merge master
This commit is contained in:
commit
9ec7442c69
14
.gitignore
vendored
14
.gitignore
vendored
@ -29,18 +29,18 @@ dconf
|
||||
/data/links_p_nom.csv
|
||||
/data/*totals.csv
|
||||
/data/biomass*
|
||||
/data/emobility/
|
||||
/data/eea*
|
||||
/data/jrc*
|
||||
/data/bundle-sector/emobility/
|
||||
/data/bundle-sector/eea*
|
||||
/data/bundle-sector/jrc*
|
||||
/data/heating/
|
||||
/data/eurostat*
|
||||
/data/bundle-sector/eurostat*
|
||||
/data/odyssee/
|
||||
/data/transport_data.csv
|
||||
/data/switzerland*
|
||||
/data/bundle-sector/switzerland*
|
||||
/data/.nfs*
|
||||
/data/Industrial_Database.csv
|
||||
/data/bundle-sector/Industrial_Database.csv
|
||||
/data/retro/tabula-calculator-calcsetbuilding.csv
|
||||
/data/nuts*
|
||||
/data/bundle-sector/nuts*
|
||||
data/gas_network/scigrid-gas/
|
||||
data/costs_*.csv
|
||||
|
||||
|
@ -14,6 +14,12 @@ Upcoming Release
|
||||
|
||||
* For industry distribution, use EPRTR as fallback if ETS data is not available.
|
||||
|
||||
* The minimum capacity for renewable generators when using the myopic option has been fixed.
|
||||
|
||||
* Files downloaded from zenodo are now write-protected to prevent accidental re-download.
|
||||
|
||||
* Files extracted from sector-coupled data bundle have been moved from ``data/`` to ``data/sector-bundle``.
|
||||
|
||||
* New feature multi-decade optimisation with perfect foresight.
|
||||
|
||||
PyPSA-Eur 0.8.1 (27th July 2023)
|
||||
|
@ -350,7 +350,9 @@ rule add_electricity:
|
||||
hydro_capacities=ancient("data/bundle/hydro_capacities.csv"),
|
||||
geth_hydro_capacities="data/geth2015_hydro_capacities.csv",
|
||||
unit_commitment="data/unit_commitment.csv",
|
||||
fuel_price=RESOURCES + "monthly_fuel_price.csv",
|
||||
fuel_price=RESOURCES + "monthly_fuel_price.csv"
|
||||
if config["conventional"]["dynamic_fuel_price"]
|
||||
else [],
|
||||
load=RESOURCES + "load.csv",
|
||||
nuts3_shapes=RESOURCES + "nuts3_shapes.geojson",
|
||||
output:
|
||||
@ -478,7 +480,7 @@ rule prepare_network:
|
||||
input:
|
||||
RESOURCES + "networks/elec_s{simpl}_{clusters}_ec.nc",
|
||||
tech_costs=COSTS,
|
||||
co2_price=RESOURCES + "co2_price.csv",
|
||||
co2_price=lambda w: RESOURCES + "co2_price.csv" if "Ept" in w.opts else [],
|
||||
output:
|
||||
RESOURCES + "networks/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.nc",
|
||||
log:
|
||||
|
@ -242,9 +242,9 @@ rule build_energy_totals:
|
||||
energy=config["energy"],
|
||||
input:
|
||||
nuts3_shapes=RESOURCES + "nuts3_shapes.geojson",
|
||||
co2="data/eea/UNFCCC_v23.csv",
|
||||
swiss="data/switzerland-sfoe/switzerland-new_format.csv",
|
||||
idees="data/jrc-idees-2015",
|
||||
co2="data/bundle-sector/eea/UNFCCC_v23.csv",
|
||||
swiss="data/bundle-sector/switzerland-sfoe/switzerland-new_format.csv",
|
||||
idees="data/bundle-sector/jrc-idees-2015",
|
||||
district_heat_share="data/district_heat_share.csv",
|
||||
eurostat=input_eurostat,
|
||||
output:
|
||||
@ -272,7 +272,7 @@ rule build_biomass_potentials:
|
||||
"https://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/ENSPRESO/ENSPRESO_BIOMASS.xlsx",
|
||||
keep_local=True,
|
||||
),
|
||||
nuts2="data/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21
|
||||
