Merge branch 'master' into update-entsoe-gridextract

This commit is contained in:
Martha Frysztacki 2022-01-28 15:12:36 +01:00 committed by GitHub
commit 9ae8baf71d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 334 additions and 343 deletions

View File

@ -45,7 +45,7 @@ if config['enable'].get('prepare_links_p_nom', False):
output: 'data/links_p_nom.csv'
log: 'logs/prepare_links_p_nom.log'
threads: 1
resources: mem=500
resources: mem_mb=500
script: 'scripts/prepare_links_p_nom.py'
@ -87,7 +87,7 @@ rule build_powerplants:
output: "resources/powerplants.csv"
log: "logs/build_powerplants.log"
threads: 1
resources: mem=500
resources: mem_mb=500
script: "scripts/build_powerplants.py"
@ -108,7 +108,7 @@ rule base_network:
log: "logs/base_network.log"
benchmark: "benchmarks/base_network"
threads: 1
resources: mem=500
resources: mem_mb=500
script: "scripts/base_network.py"
@ -128,7 +128,7 @@ rule build_shapes:
nuts3_shapes='resources/nuts3_shapes.geojson'
log: "logs/build_shapes.log"
threads: 1
resources: mem=500
resources: mem_mb=500
script: "scripts/build_shapes.py"
@ -142,7 +142,7 @@ rule build_bus_regions:
regions_offshore="resources/regions_offshore.geojson"
log: "logs/build_bus_regions.log"
threads: 1
resources: mem=1000
resources: mem_mb=1000
script: "scripts/build_bus_regions.py"
if config['enable'].get('build_cutout', False):
@ -154,7 +154,7 @@ if config['enable'].get('build_cutout', False):
log: "logs/build_cutout/{cutout}.log"
benchmark: "benchmarks/build_cutout_{cutout}"
threads: ATLITE_NPROCESSES
resources: mem=ATLITE_NPROCESSES * 1000
resources: mem_mb=ATLITE_NPROCESSES * 1000
script: "scripts/build_cutout.py"
@ -200,7 +200,7 @@ rule build_renewable_profiles:
log: "logs/build_renewable_profile_{technology}.log"
benchmark: "benchmarks/build_renewable_profiles_{technology}"
threads: ATLITE_NPROCESSES
resources: mem=ATLITE_NPROCESSES * 5000
resources: mem_mb=ATLITE_NPROCESSES * 5000
script: "scripts/build_renewable_profiles.py"
@ -212,7 +212,7 @@ if 'hydro' in config['renewable'].keys():
cutout="cutouts/" + config["renewable"]['hydro']['cutout'] + ".nc"
output: 'resources/profile_hydro.nc'
log: "logs/build_hydro_profile.log"
resources: mem=5000
resources: mem_mb=5000
script: 'scripts/build_hydro_profile.py'
@ -232,7 +232,7 @@ rule add_electricity:
log: "logs/add_electricity.log"
benchmark: "benchmarks/add_electricity"
threads: 1
resources: mem=5000
resources: mem_mb=5000
script: "scripts/add_electricity.py"
@ -251,7 +251,7 @@ rule simplify_network:
log: "logs/simplify_network/elec_s{simpl}.log"
benchmark: "benchmarks/simplify_network/elec_s{simpl}"
threads: 1
resources: mem=4000
resources: mem_mb=4000
script: "scripts/simplify_network.py"
@ -273,7 +273,7 @@ rule cluster_network:
log: "logs/cluster_network/elec_s{simpl}_{clusters}.log"
benchmark: "benchmarks/cluster_network/elec_s{simpl}_{clusters}"
threads: 1
resources: mem=6000
resources: mem_mb=6000
script: "scripts/cluster_network.py"
@ -285,7 +285,7 @@ rule add_extra_components:
log: "logs/add_extra_components/elec_s{simpl}_{clusters}.log"
benchmark: "benchmarks/add_extra_components/elec_s{simpl}_{clusters}_ec"
threads: 1
resources: mem=3000
resources: mem_mb=3000
script: "scripts/add_extra_components.py"
@ -295,7 +295,7 @@ rule prepare_network:
log: "logs/prepare_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}.log"
benchmark: "benchmarks/prepare_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}"
threads: 1
resources: mem=4000
resources: mem_mb=4000
script: "scripts/prepare_network.py"
@ -326,8 +326,8 @@ rule solve_network:
memory="logs/solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_memory.log"
benchmark: "benchmarks/solve_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}"
threads: 4
resources: mem=memory
shadow: "shallow"
resources: mem_mb=memory
shadow: "minimal"
script: "scripts/solve_network.py"
@ -342,8 +342,8 @@ rule solve_operations_network:
memory="logs/solve_operations_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}_op_memory.log"
benchmark: "benchmarks/solve_operations_network/elec_s{simpl}_{clusters}_ec_l{ll}_{opts}"
threads: 4
resources: mem=(lambda w: 5000 + 372 * int(w.clusters))
shadow: "shallow"
resources: mem_mb=(lambda w: 5000 + 372 * int(w.clusters))
shadow: "minimal"
script: "scripts/solve_operations_network.py"

View File

@ -154,6 +154,7 @@ renewable:
# sector: The economic potential of photovoltaics and concentrating solar
# power." Applied Energy 135 (2014): 704-720.
# This correction factor of 0.854337 may be in order if using reanalysis data.
# for discussion refer to https://github.com/PyPSA/pypsa-eur/pull/304
# correction_factor: 0.854337
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 26, 31, 32]

View File

@ -22,6 +22,8 @@ Upcoming Release
correction factor for solar PV capacity factors by default while satellite data is used.
A correction factor of 0.854337 is recommended if reanalysis data like ERA5 is used.
* Resource definitions for memory usage now follow [Snakemake standard resource definition](https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#standard-resources) ```mem_mb`` rather than ``mem``.
PyPSA-Eur 0.4.0 (22th September 2021)
=====================================

