Merge remote-tracking branch 'origin/master' into dh-share

This commit is contained in:
lisazeyen 2021-09-29 15:03:45 +02:00
commit 9d8827bf59
7 changed files with 95 additions and 30 deletions

View File

@ -181,7 +181,7 @@ sector:
transport_fuel_cell_efficiency: 0.5
transport_internal_combustion_efficiency: 0.3
shipping_average_efficiency: 0.4 #For conversion of fuel oil to propulsion in 2011
shipping_hydrogen_liquefaction: true # whether to consider liquefaction costs for shipping H2 demands
shipping_hydrogen_liquefaction: false # whether to consider liquefaction costs for shipping H2 demands
shipping_hydrogen_share: # 1 means all hydrogen FC
2020: 0
2025: 0
@ -278,9 +278,23 @@ industry:
MWh_elec_per_tNH3_electrolysis: 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB)
NH3_process_emissions: 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28
petrochemical_process_emissions: 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28
HVC_primary_fraction: 1.0 #fraction of current non-ammonia basic chemicals produced via primary route
HVC_primary_fraction: 1. # fraction of today's HVC produced via primary route
HVC_mechanical_recycling_fraction: 0. # fraction of today's HVC produced via mechanical recycling
HVC_chemical_recycling_fraction: 0. # fraction of today's HVC produced via chemical recycling
HVC_production_today: 52. # MtHVC/a from DECHEMA (2017), Figure 16, page 107; includes ethylene, propylene and BTX
MWh_elec_per_tHVC_mechanical_recycling: 0.547 # from SI of https://doi.org/10.1016/j.resconrec.2020.105010, Table S5, for HDPE, PP, PS, PET. LDPE would be 0.756.
MWh_elec_per_tHVC_chemical_recycling: 6.9 # Material Economics (2019), page 125; based on pyrolysis and electric steam cracking
chlorine_production_today: 9.58 # MtCl/a from DECHEMA (2017), Table 7, page 43
MWh_elec_per_tCl: 3.6 # DECHEMA (2017), Table 6, page 43
MWh_H2_per_tCl: -0.9372 # DECHEMA (2017), page 43; negative since hydrogen produced in chloralkali process
methanol_production_today: 1.5 # MtMeOH/a from DECHEMA (2017), page 62
MWh_elec_per_tMeOH: 0.167 # DECHEMA (2017), Table 14, page 65
MWh_CH4_per_tMeOH: 10.25 # DECHEMA (2017), Table 14, page 65
hotmaps_locate_missing: false
reference_year: 2015
# references:
# DECHEMA (2017): https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf
# Material Economics (2019): https://materialeconomics.com/latest-updates/industrial-transformation-2050
costs:
lifetime: 25 #default lifetime

View File

@ -83,6 +83,8 @@ Future release
in the new optional rule ``build_biomass_transport_costs``.
Biomass transport can be activated with the setting ``sector: biomass_transport: true``.
* Compatibility with ``xarray`` version 0.19.
* Separate basic chemicals into HVC, chlorine, methanol and ammonia [`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_].
* Add option to specify reuse, primary production, and mechanical and chemical recycling fraction of platics [`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_].
PyPSA-Eur-Sec 0.5.0 (21st May 2021)
===================================

View File

@ -103,6 +103,7 @@ def add_ammonia_energy_demand(demand):
demand['Basic chemicals (without ammonia)'] = demand["Basic chemicals"] - demand["Ammonia"]
demand['Basic chemicals (without ammonia)'].clip(lower=0, inplace=True)
demand.drop(columns='Basic chemicals', inplace=True)
return demand
@ -114,6 +115,11 @@ def add_non_eu28_industrial_energy_demand(demand):
fn = snakemake.input.industrial_production_per_country
production = pd.read_csv(fn, index_col=0) / 1e3
#recombine HVC, Chlorine and Methanol to Basic chemicals (without ammonia)
chemicals = ["HVC", "Chlorine", "Methanol"]
production["Basic chemicals (without ammonia)"] = production[chemicals].sum(axis=1)
production.drop(columns=chemicals, inplace=True)
eu28_production = production.loc[eu28].sum()
eu28_energy = demand.groupby(level=1).sum()
eu28_averages = eu28_energy / eu28_production