nuts2="data/bundle-sector/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21
|
||||
regions_onshore=RESOURCES + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
nuts3_population=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"),
|
||||
swiss_cantons=ancient("data/bundle/ch_cantons.csv"),
|
||||
@ -366,7 +366,7 @@ if not config["sector"]["regional_co2_sequestration_potential"]["enable"]:
|
||||
|
||||
rule build_salt_cavern_potentials:
|
||||
input:
|
||||
salt_caverns="data/h2_salt_caverns_GWh_per_sqkm.geojson",
|
||||
salt_caverns="data/bundle-sector/h2_salt_caverns_GWh_per_sqkm.geojson",
|
||||
regions_onshore=RESOURCES + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
regions_offshore=RESOURCES + "regions_offshore_elec_s{simpl}_{clusters}.geojson",
|
||||
output:
|
||||
@ -388,7 +388,7 @@ rule build_ammonia_production:
|
||||
params:
|
||||
countries=config["countries"],
|
||||
input:
|
||||
usgs="data/myb1-2017-nitro.xls",
|
||||
usgs="data/bundle-sector/myb1-2017-nitro.xls",
|
||||
output:
|
||||
ammonia_production=RESOURCES + "ammonia_production.csv",
|
||||
threads: 1
|
||||
@ -410,7 +410,7 @@ rule build_industry_sector_ratios:
|
||||
ammonia=config["sector"].get("ammonia", False),
|
||||
input:
|
||||
ammonia_production=RESOURCES + "ammonia_production.csv",
|
||||
idees="data/jrc-idees-2015",
|
||||
idees="data/bundle-sector/jrc-idees-2015",
|
||||
output:
|
||||
industry_sector_ratios=RESOURCES + "industry_sector_ratios.csv",
|
||||
threads: 1
|
||||
@ -432,8 +432,8 @@ rule build_industrial_production_per_country:
|
||||
countries=config["countries"],
|
||||
input:
|
||||
ammonia_production=RESOURCES + "ammonia_production.csv",
|
||||
jrc="data/jrc-idees-2015",
|
||||
eurostat="data/eurostat-energy_balances-may_2018_edition",
|
||||
jrc="data/bundle-sector/jrc-idees-2015",
|
||||
eurostat="data/bundle-sector/eurostat-energy_balances-may_2018_edition",
|
||||
output:
|
||||
industrial_production_per_country=RESOURCES
|
||||
+ "industrial_production_per_country.csv",
|
||||
@ -483,7 +483,7 @@ rule build_industrial_distribution_key:
|
||||
input:
|
||||
regions_onshore=RESOURCES + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
clustered_pop_layout=RESOURCES + "pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
hotmaps_industrial_database="data/Industrial_Database.csv",
|
||||
hotmaps_industrial_database="data/bundle-sector/Industrial_Database.csv",
|
||||
output:
|
||||
industrial_distribution_key=RESOURCES
|
||||
+ "industrial_distribution_key_elec_s{simpl}_{clusters}.csv",
|
||||
@ -558,7 +558,7 @@ rule build_industrial_energy_demand_per_country_today:
|
||||
countries=config["countries"],
|
||||
industry=config["industry"],
|
||||
input:
|
||||
jrc="data/jrc-idees-2015",
|
||||
jrc="data/bundle-sector/jrc-idees-2015",
|
||||
ammonia_production=RESOURCES + "ammonia_production.csv",
|
||||
industrial_production_per_country=RESOURCES
|
||||
+ "industrial_production_per_country.csv",
|
||||
@ -684,8 +684,8 @@ rule build_transport_demand:
|
||||
pop_weighted_energy_totals=RESOURCES
|
||||
+ "pop_weighted_energy_totals_s{simpl}_{clusters}.csv",
|
||||
transport_data=RESOURCES + "transport_data.csv",
|
||||
traffic_data_KFZ="data/emobility/KFZ__count",