View File

@ -117,12 +117,7 @@ def _add_missing_carriers_from_costs(n, costs, carriers):
n.import_components_from_dataframe(emissions, 'Carrier')
def load_costs(Nyears=1., tech_costs=None, config=None, elec_config=None):
if tech_costs is None:
tech_costs = snakemake.input.tech_costs
if config is None:
config = snakemake.config['costs']
def load_costs(tech_costs, config, elec_config, Nyears=1.):
# set all asset costs and other parameters
costs = pd.read_csv(tech_costs, index_col=list(range(3))).sort_index()
@ -168,8 +163,6 @@ def load_costs(Nyears=1., tech_costs=None, config=None, elec_config=None):
marginal_cost=0.,
co2_emissions=0.))
if elec_config is None:
elec_config = snakemake.config['electricity']
max_hours = elec_config['max_hours']
costs.loc["battery"] = \
costs_for_storage(costs.loc["battery storage"], costs.loc["battery inverter"],
@ -187,9 +180,7 @@ def load_costs(Nyears=1., tech_costs=None, config=None, elec_config=None):
return costs
def load_powerplants(ppl_fn=None):
if ppl_fn is None:
ppl_fn = snakemake.input.powerplants
def load_powerplants(ppl_fn):
carrier_dict = {'ocgt': 'OCGT', 'ccgt': 'CCGT', 'bioenergy': 'biomass',
'ccgt, thermal': 'CCGT', 'hard coal': 'coal'}
return (pd.read_csv(ppl_fn, index_col=0, dtype={'bus': 'str'})
@ -198,18 +189,18 @@ def load_powerplants(ppl_fn=None):
.replace({'carrier': carrier_dict}))
def attach_load(n):
substation_lv_i = n.buses.index[n.buses['substation_lv']]
regions = (gpd.read_file(snakemake.input.regions).set_index('name')
.reindex(substation_lv_i))
opsd_load = (pd.read_csv(snakemake.input.load, index_col=0, parse_dates=True)
.filter(items=snakemake.config['countries']))
def attach_load(n, regions, load, nuts3_shapes, countries, scaling=1.):
substation_lv_i = n.buses.index[n.buses['substation_lv']]
regions = (gpd.read_file(regions).set_index('name')
.reindex(substation_lv_i))
opsd_load = (pd.read_csv(load, index_col=0, parse_dates=True)
.filter(items=countries))
scaling = snakemake.config.get('load', {}).get('scaling_factor', 1.0)
logger.info(f"Load data scaled with scalling factor {scaling}.")
opsd_load *= scaling
nuts3 = gpd.read_file(snakemake.input.nuts3_shapes).set_index('index')
nuts3 = gpd.read_file(nuts3_shapes).set_index('index')
def upsample(cntry, group):
l = opsd_load[cntry]
@ -237,6 +228,9 @@ def attach_load(n):
def update_transmission_costs(n, costs, length_factor=1.0, simple_hvdc_costs=False):
# TODO: line length factor of lines is applied to lines and links.
# Separate the function to distinguish.
n.lines['capital_cost'] = (n.lines['length'] * length_factor *
costs.at['HVAC overhead', 'capital_cost'])
@ -261,18 +255,20 @@ def update_transmission_costs(n, costs, length_factor=1.0, simple_hvdc_costs=Fal
n.links.loc[dc_b, 'capital_cost'] = costs
def attach_wind_and_solar(n, costs):
for tech in snakemake.config['renewable']:
def attach_wind_and_solar(n, costs, input_profiles, technologies, line_length_factor=1):
# TODO: rename tech -> carrier, technologies -> carriers
for tech in technologies:
if tech == 'hydro': continue
n.add("Carrier", name=tech)
with xr.open_dataset(getattr(snakemake.input, 'profile_' + tech)) as ds:
with xr.open_dataset(getattr(input_profiles, 'profile_' + tech)) as ds:
if ds.indexes['bus'].empty: continue
suptech = tech.split('-', 2)[0]
if suptech == 'offwind':
underwater_fraction = ds['underwater_fraction'].to_pandas()
connection_cost = (snakemake.config['lines']['length_factor'] *
connection_cost = (line_length_factor *
ds['average_distance'].to_pandas() *
(underwater_fraction *
costs.at[tech + '-connection-submarine', 'capital_cost'] +
@ -298,8 +294,7 @@ def attach_wind_and_solar(n, costs):
p_max_pu=ds['profile'].transpose('time', 'bus').to_pandas())
def attach_conventional_generators(n, costs, ppl):
carriers = snakemake.config['electricity']['conventional_carriers']
def attach_conventional_generators(n, costs, ppl, carriers):
_add_missing_carriers_from_costs(n, costs, carriers)
@ -320,10 +315,7 @@ def attach_conventional_generators(n, costs, ppl):
logger.warning(f'Capital costs for conventional generators put to 0 EUR/MW.')
def attach_hydro(n, costs, ppl):
if 'hydro' not in snakemake.config['renewable']: return
c = snakemake.config['renewable']['hydro']
carriers = c.get('carriers', ['ror', 'PHS', 'hydro'])
def attach_hydro(n, costs, ppl, profile_hydro, hydro_capacities, carriers, **config):
_add_missing_carriers_from_costs(n, costs, carriers)
@ -339,11 +331,11 @@ def attach_hydro(n, costs, ppl):
if not inflow_idx.empty:
dist_key = ppl.loc[inflow_idx, 'p_nom'].groupby(country).transform(normed)
with xr.open_dataarray(snakemake.input.profile_hydro) as inflow:
with xr.open_dataarray(profile_hydro) as inflow:
inflow_countries = pd.Index(country[inflow_idx])
missing_c = (inflow_countries.unique()
.difference(inflow.indexes['countries']))
assert missing_c.empty, (f"'{snakemake.input.profile_hydro}' is missing "
assert missing_c.empty, (f"'{profile_hydro}' is missing "
f"inflow time-series for at least one country: {', '.join(missing_c)}")
inflow_t = (inflow.sel(countries=inflow_countries)
@ -368,7 +360,8 @@ def attach_hydro(n, costs, ppl):
if 'PHS' in carriers and not phs.empty:
# fill missing max hours to config value and
# assume no natural inflow due to lack of data
phs = phs.replace({'max_hours': {0: c['PHS_max_hours']}})
max_hours = config.get('PHS_max_hours', 6)
phs = phs.replace({'max_hours': {0: max_hours}})
n.madd('StorageUnit', phs.index,
carrier='PHS',
bus=phs['bus'],
@ -380,8 +373,11 @@ def attach_hydro(n, costs, ppl):
cyclic_state_of_charge=True)
if 'hydro' in carriers and not hydro.empty:
hydro_max_hours = c.get('hydro_max_hours')
hydro_stats = pd.read_csv(snakemake.input.hydro_capacities,
hydro_max_hours = config.get('hydro_max_hours')
assert hydro_max_hours is not None, "No path for hydro capacities given."
hydro_stats = pd.read_csv(hydro_capacities,
comment="#", na_values='-', index_col=0)
e_target = hydro_stats["E_store[TWh]"].clip(lower=0.2) * 1e6
e_installed = hydro.eval('p_nom * max_hours').groupby(hydro.country).sum()
@ -409,8 +405,7 @@ def attach_hydro(n, costs, ppl):
bus=hydro['bus'],
p_nom=hydro['p_nom'],
max_hours=hydro_max_hours,
capital_cost=(costs.at['hydro', 'capital_cost']
if c.get('hydro_capital_cost') else 0.),
capital_cost=costs.at['hydro', 'capital_cost'],
marginal_cost=costs.at['hydro', 'marginal_cost'],
p_max_pu=1., # dispatch
p_min_pu=0., # store
@ -420,9 +415,7 @@ def attach_hydro(n, costs, ppl):
inflow=inflow_t.loc[:, hydro.index])
def attach_extendable_generators(n, costs, ppl):
elec_opts = snakemake.config['electricity']
carriers = pd.Index(elec_opts['extendable_carriers']['Generator'])
def attach_extendable_generators(n, costs, ppl, carriers):
_add_missing_carriers_from_costs(n, costs, carriers)
@ -470,12 +463,11 @@ def attach_extendable_generators(n, costs, ppl):
def attach_OPSD_renewables(n):
def attach_OPSD_renewables(n, techs):
available = ['DE', 'FR', 'PL', 'CH', 'DK', 'CZ', 'SE', 'GB']
tech_map = {'Onshore': 'onwind', 'Offshore': 'offwind', 'Solar': 'solar'}
countries = set(available) & set(n.buses.country)
techs = snakemake.config['electricity'].get('renewable_capacities_from_OPSD', [])
tech_map = {k: v for k, v in tech_map.items() if v in techs}
if not tech_map:
@ -503,10 +495,7 @@ def attach_OPSD_renewables(n):
def estimate_renewable_capacities(n, tech_map=None):
if tech_map is None:
tech_map = (snakemake.config['electricity']
.get('estimate_renewable_capacities_from_capacity_stats', {}))
def estimate_renewable_capacities(n, tech_map):
if len(tech_map) == 0: return
@ -538,8 +527,7 @@ def estimate_renewable_capacities(n, tech_map=None):
n.generators.loc[tech_i, 'p_nom_min'] = n.generators.loc[tech_i, 'p_nom']
def add_nice_carrier_names(n, config=None):
if config is None: config = snakemake.config
def add_nice_carrier_names(n, config):
carrier_i = n.carriers.index
nice_names = (pd.Series(config['plotting']['nice_names'])
.reindex(carrier_i).fillna(carrier_i.to_series().str.title()))
@ -547,11 +535,9 @@ def add_nice_carrier_names(n, config=None):
colors = pd.Series(config['plotting']['tech_colors']).reindex(carrier_i)
if colors.isna().any():
missing_i = list(colors.index[colors.isna()])
logger.warning(f'tech_colors for carriers {missing_i} not defined '
'in config.')
logger.warning(f'tech_colors for carriers {missing_i} not defined in config.')
n.carriers['color'] = colors
if __name__ == "__main__":
if 'snakemake' not in globals():
from _helpers import mock_snakemake
@ -561,22 +547,35 @@ if __name__ == "__main__":
n = pypsa.Network(snakemake.input.base_network)
Nyears = n.snapshot_weightings.objective.sum() / 8760.
costs = load_costs(Nyears)
ppl = load_powerplants()
costs = load_costs(snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity'], Nyears)
ppl = load_powerplants(snakemake.input.powerplants)
attach_load(n)
attach_load(n, snakemake.input.regions, snakemake.input.load, snakemake.input.nuts3_shapes,
snakemake.config['countries'], snakemake.config['load']['scaling_factor'])
update_transmission_costs(n, costs)
update_transmission_costs(n, costs, snakemake.config['lines']['length_factor'])
attach_conventional_generators(n, costs, ppl)
attach_wind_and_solar(n, costs)
attach_hydro(n, costs, ppl)
attach_extendable_generators(n, costs, ppl)
carriers = snakemake.config['electricity']['conventional_carriers']
attach_conventional_generators(n, costs, ppl, carriers)
carriers = snakemake.config['renewable']
attach_wind_and_solar(n, costs, snakemake.input, carriers, snakemake.config['lines']['length_factor'])
if 'hydro' in snakemake.config['renewable']:
carriers = snakemake.config['renewable']['hydro'].pop('carriers', [])
attach_hydro(n, costs, ppl, snakemake.input.profile_hydro, snakemake.input.hydro_capacities,
carriers, **snakemake.config['renewable']['hydro'])
carriers = snakemake.config['electricity']['extendable_carriers']['Generator']
attach_extendable_generators(n, costs, ppl, carriers)
tech_map = snakemake.config['electricity'].get('estimate_renewable_capacities_from_capacity_stats', {})
estimate_renewable_capacities(n, tech_map)
techs = snakemake.config['electricity'].get('renewable_capacities_from_OPSD', [])
attach_OPSD_renewables(n, techs)
estimate_renewable_capacities(n)
attach_OPSD_renewables(n)
update_p_nom_max(n)
add_nice_carrier_names(n)
add_nice_carrier_names(n, snakemake.config)
n.export_to_netcdf(snakemake.output[0])