View File

@ -179,8 +179,8 @@ def industry_production(countries):
return demand
def add_ammonia_demand_separately(demand):
"""Include ammonia demand separately and remove ammonia from basic chemicals."""
def separate_basic_chemicals(demand):
"""Separate basic chemicals into ammonia, chlorine, methanol and HVC."""
ammonia = pd.read_csv(snakemake.input.ammonia_production, index_col=0)
@ -189,7 +189,7 @@ def add_ammonia_demand_separately(demand):
print("Following countries have no ammonia demand:", missing)
demand.insert(2, "Ammonia", 0.)
demand["Ammonia"] = 0.
demand.loc[there, "Ammonia"] = ammonia.loc[there, str(year)]
@ -198,9 +198,13 @@ def add_ammonia_demand_separately(demand):
# EE, HR and LT got negative demand through subtraction - poor data
demand['Basic chemicals'].clip(lower=0., inplace=True)
to_rename = {"Basic chemicals": "Basic chemicals (without ammonia)"}
demand.rename(columns=to_rename, inplace=True)
# assume HVC, methanol, chlorine production proportional to non-ammonia basic chemicals
distribution_key = demand["Basic chemicals"] / demand["Basic chemicals"].sum()
demand["HVC"] = config["HVC_production_today"] * 1e3 * distribution_key
demand["Chlorine"] = config["chlorine_production_today"] * 1e3 * distribution_key
demand["Methanol"] = config["methanol_production_today"] * 1e3 * distribution_key
demand.drop(columns=["Basic chemicals"], inplace=True)
if __name__ == '__main__':
if 'snakemake' not in globals():
@ -211,12 +215,14 @@ if __name__ == '__main__':
year = snakemake.config['industry']['reference_year']
config = snakemake.config["industry"]
jrc_dir = snakemake.input.jrc
eurostat_dir = snakemake.input.eurostat
demand = industry_production(countries)
add_ammonia_demand_separately(demand)
separate_basic_chemicals(demand)
fn = snakemake.output.industrial_production_per_country
demand.to_csv(fn, float_format='%.2f')

View File

@ -39,11 +39,14 @@ if __name__ == '__main__':
al_primary_fraction = get(config["Al_primary_fraction"], investment_year)
fraction_persistent_primary = al_primary_fraction * total_aluminium.sum() / production[key_pri].sum()
production[key_pri] = fraction_persistent_primary * production[key_pri]
production[key_sec] = total_aluminium - production[key_pri]
production["Basic chemicals (without ammonia)"] *= config['HVC_primary_fraction']
production["HVC (mechanical recycling)"] = get(config["HVC_mechanical_recycling_fraction"], investment_year) * production["HVC"]
production["HVC (chemical recycling)"] = get(config["HVC_chemical_recycling_fraction"], investment_year) * production["HVC"]
production["HVC"] *= get(config['HVC_primary_fraction'], investment_year)
fn = snakemake.output.industrial_production_per_country_tomorrow
production.to_csv(fn, float_format='%.2f')

View File

@ -9,7 +9,11 @@ sector_mapping = {
'Integrated steelworks': 'Iron and steel',
'DRI + Electric arc': 'Iron and steel',
'Ammonia': 'Chemical industry',
'Basic chemicals (without ammonia)': 'Chemical industry',
'HVC': 'Chemical industry',
'HVC (mechanical recycling)': 'Chemical industry',
'HVC (chemical recycling)': 'Chemical industry',
'Methanol': 'Chemical industry',
'Chlorine': 'Chemical industry',
'Other chemicals': 'Chemical industry',
'Pharmaceutical products etc.': 'Chemical industry',
'Cement': 'Cement',
@ -40,12 +44,12 @@ def build_nodal_industrial_production():
countries = keys.country.unique()
sectors = industrial_production.columns
for country, sector in product(countries, sectors):
buses = keys.index[keys.country == country]
mapping = sector_mapping.get(sector, "population")
key = keys.loc[buses, mapping]
nodal_production.loc[buses, sector] = industrial_production.at[country, sector] * key