|
||||
traffic_data_Pkw="data/emobility/Pkw__count",
|
||||
traffic_data_KFZ="data/bundle-sector/emobility/KFZ__count",
|
||||
traffic_data_Pkw="data/bundle-sector/emobility/Pkw__count",
|
||||
temp_air_total=RESOURCES + "temp_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
output:
|
||||
transport_demand=RESOURCES + "transport_demand_s{simpl}_{clusters}.csv",
|
||||
@ -734,7 +734,7 @@ rule prepare_sector_network:
|
||||
avail_profile=RESOURCES + "avail_profile_s{simpl}_{clusters}.csv",
|
||||
dsm_profile=RESOURCES + "dsm_profile_s{simpl}_{clusters}.csv",
|
||||
co2_totals_name=RESOURCES + "co2_totals.csv",
|
||||
co2="data/eea/UNFCCC_v23.csv",
|
||||
co2="data/bundle-sector/eea/UNFCCC_v23.csv",
|
||||
biomass_potentials=RESOURCES + "biomass_potentials_s{simpl}_{clusters}.csv",
|
||||
heat_profile="data/heat_load_profile_BDEW.csv",
|
||||
costs="data/costs_{}.csv".format(config["costs"]["year"])
|
||||
|
@ -42,7 +42,7 @@ def has_internet_access(url="www.zenodo.org") -> bool:
|
||||
def input_eurostat(w):
|
||||
# 2016 includes BA, 2017 does not
|
||||
report_year = config["energy"]["eurostat_report_year"]
|
||||
return f"data/eurostat-energy_balances-june_{report_year}_edition"
|
||||
return f"data/bundle-sector/eurostat-energy_balances-june_{report_year}_edition"
|
||||
|
||||
|
||||
def solved_previous_horizon(wildcards):
|
||||
|
@ -135,6 +135,8 @@ rule plot_summary:
|
||||
countries=config["countries"],
|
||||
planning_horizons=config["scenario"]["planning_horizons"],
|
||||
sector_opts=config["scenario"]["sector_opts"],
|
||||
emissions_scope=config["energy"]["emissions"],
|
||||
eurostat_report_year=config["energy"]["eurostat_report_year"],
|
||||
plotting=config["plotting"],
|
||||
RDIR=RDIR,
|
||||
input:
|
||||
@ -142,7 +144,7 @@ rule plot_summary:
|
||||
energy=RESULTS + "csvs/energy.csv",
|
||||
balances=RESULTS + "csvs/supply_energy.csv",
|
||||
eurostat=input_eurostat,
|
||||
co2="data/eea/UNFCCC_v23.csv",
|
||||
co2="data/bundle-sector/eea/UNFCCC_v23.csv",
|
||||
output:
|
||||
costs=RESULTS + "graphs/costs.pdf",
|
||||
energy=RESULTS + "graphs/energy.pdf",
|
||||
|
@ -27,7 +27,7 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle",
|
||||
|
||||
rule retrieve_databundle:
|
||||
output:
|
||||
expand("data/bundle/{file}", file=datafiles),
|
||||
protected(expand("data/bundle/{file}", file=datafiles)),
|
||||
log:
|
||||
LOGS + "retrieve_databundle.log",
|
||||
resources:
|
||||
@ -92,7 +92,7 @@ if config["enable"]["retrieve"] and config["enable"].get(
|
||||
static=True,
|
||||
),
|
||||
output:
|
||||
RESOURCES + "natura.tiff",
|
||||
protected(RESOURCES + "natura.tiff"),
|
||||
log:
|
||||
LOGS + "retrieve_natura_raster.log",
|
||||
resources:
|
||||
@ -106,22 +106,30 @@ if config["enable"]["retrieve"] and config["enable"].get(
|
||||
"retrieve_sector_databundle", True
|
||||
):
|
||||
datafiles = [
|
||||
"data/eea/UNFCCC_v23.csv",
|
||||
"data/switzerland-sfoe/switzerland-new_format.csv",
|
||||
"data/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson",
|
||||
"data/myb1-2017-nitro.xls",
|
||||
"data/Industrial_Database.csv",
|
||||
"data/emobility/KFZ__count",
|
||||
"data/emobility/Pkw__count",
|
||||