View File

@ -64,8 +64,7 @@ idx = pd.IndexSlice
logger = logging.getLogger(__name__)
def attach_storageunits(n, costs):
elec_opts = snakemake.config['electricity']
def attach_storageunits(n, costs, elec_opts):
carriers = elec_opts['extendable_carriers']['StorageUnit']
max_hours = elec_opts['max_hours']
@ -89,8 +88,7 @@ def attach_storageunits(n, costs):
cyclic_state_of_charge=True)
def attach_stores(n, costs):
elec_opts = snakemake.config['electricity']
def attach_stores(n, costs, elec_opts):
carriers = elec_opts['extendable_carriers']['Store']
_add_missing_carriers_from_costs(n, costs, carriers)
@ -156,8 +154,7 @@ def attach_stores(n, costs):
marginal_cost=costs.at["battery inverter", "marginal_cost"])
def attach_hydrogen_pipelines(n, costs):
elec_opts = snakemake.config['electricity']
def attach_hydrogen_pipelines(n, costs, elec_opts):
ext_carriers = elec_opts['extendable_carriers']
as_stores = ext_carriers.get('Store', [])
@ -197,15 +194,15 @@ if __name__ == "__main__":
configure_logging(snakemake)
n = pypsa.Network(snakemake.input.network)
elec_config = snakemake.config['electricity']
Nyears = n.snapshot_weightings.objective.sum() / 8760.
costs = load_costs(Nyears, tech_costs=snakemake.input.tech_costs,
config=snakemake.config['costs'],
elec_config=snakemake.config['electricity'])
costs = load_costs(snakemake.input.tech_costs, snakemake.config['costs'], elec_config, Nyears)
attach_storageunits(n, costs)
attach_stores(n, costs)
attach_hydrogen_pipelines(n, costs)
attach_storageunits(n, costs, elec_config)
attach_stores(n, costs, elec_config)
attach_hydrogen_pipelines(n, costs, elec_config)
add_nice_carrier_names(n, config=snakemake.config)
add_nice_carrier_names(n, snakemake.config)
n.export_to_netcdf(snakemake.output[0])