View File

@ -279,7 +279,7 @@ def chemicals_industry():
df = pd.DataFrame(index=index)
# Basid chemicals
# Basic chemicals
sector = "Basic chemicals"
@ -374,52 +374,82 @@ def chemicals_industry():
# putting in ammonia demand for H2 and electricity separately
s_emi = idees["emi"][3:57]
s_out = idees["out"][8:9]
assert s_emi.index[0] == sector
assert sector in str(s_out.index)
ammonia = pd.read_csv(snakemake.input.ammonia_production, index_col=0)
# ktNH3/a
ammonia_total = ammonia.loc[ammonia.index.intersection(eu28), str(year)].sum()
s_out -= ammonia_total
# convert from MtHVC/a to ktHVC/a
s_out = config["HVC_production_today"] * 1e3
# tCO2/t material
df.loc["process emission", sector] += (
s_emi["Process emissions"]
- config["petrochemical_process_emissions"] * 1e3
- config["NH3_process_emissions"] * 1e3
) / s_out.values
) / s_out
# emissions originating from feedstock, could be non-fossil origin
# tCO2/t material
df.loc["process emission from feedstock", sector] += (
config["petrochemical_process_emissions"] * 1e3
) / s_out.values
) / s_out
# convert from ktoe/a to GWh/a
sources = ["elec", "biomass", "methane", "hydrogen", "heat", "naphtha"]
df.loc[sources, sector] *= toe_to_MWh
# subtract ammonia energy demand (in ktNH3/a)
ammonia = pd.read_csv(snakemake.input.ammonia_production, index_col=0)
ammonia_total = ammonia.loc[ammonia.index.intersection(eu28), str(year)].sum()
df.loc["methane", sector] -= ammonia_total * config["MWh_CH4_per_tNH3_SMR"]
df.loc["elec", sector] -= ammonia_total * config["MWh_elec_per_tNH3_SMR"]
# MWh/t material
df.loc[sources, sector] = df.loc[sources, sector] / s_out.values
# subtract chlorine demand
chlorine_total = config["chlorine_production_today"]
df.loc["hydrogen", sector] -= chlorine_total * config["MWh_H2_per_tCl"]
df.loc["elec", sector] -= chlorine_total * config["MWh_elec_per_tCl"]
to_rename = {sector: f"{sector} (without ammonia)"}
df.rename(columns=to_rename, inplace=True)
# subtract methanol demand
methanol_total = config["methanol_production_today"]
df.loc["methane", sector] -= methanol_total * config["MWh_CH4_per_tMeOH"]
df.loc["elec", sector] -= methanol_total * config["MWh_elec_per_tMeOH"]
# MWh/t material
df.loc[sources, sector] = df.loc[sources, sector] / s_out
df.rename(columns={sector: "HVC"}, inplace=True)
# HVC mechanical recycling
sector = "HVC (mechanical recycling)"
df[sector] = 0.0
df.loc["elec", sector] = config["MWh_elec_per_tHVC_mechanical_recycling"]
# HVC chemical recycling
sector = "HVC (chemical recycling)"
df[sector] = 0.0
df.loc["elec", sector] = config["MWh_elec_per_tHVC_chemical_recycling"]
# Ammonia
sector = "Ammonia"
df[sector] = 0.0
df.loc["hydrogen", sector] = config["MWh_H2_per_tNH3_electrolysis"]
df.loc["elec", sector] = config["MWh_elec_per_tNH3_electrolysis"]
# Chlorine
sector = "Chlorine"
df[sector] = 0.0
df.loc["hydrogen", sector] = config["MWh_H2_per_tCl"]
df.loc["elec", sector] = config["MWh_elec_per_tCl"]
# Methanol
sector = "Methanol"
df[sector] = 0.0
df.loc["methane", sector] = config["MWh_CH4_per_tMeOH"]
df.loc["elec", sector] = config["MWh_elec_per_tMeOH"]
# Other chemicals
sector = "Other chemicals"