"data/h2_salt_caverns_GWh_per_sqkm.geojson",
|
||||
directory("data/eurostat-energy_balances-june_2016_edition"),
|
||||
directory("data/eurostat-energy_balances-may_2018_edition"),
|
||||
directory("data/jrc-idees-2015"),
|
||||
"eea/UNFCCC_v23.csv",
|
||||
"switzerland-sfoe/switzerland-new_format.csv",
|
||||
"nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson",
|
||||
"myb1-2017-nitro.xls",
|
||||
"Industrial_Database.csv",
|
||||
"emobility/KFZ__count",
|
||||
"emobility/Pkw__count",
|
||||
"h2_salt_caverns_GWh_per_sqkm.geojson",
|
||||
]
|
||||
|
||||
datafolders = [
|
||||
protected(
|
||||
directory("data/bundle-sector/eurostat-energy_balances-june_2016_edition")
|
||||
),
|
||||
protected(
|
||||
directory("data/bundle-sector/eurostat-energy_balances-may_2018_edition")
|
||||
),
|
||||
protected(directory("data/bundle-sector/jrc-idees-2015")),
|
||||
]
|
||||
|
||||
rule retrieve_sector_databundle:
|
||||
output:
|
||||
*datafiles,
|
||||
protected(expand("data/bundle-sector/{files}", files=datafiles)),
|
||||
*datafolders,
|
||||
log:
|
||||
LOGS + "retrieve_sector_databundle.log",
|
||||
retries: 2
|
||||
@ -143,7 +151,9 @@ if config["enable"]["retrieve"] and (
|
||||
|
||||
rule retrieve_gas_infrastructure_data:
|
||||
output:
|
||||
expand("data/gas_network/scigrid-gas/data/{files}", files=datafiles),
|
||||
protected(
|
||||
expand("data/gas_network/scigrid-gas/data/{files}", files=datafiles)
|
||||
),
|
||||
log:
|
||||
LOGS + "retrieve_gas_infrastructure_data.log",
|
||||
retries: 2
|
||||
@ -187,7 +197,7 @@ if config["enable"]["retrieve"]:
|
||||
static=True,
|
||||
),
|
||||
output:
|
||||
"data/shipdensity_global.zip",
|
||||
protected("data/shipdensity_global.zip"),
|
||||
log:
|
||||
LOGS + "retrieve_ship_raster.log",
|
||||
resources:
|
||||
|
@ -165,7 +165,7 @@ def sanitize_carriers(n, config):
|
||||
nice_names = (
|
||||
pd.Series(config["plotting"]["nice_names"])
|
||||
.reindex(carrier_i)
|
||||
.fillna(carrier_i.to_series().str.title())
|
||||
.fillna(carrier_i.to_series())
|
||||
)
|
||||
n.carriers["nice_name"] = n.carriers.nice_name.where(
|
||||
n.carriers.nice_name != "", nice_names
|
||||
|
@ -446,15 +446,23 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
|
||||
# split existing capacities between residential and services
|
||||
# proportional to energy demand
|
||||
p_set_sum = n.loads_t.p_set.sum()
|
||||
ratio_residential = pd.Series(
|
||||
[
|
||||
(
|
||||
n.loads_t.p_set.sum()[f"{node} residential rural heat"]
|
||||
p_set_sum[f"{node} residential rural heat"]
|
||||
/ (
|
||||
n.loads_t.p_set.sum()[f"{node} residential rural heat"]
|
||||
+ n.loads_t.p_set.sum()[f"{node} services rural heat"]
|
||||
p_set_sum[f"{node} residential rural heat"]
|
||||
+ p_set_sum[f"{node} services rural heat"]
|
||||
)
|
||||
)
|
||||
# if rural heating demand for one of the nodes doesn't exist,
|
||||
# then columns were dropped before and heating demand share should be 0.0
|
||||
if all(
|
||||
f"{node} {service} rural heat" in p_set_sum.index
|
||||
for service in ["residential", "services"]
|
||||
)
|
||||
else 0.0
|
||||
for node in nodal_df.index
|
||||
],
|
||||
index=nodal_df.index,
|
||||
|
@ -13,10 +13,13 @@ logger = logging.getLogger(__name__)