View File

@ -112,8 +112,8 @@ def _find_closest_links(links, new_links, distance_upper_bound=1.5):
.sort_index()['i']
def _load_buses_from_eg():
buses = (pd.read_csv(snakemake.input.eg_buses, quotechar="'",
def _load_buses_from_eg(eg_buses, europe_shape, config_elec):
buses = (pd.read_csv(eg_buses, quotechar="'",
true_values=['t'], false_values=['f'],
dtype=dict(bus_id="str"))
.set_index("bus_id")
@ -124,18 +124,18 @@ def _load_buses_from_eg():
buses['under_construction'] = buses['under_construction'].fillna(False).astype(bool)
# remove all buses outside of all countries including exclusive economic zones (offshore)
europe_shape = gpd.read_file(snakemake.input.europe_shape).loc[0, 'geometry']
europe_shape = gpd.read_file(europe_shape).loc[0, 'geometry']
europe_shape_prepped = shapely.prepared.prep(europe_shape)
buses_in_europe_b = buses[['x', 'y']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1)
buses_with_v_nom_to_keep_b = buses.v_nom.isin(snakemake.config['electricity']['voltages']) | buses.v_nom.isnull()
logger.info("Removing buses with voltages {}".format(pd.Index(buses.v_nom.unique()).dropna().difference(snakemake.config['electricity']['voltages'])))
buses_with_v_nom_to_keep_b = buses.v_nom.isin(config_elec['voltages']) | buses.v_nom.isnull()
logger.info("Removing buses with voltages {}".format(pd.Index(buses.v_nom.unique()).dropna().difference(config_elec['voltages'])))
return pd.DataFrame(buses.loc[buses_in_europe_b & buses_with_v_nom_to_keep_b])
def _load_transformers_from_eg(buses):
transformers = (pd.read_csv(snakemake.input.eg_transformers, quotechar="'",
def _load_transformers_from_eg(buses, eg_transformers):
transformers = (pd.read_csv(eg_transformers, quotechar="'",
true_values=['t'], false_values=['f'],
dtype=dict(transformer_id='str', bus0='str', bus1='str'))
.set_index('transformer_id'))
@ -145,8 +145,8 @@ def _load_transformers_from_eg(buses):
return transformers
def _load_converters_from_eg(buses):
converters = (pd.read_csv(snakemake.input.eg_converters, quotechar="'",
def _load_converters_from_eg(buses, eg_converters):
converters = (pd.read_csv(eg_converters, quotechar="'",
true_values=['t'], false_values=['f'],
dtype=dict(converter_id='str', bus0='str', bus1='str'))
.set_index('converter_id'))
@ -158,8 +158,8 @@ def _load_converters_from_eg(buses):
return converters
def _load_links_from_eg(buses):
links = (pd.read_csv(snakemake.input.eg_links, quotechar="'", true_values=['t'], false_values=['f'],
def _load_links_from_eg(buses, eg_links):
links = (pd.read_csv(eg_links, quotechar="'", true_values=['t'], false_values=['f'],
dtype=dict(link_id='str', bus0='str', bus1='str', under_construction="bool"))
.set_index('link_id'))
@ -173,11 +173,11 @@ def _load_links_from_eg(buses):
return links
def _add_links_from_tyndp(buses, links):
links_tyndp = pd.read_csv(snakemake.input.links_tyndp)
def _add_links_from_tyndp(buses, links, links_tyndp, europe_shape):
links_tyndp = pd.read_csv(links_tyndp)
# remove all links from list which lie outside all of the desired countries
europe_shape = gpd.read_file(snakemake.input.europe_shape).loc[0, 'geometry']
europe_shape = gpd.read_file(europe_shape).loc[0, 'geometry']
europe_shape_prepped = shapely.prepared.prep(europe_shape)
x1y1_in_europe_b = links_tyndp[['x1', 'y1']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1)
x2y2_in_europe_b = links_tyndp[['x2', 'y2']].apply(lambda p: europe_shape_prepped.contains(Point(p)), axis=1)
@ -245,8 +245,8 @@ def _add_links_from_tyndp(buses, links):
return buses, links.append(links_tyndp, sort=True)
def _load_lines_from_eg(buses):
lines = (pd.read_csv(snakemake.input.eg_lines, quotechar="'", true_values=['t'], false_values=['f'],
def _load_lines_from_eg(buses, eg_lines):
lines = (pd.read_csv(eg_lines, quotechar="'", true_values=['t'], false_values=['f'],
dtype=dict(line_id='str', bus0='str', bus1='str',
underground="bool", under_construction="bool"))
.set_index('line_id')
@ -259,8 +259,8 @@ def _load_lines_from_eg(buses):
return lines
def _apply_parameter_corrections(n):
with open(snakemake.input.parameter_corrections) as f:
def _apply_parameter_corrections(n, parameter_corrections):
with open(parameter_corrections) as f:
corrections = yaml.safe_load(f)
if corrections is None: return
@ -282,14 +282,14 @@ def _apply_parameter_corrections(n):
df.loc[inds, attr] = r[inds].astype(df[attr].dtype)
def _set_electrical_parameters_lines(lines):
v_noms = snakemake.config['electricity']['voltages']
linetypes = snakemake.config['lines']['types']
def _set_electrical_parameters_lines(lines, config):
v_noms = config['electricity']['voltages']
linetypes = config['lines']['types']
for v_nom in v_noms:
lines.loc[lines["v_nom"] == v_nom, 'type'] = linetypes[v_nom]
lines['s_max_pu'] = snakemake.config['lines']['s_max_pu']
lines['s_max_pu'] = config['lines']['s_max_pu']
return lines
@ -301,14 +301,14 @@ def _set_lines_s_nom_from_linetypes(n):
)
def _set_electrical_parameters_links(links):
def _set_electrical_parameters_links(links, config, links_p_nom):
if links.empty: return links
p_max_pu = snakemake.config['links'].get('p_max_pu', 1.)
p_max_pu = config['links'].get('p_max_pu', 1.)
links['p_max_pu'] = p_max_pu
links['p_min_pu'] = -p_max_pu
links_p_nom = pd.read_csv(snakemake.input.links_p_nom)
links_p_nom = pd.read_csv(links_p_nom)
# filter links that are not in operation anymore
removed_b = links_p_nom.Remarks.str.contains('Shut down|Replaced', na=False)
@ -328,8 +328,8 @@ def _set_electrical_parameters_links(links):
return links
def _set_electrical_parameters_converters(converters):
p_max_pu = snakemake.config['links'].get('p_max_pu', 1.)
def _set_electrical_parameters_converters(converters, config):
p_max_pu = config['links'].get('p_max_pu', 1.)
