation Transportation
========================= =========================
Annual energy demands for land transport, aviation and shipping for every country are retrieved from `JRC-IDEES data set <http://data.europa.eu/89h/jrc-10110-10001>`_. Below, the details of how each of these categories are treated is explained. Annual energy demands for land transport, aviation and shipping for every country are retrieved from `JRC-IDEES data set <http://data.europa.eu/89h/jrc-10110-10001>`_. Below, the details of how each of these categories are treated is explained.
*Land transport* .. _Land transport:
**Land transport**
Both road and rail transport is combined as `land transport demand <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/build_transport_demand.py#L74>`_ although electrified rail transport is excluded because that demand is included in the current electricity demand. Both road and rail transport is combined as `land transport demand <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/build_transport_demand.py#L74>`_ although electrified rail transport is excluded because that demand is included in the current electricity demand.
@ -444,32 +478,35 @@ The battery cost of BEV is not included in the model since it is assumed that BE
*Hydrogen fuel cell vehicles (FCEV)* *Hydrogen fuel cell vehicles (FCEV)*
The share of all land transport that is specified to be be FCEV will be converted to a demand for hydrogen [link to hydrogen] using the `FCEV efficiency The share of all land transport that is specified to be be FCEV will be converted to a demand for hydrogen (see :ref:`Hydrogen supply`) using the `FCEV efficiency
<https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L191>`_. <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L191>`_.
FCEVs are typically used to simulate demand for transport that is hard to electrify directly, e.g. heavy construction machinery. But it may also be used to investigate a more widespread adoption of the technology. FCEVs are typically used to simulate demand for transport that is hard to electrify directly, e.g. heavy construction machinery. But it may also be used to investigate a more widespread adoption of the technology.
*Internal combustion engine vehicles (ICE)* *Internal combustion engine vehicles (ICE)*
All land transport that is not specified to be either BEV or FCEV will be treated as conventional ICEs. The transport demand is converted to a demand for oil products [link to oil products] using the `ICE efficiency All land transport that is not specified to be either BEV or FCEV will be treated as conventional ICEs. The transport demand is converted to a demand for oil products (see :ref:`Oil-based products supply`) using the `ICE efficiency
<https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L192>`_. <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L192>`_.
*Aviation* .. _Aviation:
The demand for aviation <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2193>`_ includes international and domestic use. It is modeled as an oil demand since aviation consumes kerosene. This can be produced synthetically or have fossil-origin [link to oil product]. **Aviation**
The `demand for aviation <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2193>`_ includes international and domestic use. It is modeled as an oil demand since aviation consumes kerosene. This can be produced synthetically or have fossil-origin (see :ref:`Oil-based products supply`).
*Shipping* .. _Shipping:
Shipping energy demand is covered by a combination of oil and hydrogen. Other fuel options, like methanol or ammonia, are currently not included in PyPSA-Eur-Sec.The share of shipping that is assumed to be supplied by hydrogen can be selected in the config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L198>`_. **Shipping**
Shipping energy demand is covered by a combination of oil and hydrogen. Other fuel options, like methanol or ammonia, are currently not included in PyPSA-Eur-Sec.The share of shipping that is assumed to be supplied by hydrogen can be selected in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L198>`_.
To estimate the `hydrogen demand <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2090>`_, the average fuel efficiency of the fleet is used in combination with the efficiency of the fuel cell defined in the technology-data repository. The average fuel efficiency is set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L196>`_. To estimate the `hydrogen demand <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2090>`_, the average fuel efficiency of the fleet is used in combination with the efficiency of the fuel cell defined in the technology-data repository. The average fuel efficiency is set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L196>`_.
The consumed hydrogen comes from the general hydrogen bus where it can be produced by SMR, SMR+CC or electrolysers [link to hydrogen]. The fraction that is not converted into hydrogen use oil products, i.e. is connected to the general oil bus. The consumed hydrogen comes from the general hydrogen bus where it can be produced by SMR, SMR+CC or electrolysers (see :ref:`Hydrogen supply`). The fraction that is not converted into hydrogen use oil products, i.e. is connected to the general oil bus.
The energy demand for liquefaction of the hydrogen used for shipping can be `included <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L197>`_. If this option is selected, liquifaction will happen at the `node where the shipping demand occurs <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2064>`_. The energy demand for liquefaction of the hydrogen used for shipping can be `included <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L197>`_. If this option is selected, liquifaction will happen at the `node where the shipping demand occurs <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2064>`_.
.. _Carbon dioxide capture, usage and sequestration (CCU/S):
Carbon dioxide capture, usage and sequestration (CCU/S) Carbon dioxide capture, usage and sequestration (CCU/S)
========================================================= =========================================================