|
||||
import uuid
|
||||
from itertools import product
|
||||
|
||||
import country_converter as coco
|
||||
import geopandas as gpd
|
||||
import pandas as pd
|
||||
from packaging.version import Version, parse
|
||||
|
||||
cc = coco.CountryConverter()
|
||||
|
||||
|
||||
def locate_missing_industrial_sites(df):
|
||||
"""
|
||||
@ -107,6 +110,17 @@ def prepare_hotmaps_database(regions):
|
||||
# concat not duplicated and filtered gdf
|
||||
gdf = pd.concat([gdf.drop(duplicated_i), gdf_filtered]).sort_index()
|
||||
|
||||
# the .sjoin can lead to duplicates if a geom is in two overlapping regions
|
||||
if gdf.index.duplicated().any():
|
||||
# get all duplicated entries
|
||||
duplicated_i = gdf.index[gdf.index.duplicated()]
|
||||
# convert from raw data country name to iso-2-code
|
||||
code = cc.convert(gdf.loc[duplicated_i, "Country"], to="iso2")
|
||||
# screen out malformed country allocation
|
||||
gdf_filtered = gdf.loc[duplicated_i].query("country == @code")
|
||||
# concat not duplicated and filtered gdf
|
||||
gdf = pd.concat([gdf.drop(duplicated_i), gdf_filtered])
|
||||
|
||||
return gdf
|
||||
|
||||
|
||||
|
@ -711,5 +711,5 @@ if __name__ == "__main__":
|
||||
if snakemake.params.foresight == "myopic":
|
||||
cumulative_cost = calculate_cumulative_cost()
|
||||
cumulative_cost.to_csv(
|
||||
"results/" + snakemake.params.RDIR + "/csvs/cumulative_cost.csv"
|
||||
"results/" + snakemake.params.RDIR + "csvs/cumulative_cost.csv"
|
||||
)
|
||||
|
@ -457,7 +457,6 @@ def plot_carbon_budget_distribution(input_eurostat):
|
||||
"""
|
||||
Plot historical carbon emissions in the EU and decarbonization path.
|
||||
"""
|
||||
|
||||
import seaborn as sns
|
||||
|
||||
sns.set()
|
||||
@ -502,6 +501,14 @@ def plot_carbon_budget_distribution(input_eurostat):
|
||||
# plot committed and under-discussion targets
|
||||
# (notice that historical emissions include all countries in the
|
||||
# network, but targets refer to EU)
|
||||
ax1.plot(
|
||||
[2020],
|
||||
[0.8 * emissions[1990]],
|
||||
marker="*",
|
||||
markersize=12,
|
||||
markerfacecolor="black",
|
||||
markeredgecolor="black",
|
||||
)
|
||||
|
||||
ax1.plot(
|
||||
[2030],
|
||||
@ -512,7 +519,23 @@ def plot_carbon_budget_distribution(input_eurostat):
|
||||
markeredgecolor="black",
|
||||
)
|
||||
|
||||
ax1.plot(
|
||||
[2030],
|
||||
[0.6 * emissions[1990]],
|
||||
marker="*",
|
||||
markersize=12,
|
||||
markerfacecolor="black",
|
||||
markeredgecolor="black",
|
||||
)
|
||||
|
||||
ax1.plot(
|
||||
[2050, 2050],
|
||||
[x * emissions[1990] for x in [0.2, 0.05]],
|
||||
color="gray",
|
||||
linewidth=2,
|
||||
marker="_",
|
||||
alpha=0.5,
|
||||
)
|
||||
|
||||
ax1.plot(
|
||||
[2050],
|
||||
|
@ -46,7 +46,6 @@ def define_spatial(nodes, options):
|
||||
----------
|
||||
nodes : list-like
|
||||
"""
|
||||
|
||||
global spatial
|
||||
|
||||
spatial.nodes = nodes
|
||||
@ -192,17 +191,17 @@ def get(item, investment_year=None):
|
||||
|
||||
|
||||
def co2_emissions_year(
|
||||
countries, input_eurostat, opts, snakemake, year
|
||||
countries, input_eurostat, opts, emissions_scope, report_year, year
|
||||
):
|
||||
"""
|
||||
Calculate CO2 emissions in one specific year (e.g. 1990 or 2018).