converters['p_max_pu'] = p_max_pu
converters['p_min_pu'] = -p_max_pu
@ -342,8 +342,8 @@ def _set_electrical_parameters_converters(converters):
return converters
def _set_electrical_parameters_transformers(transformers):
config = snakemake.config['transformers']
def _set_electrical_parameters_transformers(transformers, config):
config = config['transformers']
## Add transformer parameters
transformers["x"] = config.get('x', 0.1)
@ -370,7 +370,7 @@ def _remove_unconnected_components(network):
return network[component == component_sizes.index[0]]
def _set_countries_and_substations(n):
def _set_countries_and_substations(n, config, country_shapes, offshore_shapes):
buses = n.buses
@ -383,9 +383,9 @@ def _set_countries_and_substations(n):
index=buses.index
)
countries = snakemake.config['countries']
country_shapes = gpd.read_file(snakemake.input.country_shapes).set_index('name')['geometry']
offshore_shapes = gpd.read_file(snakemake.input.offshore_shapes).set_index('name')['geometry']
countries = config['countries']
country_shapes = gpd.read_file(country_shapes).set_index('name')['geometry']
offshore_shapes = gpd.read_file(offshore_shapes).set_index('name')['geometry']
substation_b = buses['symbol'].str.contains('substation|converter station', case=False)
def prefer_voltage(x, which):
@ -495,19 +495,19 @@ def _replace_b2b_converter_at_country_border_by_link(n):
.format(i, b0, line, linkcntry.at[i], buscntry.at[b1]))
def _set_links_underwater_fraction(n):
def _set_links_underwater_fraction(n, offshore_shapes):
if n.links.empty: return
if not hasattr(n.links, 'geometry'):
n.links['underwater_fraction'] = 0.
else:
offshore_shape = gpd.read_file(snakemake.input.offshore_shapes).unary_union
offshore_shape = gpd.read_file(offshore_shapes).unary_union
links = gpd.GeoSeries(n.links.geometry.dropna().map(shapely.wkt.loads))
n.links['underwater_fraction'] = links.intersection(offshore_shape).length / links.length
def _adjust_capacities_of_under_construction_branches(n):
lines_mode = snakemake.config['lines'].get('under_construction', 'undef')
def _adjust_capacities_of_under_construction_branches(n, config):
lines_mode = config['lines'].get('under_construction', 'undef')
if lines_mode == 'zero':
n.lines.loc[n.lines.under_construction, 'num_parallel'] = 0.
n.lines.loc[n.lines.under_construction, 's_nom'] = 0.
@ -516,7 +516,7 @@ def _adjust_capacities_of_under_construction_branches(n):
elif lines_mode != 'keep':
logger.warning("Unrecognized configuration for `lines: under_construction` = `{}`. Keeping under construction lines.")
links_mode = snakemake.config['links'].get('under_construction', 'undef')
links_mode = config['links'].get('under_construction', 'undef')
if links_mode == 'zero':
n.links.loc[n.links.under_construction, "p_nom"] = 0.
elif links_mode == 'remove':
@ -531,27 +531,30 @@ def _adjust_capacities_of_under_construction_branches(n):
return n
def base_network():
buses = _load_buses_from_eg()
def base_network(eg_buses, eg_converters, eg_transformers, eg_lines, eg_links,
links_p_nom, links_tyndp, europe_shape, country_shapes, offshore_shapes,
parameter_corrections, config):
links = _load_links_from_eg(buses)
if snakemake.config['links'].get('include_tyndp'):
buses, links = _add_links_from_tyndp(buses, links)
buses = _load_buses_from_eg(eg_buses, europe_shape, config['electricity'])
converters = _load_converters_from_eg(buses)
links = _load_links_from_eg(buses, eg_links)
if config['links'].get('include_tyndp'):
buses, links = _add_links_from_tyndp(buses, links, links_tyndp, europe_shape)
lines = _load_lines_from_eg(buses)
transformers = _load_transformers_from_eg(buses)
converters = _load_converters_from_eg(buses, eg_converters)
lines = _set_electrical_parameters_lines(lines)
transformers = _set_electrical_parameters_transformers(transformers)
links = _set_electrical_parameters_links(links)
converters = _set_electrical_parameters_converters(converters)
lines = _load_lines_from_eg(buses, eg_lines)
transformers = _load_transformers_from_eg(buses, eg_transformers)
lines = _set_electrical_parameters_lines(lines, config)
transformers = _set_electrical_parameters_transformers(transformers, config)
links = _set_electrical_parameters_links(links, config, links_p_nom)
converters = _set_electrical_parameters_converters(converters, config)
n = pypsa.Network()
n.name = 'PyPSA-Eur'
n.set_snapshots(pd.date_range(freq='h', **snakemake.config['snapshots']))
n.set_snapshots(pd.date_range(freq='h', **config['snapshots']))
n.snapshot_weightings[:] *= 8760. / n.snapshot_weightings.sum()
n.import_components_from_dataframe(buses, "Bus")
@ -562,17 +565,17 @@ def base_network():
_set_lines_s_nom_from_linetypes(n)
_apply_parameter_corrections(n)
_apply_parameter_corrections(n, parameter_corrections)
n = _remove_unconnected_components(n)
_set_countries_and_substations(n)
_set_countries_and_substations(n, config, country_shapes, offshore_shapes)
_set_links_underwater_fraction(n)
_set_links_underwater_fraction(n, offshore_shapes)
_replace_b2b_converter_at_country_border_by_link(n)
n = _adjust_capacities_of_under_construction_branches(n)
n = _adjust_capacities_of_under_construction_branches(n, config)
return n
@ -582,6 +585,8 @@ if __name__ == "__main__":
snakemake = mock_snakemake('base_network')
configure_logging(snakemake)
n = base_network()
n = base_network(snakemake.input.eg_buses, snakemake.input.eg_converters, snakemake.input.eg_transformers, snakemake.input.eg_lines, snakemake.input.eg_links,
snakemake.input.links_p_nom, snakemake.input.links_tyndp, snakemake.input.europe_shape, snakemake.input.country_shapes, snakemake.input.offshore_shapes,
snakemake.input.parameter_corrections, snakemake.config)
n.export_to_netcdf(snakemake.output[0])

View File

@ -74,7 +74,7 @@ if __name__ == "__main__":
snakemake = mock_snakemake('build_hydro_profile')
configure_logging(snakemake)
config = snakemake.config['renewable']['hydro']
config_hydro = snakemake.config['renewable']['hydro']
cutout = atlite.Cutout(snakemake.input.cutout)
countries = snakemake.config['countries']
@ -89,7 +89,7 @@ if __name__ == "__main__":
lower_threshold_quantile=True,
normalize_using_yearly=eia_stats)
if 'clip_min_inflow' in config:
inflow = inflow.where(inflow > config['clip_min_inflow'], 0)
if 'clip_min_inflow' in config_hydro:
inflow = inflow.where(inflow > config_hydro['clip_min_inflow'], 0)
inflow.to_netcdf(snakemake.output[0])

View File

@ -196,17 +196,16 @@ if __name__ == "__main__":
configure_logging(snakemake)
config = snakemake.config
powerstatistics = config['load']['power_statistics']
interpolate_limit = config['load']['interpolate_limit']
countries = config['countries']
snapshots = pd.date_range(freq='h', **config['snapshots'])
powerstatistics = snakemake.config['load']['power_statistics']
interpolate_limit = snakemake.config['load']['interpolate_limit']
countries = snakemake.config['countries']
snapshots = pd.date_range(freq='h', **snakemake.config['snapshots'])
years = slice(snapshots[0], snapshots[-1])
time_shift = config['load']['time_shift_for_large_gaps']
time_shift = snakemake.config['load']['time_shift_for_large_gaps']
load = load_timeseries(snakemake.input[0], years, countries, powerstatistics)
if config['load']['manual_adjustments']:
if snakemake.config['load']['manual_adjustments']:
load = manual_adjustment(load, powerstatistics)
logger.info(f"Linearly interpolate gaps of size {interpolate_limit} and less.")

View File

@ -40,7 +40,7 @@ Description
"""
import logging
from _helpers import configure_logging
from _helpers import configure_logging, retrieve_snakemake_keys
import atlite
import geopandas as gpd
@ -73,18 +73,19 @@ if __name__ == "__main__":
snakemake = mock_snakemake('build_natura_raster')
configure_logging(snakemake)
paths, config, wildcards, logs, out = retrieve_snakemake_keys(snakemake)
cutouts = snakemake.input.cutouts
cutouts = paths.cutouts
xs, Xs, ys, Ys = zip(*(determine_cutout_xXyY(cutout) for cutout in cutouts))
bounds = transform_bounds(4326, 3035, min(xs), min(ys), max(Xs), max(Ys))
transform, out_shape = get_transform_and_shape(bounds, res=100)
# adjusted boundaries
shapes = gpd.read_file(snakemake.input.natura).to_crs(3035)
shapes = gpd.read_file(paths.natura).to_crs(3035)
raster = ~geometry_mask(shapes.geometry, out_shape[::-1], transform)
raster = raster.astype(rio.uint8)
with rio.open(snakemake.output[0], 'w', driver='GTiff', dtype=rio.uint8,
with rio.open(out[0], 'w', driver='GTiff', dtype=rio.uint8,
count=1, transform=transform, crs=3035, compress='lzw',
width=raster.shape[1], height=raster.shape[0]) as dst:
dst.write(raster, indexes=1)

View File

@ -84,11 +84,10 @@ from scipy.spatial import cKDTree as KDTree
logger = logging.getLogger(__name__)
def add_custom_powerplants(ppl):
custom_ppl_query = snakemake.config['electricity']['custom_powerplants']
def add_custom_powerplants(ppl, custom_powerplants, custom_ppl_query=False):
if not custom_ppl_query:
return ppl
add_ppls = pd.read_csv(snakemake.input.custom_powerplants, index_col=0,
add_ppls = pd.read_csv(custom_powerplants, index_col=0,
dtype={'bus': 'str'})
if isinstance(custom_ppl_query, str):
add_ppls.query(custom_ppl_query, inplace=True)
@ -119,7 +118,9 @@ if __name__ == "__main__":
if isinstance(ppl_query, str):
ppl.query(ppl_query, inplace=True)
ppl = add_custom_powerplants(ppl) # add carriers from own powerplant files
# add carriers from own powerplant files:
custom_ppl_query = snakemake.config['electricity']['custom_powerplants']
ppl = add_custom_powerplants(ppl, snakemake.input.custom_powerplants, custom_ppl_query)
cntries_without_ppl = [c for c in countries if c not in ppl.Country.unique()]