|
||||
"""
|
||||
emissions_scope = snakemake.config["energy"]["emissions"]
|
||||
emissions_scope = snakemake.params.energy["emissions"]
|
||||
eea_co2 = build_eea_co2(snakemake.input.co2, year, emissions_scope)
|
||||
|
||||
# TODO: read Eurostat data from year > 2014
|
||||
# this only affects the estimation of CO2 emissions for BA, RS, AL, ME, MK
|
||||
report_year = snakemake.config["energy"]["eurostat_report_year"]
|
||||
report_year = snakemake.params.energy["eurostat_report_year"]
|
||||
if year > 2014:
|
||||
eurostat_co2 = build_eurostat_co2(
|
||||
input_eurostat, countries, report_year, year=2014
|
||||
@ -241,12 +240,24 @@ def build_carbon_budget(o, input_eurostat, fn, emissions_scope, report_year):
|
||||
countries = snakemake.params.countries
|
||||
|
||||
e_1990 = co2_emissions_year(
|
||||
countries, input_eurostat, opts, snakemake, year=1990
|
||||
countries,
|
||||
input_eurostat,
|
||||
opts,
|
||||
emissions_scope,
|
||||
report_year,
|
||||
input_co2,
|
||||
year=1990,
|
||||
)
|
||||
|
||||
# emissions at the beginning of the path (last year available 2018)
|
||||
e_0 = co2_emissions_year(
|
||||
countries, input_eurostat, opts, snakemake, year=2018,
|
||||
countries,
|
||||
input_eurostat,
|
||||
opts,
|
||||
emissions_scope,
|
||||
report_year,
|
||||
input_co2,
|
||||
year=2018,
|
||||
)
|
||||
|
||||
planning_horizons = snakemake.params.planning_horizons
|
||||
@ -357,7 +368,6 @@ def update_wind_solar_costs(n, costs):
|
||||
Update costs for wind and solar generators added with pypsa-eur to those
|
||||
cost in the planning year.
|
||||
"""
|
||||
|
||||
# NB: solar costs are also manipulated for rooftop
|
||||
# when distribution grid is inserted
|
||||
n.generators.loc[n.generators.carrier == "solar", "capital_cost"] = costs.at[
|
||||
@ -435,7 +445,6 @@ def add_carrier_buses(n, carrier, nodes=None):
|
||||
"""
|
||||
Add buses to connect e.g. coal, nuclear and oil plants.
|
||||
"""
|
||||
|
||||
if nodes is None:
|
||||
nodes = vars(spatial)[carrier].nodes
|
||||
location = vars(spatial)[carrier].locations
|
||||
@ -716,6 +725,7 @@ def average_every_nhours(n, offset):
|
||||
|
||||
return m
|
||||
|
||||
|
||||
def cycling_shift(df, steps=1):
|
||||
"""
|
||||
Cyclic shift on index of pd.Series|pd.DataFrame by number of steps.
|
||||
@ -1150,7 +1160,6 @@ def add_storage_and_grids(n, costs):
|
||||
e_cyclic=True,
|
||||
carrier="H2 Store",
|
||||
capital_cost=h2_capital_cost,
|
||||
lifetime=costs.at["hydrogen storage tank type 1 including compressor", "lifetime"],
|
||||
)
|
||||
|
||||
if options["gas_network"] or options["H2_retrofit"]:
|
||||
@ -3076,7 +3085,6 @@ def maybe_adjust_costs_and_potentials(n, opts):
|
||||
logger.info(f"changing {attr} for {carrier} by factor {factor}")
|
||||
|
||||
|
||||
# TODO this should rather be a config no wildcard
|
||||
def limit_individual_line_extension(n, maxext):
|
||||
logger.info(f"Limiting new HVAC and HVDC extensions to {maxext} MW")
|
||||
n.lines["s_nom_max"] = n.lines["s_nom"] + maxext
|
||||
@ -3211,7 +3219,7 @@ def apply_time_segmentation(
|
||||
df = pnl.copy()
|
||||
df.columns = pd.MultiIndex.from_product([[c.name], [attr], df.columns])
|
||||
raw = pd.concat([raw, df], axis=1)
|
||||
raw = raw.dropna(axis=1)
|
||||
|
||||
# normalise all time-dependent data
|
||||
annual_max = raw.max().replace(0, 1)
|
||||
raw = raw.div(annual_max, level=0)
|
||||
@ -3268,28 +3276,26 @@ def set_temporal_aggregation(n, opts, solver_name):
|
||||
# segments with package tsam
|
||||
m = re.match(r"^(\d+)seg$", o, re.IGNORECASE)
|
||||
if m is not None:
|
||||
if snakemake.params.foresight!="perfect":
|
||||
segments = int(m[1])
|
||||
logger.info(f"Use temporal segmentation with {segments} segments")
|
||||
n = apply_time_segmentation(n, segments, solver_name=solver_name)
|
||||
break
|
||||
else:
|
||||
logger.info("Apply temporal segmentation at prepare_perfect_foresight.")