View File

@ -201,54 +201,54 @@ if __name__ == '__main__':
snakemake = mock_snakemake('build_renewable_profiles', technology='solar')
configure_logging(snakemake)
pgb.streams.wrap_stderr()
paths = snakemake.input
nprocesses = snakemake.config['atlite'].get('nprocesses')
noprogress = not snakemake.config['atlite'].get('show_progress', True)
config = snakemake.config['renewable'][snakemake.wildcards.technology]
resource = config['resource'] # pv panel config / wind turbine config
correction_factor = config.get('correction_factor', 1.)
correction_factor = snakemake.config.get('correction_factor', 1.)
capacity_per_sqkm = config['capacity_per_sqkm']
p_nom_max_meth = config.get('potential', 'conservative')
p_nom_max_meth = snakemake.config.get('potential', 'conservative')
if isinstance(config.get("corine", {}), list):
config['corine'] = {'grid_codes': config['corine']}
snakemake.config['corine'] = {'grid_codes': config['corine']}
if correction_factor != 1.:
logger.info(f'correction_factor is set as {correction_factor}')
cutout = atlite.Cutout(paths['cutout'])
regions = gpd.read_file(paths.regions).set_index('name').rename_axis('bus')
cutout = atlite.Cutout(snakemake.input['cutout'])
regions = gpd.read_file(snakemake.input.regions).set_index('name').rename_axis('bus')
buses = regions.index
excluder = atlite.ExclusionContainer(crs=3035, res=100)
if config['natura']:
excluder.add_raster(paths.natura, nodata=0, allow_no_overlap=True)
excluder.add_raster(snakemake.input.natura, nodata=0, allow_no_overlap=True)
corine = config.get("corine", {})
corine = snakemake.config.get("corine", {})
if "grid_codes" in corine:
codes = corine["grid_codes"]
excluder.add_raster(paths.corine, codes=codes, invert=True, crs=3035)
excluder.add_raster(snakemake.input.corine, codes=codes, invert=True, crs=3035)
if corine.get("distance", 0.) > 0.:
codes = corine["distance_grid_codes"]
buffer = corine["distance"]
excluder.add_raster(paths.corine, codes=codes, buffer=buffer, crs=3035)
excluder.add_raster(snakemake.input.corine, codes=codes, buffer=buffer, crs=3035)
if "max_depth" in config:
# lambda not supported for atlite + multiprocessing
# use named function np.greater with partially frozen argument instead
# and exclude areas where: -max_depth > grid cell depth
func = functools.partial(np.greater,-config['max_depth'])
excluder.add_raster(paths.gebco, codes=func, crs=4236, nodata=-1000)
excluder.add_raster(snakemake.input.gebco, codes=func, crs=4236, nodata=-1000)
if 'min_shore_distance' in config:
buffer = config['min_shore_distance']
excluder.add_geometry(paths.country_shapes, buffer=buffer)
excluder.add_geometry(snakemake.input.country_shapes, buffer=buffer)
if 'max_shore_distance' in config:
buffer = config['max_shore_distance']
excluder.add_geometry(paths.country_shapes, buffer=buffer, invert=True)
excluder.add_geometry(snakemake.input.country_shapes, buffer=buffer, invert=True)
kwargs = dict(nprocesses=nprocesses, disable_progressbar=noprogress)
if noprogress:
@ -315,7 +315,7 @@ if __name__ == '__main__':
if snakemake.wildcards.technology.startswith("offwind"):
logger.info('Calculate underwater fraction of connections.')
offshore_shape = gpd.read_file(paths['offshore_shapes']).unary_union
offshore_shape = gpd.read_file(snakemake.input['offshore_shapes']).unary_union
underwater_fraction = []
for bus in buses:
p = centre_of_mass.sel(bus=bus).data
@ -326,11 +326,11 @@ if __name__ == '__main__':
ds['underwater_fraction'] = xr.DataArray(underwater_fraction, [buses])
# select only buses with some capacity and minimal capacity factor
ds = ds.sel(bus=((ds['profile'].mean('time') > config.get('min_p_max_pu', 0.)) &
(ds['p_nom_max'] > config.get('min_p_nom_max', 0.))))
ds = ds.sel(bus=((ds['profile'].mean('time') > snakemake.config.get('min_p_max_pu', 0.)) &
(ds['p_nom_max'] > snakemake.config.get('min_p_nom_max', 0.))))
if 'clip_p_max_pu' in config:
min_p_max_pu = config['clip_p_max_pu']
if 'clip_p_max_pu' in snakemake.config:
min_p_max_pu = snakemake.config['clip_p_max_pu']
ds['profile'] = ds['profile'].where(ds['profile'] >= min_p_max_pu, 0)
ds.to_netcdf(snakemake.output.profile)

View File

@ -107,26 +107,25 @@ def _simplify_polys(polys, minarea=0.1, tolerance=0.01, filterremote=True):
return polys.simplify(tolerance=tolerance)
def countries():
cntries = snakemake.config['countries']
if 'RS' in cntries: cntries.append('KV')
def countries(naturalearth, country_list):
if 'RS' in country_list: country_list.append('KV')
df = gpd.read_file(snakemake.input.naturalearth)
df = gpd.read_file(naturalearth)
# Names are a hassle in naturalearth, try several fields
fieldnames = (df[x].where(lambda s: s!='-99') for x in ('ISO_A2', 'WB_A2', 'ADM0_A3'))
df['name'] = reduce(lambda x,y: x.fillna(y), fieldnames, next(fieldnames)).str[0:2]
df = df.loc[df.name.isin(cntries) & ((df['scalerank'] == 0) | (df['scalerank'] == 5))]
df = df.loc[df.name.isin(country_list) & ((df['scalerank'] == 0) | (df['scalerank'] == 5))]
s = df.set_index('name')['geometry'].map(_simplify_polys)
if 'RS' in cntries: s['RS'] = s['RS'].union(s.pop('KV'))
if 'RS' in country_list: s['RS'] = s['RS'].union(s.pop('KV'))
return s
def eez(country_shapes):
df = gpd.read_file(snakemake.input.eez)
df = df.loc[df['ISO_3digit'].isin([_get_country('alpha_3', alpha_2=c) for c in snakemake.config['countries']])]
def eez(country_shapes, eez, country_list):
df = gpd.read_file(eez)
df = df.loc[df['ISO_3digit'].isin([_get_country('alpha_3', alpha_2=c) for c in country_list])]
df['name'] = df['ISO_3digit'].map(lambda c: _get_country('alpha_2', alpha_3=c))
s = df.set_index('name').geometry.map(lambda s: _simplify_polys(s, filterremote=False))
s = gpd.GeoSeries({k:v for k,v in s.iteritems() if v.distance(country_shapes[k]) < 1e-3})
@ -145,29 +144,29 @@ def country_cover(country_shapes, eez_shapes=None):
return Polygon(shell=europe_shape.exterior)
def nuts3(country_shapes):
df = gpd.read_file(snakemake.input.nuts3)
def nuts3(country_shapes, nuts3, nuts3pop, nuts3gdp, ch_cantons, ch_popgdp):
df = gpd.read_file(nuts3)
df = df.loc[df['STAT_LEVL_'] == 3]
df['geometry'] = df['geometry'].map(_simplify_polys)
df = df.rename(columns={'NUTS_ID': 'id'})[['id', 'geometry']].set_index('id')
pop = pd.read_table(snakemake.input.nuts3pop, na_values=[':'], delimiter=' ?\t', engine='python')
pop = pd.read_table(nuts3pop, na_values=[':'], delimiter=' ?\t', engine='python')
pop = (pop
.set_index(pd.MultiIndex.from_tuples(pop.pop('unit,geo\\time').str.split(','))).loc['THS']
.applymap(lambda x: pd.to_numeric(x, errors='coerce'))
.fillna(method='bfill', axis=1))['2014']
gdp = pd.read_table(snakemake.input.nuts3gdp, na_values=[':'], delimiter=' ?\t', engine='python')
gdp = pd.read_table(nuts3gdp, na_values=[':'], delimiter=' ?\t', engine='python')
gdp = (gdp
.set_index(pd.MultiIndex.from_tuples(gdp.pop('unit,geo\\time').str.split(','))).loc['EUR_HAB']
.applymap(lambda x: pd.to_numeric(x, errors='coerce'))
.fillna(method='bfill', axis=1))['2014']
cantons = pd.read_csv(snakemake.input.ch_cantons)
cantons = pd.read_csv(ch_cantons)
cantons = cantons.set_index(cantons['HASC'].str[3:])['NUTS']
cantons = cantons.str.pad(5, side='right', fillchar='0')
swiss = pd.read_excel(snakemake.input.ch_popgdp, skiprows=3, index_col=0)
swiss = pd.read_excel(ch_popgdp, skiprows=3, index_col=0)
swiss.columns = swiss.columns.to_series().map(cantons)
pop = pop.append(pd.to_numeric(swiss.loc['Residents in 1000', 'CH040':]))
@ -218,16 +217,16 @@ if __name__ == "__main__":
snakemake = mock_snakemake('build_shapes')
configure_logging(snakemake)
out = snakemake.output
country_shapes = countries(snakemake.input.naturalearth, snakemake.config['countries'])
save_to_geojson(country_shapes, snakemake.output.country_shapes)
country_shapes = countries()
save_to_geojson(country_shapes, out.country_shapes)
offshore_shapes = eez(country_shapes)
save_to_geojson(offshore_shapes, out.offshore_shapes)
offshore_shapes = eez(country_shapes, snakemake.input.eez, snakemake.config['countries'])
save_to_geojson(offshore_shapes, snakemake.output.offshore_shapes)
europe_shape = country_cover(country_shapes, offshore_shapes)
save_to_geojson(gpd.GeoSeries(europe_shape), out.europe_shape)
save_to_geojson(gpd.GeoSeries(europe_shape), snakemake.output.europe_shape)
nuts3_shapes = nuts3(country_shapes)
save_to_geojson(nuts3_shapes, out.nuts3_shapes)
nuts3_shapes = nuts3(country_shapes, snakemake.input.nuts3, snakemake.input.nuts3pop,
snakemake.input.nuts3gdp, snakemake.input.ch_cantons, snakemake.input.ch_popgdp)
save_to_geojson(nuts3_shapes, snakemake.output.nuts3_shapes)