|
||||
segments = int(m[1])
|
||||
logger.info(f"Use temporal segmentation with {segments} segments")
|
||||
n = apply_time_segmentation(n, segments, solver_name=solver_name)
|
||||
break
|
||||
return n
|
||||
|
||||
#%%
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"prepare_sector_network",
|
||||
configfiles="test/config.overnight.yaml",
|
||||
simpl="",
|
||||
opts="",
|
||||
clusters="37",
|
||||
ll="v1.0",
|
||||
sector_opts="60SEG-T-H-B-I-A-solar+p3-dist1",
|
||||
planning_horizons="2050",
|
||||
clusters="5",
|
||||
ll="v1.5",
|
||||
sector_opts="CO2L0-24H-T-H-B-I-A-solar+p3-dist1",
|
||||
planning_horizons="2030",
|
||||
)
|
||||
|
||||
logging.basicConfig(level=snakemake.config["logging"]["level"])
|
||||
@ -3391,7 +3397,6 @@ if __name__ == "__main__":
|
||||
add_allam(n, costs)
|
||||
|
||||
solver_name = snakemake.config["solving"]["solver"]["name"]
|
||||
|
||||
n = set_temporal_aggregation(n, opts, solver_name)
|
||||
|
||||
limit_type = "config"
|
||||
@ -3404,8 +3409,14 @@ if __name__ == "__main__":
|
||||
if not os.path.exists(fn):
|
||||
emissions_scope = snakemake.params.emissions_scope
|
||||
report_year = snakemake.params.eurostat_report_year
|
||||
input_co2 = snakemake.input.co2
|
||||
build_carbon_budget(
|
||||
o, snakemake.input.eurostat, fn, emissions_scope, report_year
|
||||
o,
|
||||
snakemake.input.eurostat,
|
||||
fn,
|
||||
emissions_scope,
|
||||
report_year,
|
||||
input_co2,
|
||||
)
|
||||
co2_cap = pd.read_csv(fn, index_col=0).squeeze()
|
||||
limit = co2_cap.loc[investment_year]
|
||||
|
@ -110,6 +110,9 @@ def _add_land_use_constraint(n):
|
||||
# warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind'
|
||||
|
||||
for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]:
|
||||
extendable_i = (n.generators.carrier == carrier) & n.generators.p_nom_extendable
|
||||
n.generators.loc[extendable_i, "p_nom_min"] = 0
|
||||
|
||||
ext_i = (n.generators.carrier == carrier) & ~n.generators.p_nom_extendable
|
||||
existing = (
|
||||
n.generators.loc[ext_i, "p_nom"]
|
||||
@ -126,7 +129,7 @@ def _add_land_use_constraint(n):
|
||||
if len(existing_large):
|
||||
logger.warning(
|
||||
f"Existing capacities larger than technical potential for {existing_large},\
|
||||
adjust technical potential to existing capacities"
|
||||
adjust technical potential to existing capacities"
|
||||
)
|
||||
n.generators.loc[existing_large, "p_nom_max"] = n.generators.loc[
|
||||
existing_large, "p_nom_min"
|
||||
|
Loading…
Reference in New Issue
Block a user