View File

@ -173,12 +173,9 @@ def weighting_for_country(n, x):
return (w * (100. / w.max())).clip(lower=1.).astype(int)
def distribute_clusters(n, n_clusters, focus_weights=None, solver_name=None):
def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"):
"""Determine the number of clusters per country"""
if solver_name is None:
solver_name = snakemake.config['solving']['solver']['name']
L = (n.loads_t.p_set.mean()
.groupby(n.loads.bus).sum()
.groupby([n.buses.country, n.buses.sub_network]).sum()
@ -271,12 +268,10 @@ def clustering_for_n_clusters(n, n_clusters, custom_busmap=False, aggregate_carr
else:
raise AttributeError(f"potential_mode should be one of 'simple' or 'conservative' but is '{potential_mode}'")
if custom_busmap:
busmap = pd.read_csv(snakemake.input.custom_busmap, index_col=0, squeeze=True)
busmap.index = busmap.index.astype(str)
logger.info(f"Imported custom busmap from {snakemake.input.custom_busmap}")
else:
if not custom_busmap:
busmap = busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights, algorithm)
else:
busmap = custom_busmap
clustering = get_clustering_from_busmap(
n, busmap,
@ -309,8 +304,6 @@ def save_to_geojson(s, fn):
def cluster_regions(busmaps, input=None, output=None):
if input is None: input = snakemake.input
if output is None: output = snakemake.output
busmap = reduce(lambda x, y: x.map(y), busmaps[1:], busmaps[0])
@ -361,10 +354,8 @@ if __name__ == "__main__":
else:
line_length_factor = snakemake.config['lines']['length_factor']
Nyears = n.snapshot_weightings.objective.sum()/8760
hvac_overhead_cost = (load_costs(Nyears,
tech_costs=snakemake.input.tech_costs,
config=snakemake.config['costs'],
elec_config=snakemake.config['electricity'])
hvac_overhead_cost = (load_costs(snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity'], Nyears)
.at['HVAC overhead', 'capital_cost'])
def consense(x):
@ -376,12 +367,15 @@ if __name__ == "__main__":
potential_mode = consense(pd.Series([snakemake.config['renewable'][tech]['potential']
for tech in renewable_carriers]))
custom_busmap = snakemake.config["enable"].get("custom_busmap", False)
if custom_busmap:
custom_busmap = pd.read_csv(snakemake.input.custom_busmap, index_col=0, squeeze=True)
custom_busmap.index = custom_busmap.index.astype(str)
logger.info(f"Imported custom busmap from {snakemake.input.custom_busmap}")
clustering = clustering_for_n_clusters(n, n_clusters, custom_busmap, aggregate_carriers,
line_length_factor=line_length_factor,
potential_mode=potential_mode,
solver_name=snakemake.config['solving']['solver']['name'],
extended_link_costs=hvac_overhead_cost,
focus_weights=focus_weights)
line_length_factor, potential_mode,
snakemake.config['solving']['solver']['name'],
"kmeans", hvac_overhead_cost, focus_weights)
update_p_nom_max(n)
@ -389,4 +383,4 @@ if __name__ == "__main__":
for attr in ('busmap', 'linemap'): #also available: linemap_positive, linemap_negative
getattr(clustering, attr).to_csv(snakemake.output[attr])
cluster_regions((clustering.busmap,))
cluster_regions((clustering.busmap,), snakemake.input, snakemake.output)

View File

@ -54,7 +54,7 @@ Replacing '/summaries/' with '/plots/' creates nice colored maps of the results.
"""
import logging
from _helpers import configure_logging
from _helpers import configure_logging, retrieve_snakemake_keys
import os
import pypsa
@ -378,7 +378,7 @@ outputs = ["costs",
]
def make_summaries(networks_dict, country='all'):
def make_summaries(networks_dict, paths, config, country='all'):
columns = pd.MultiIndex.from_tuples(networks_dict.keys(),names=["simpl","clusters","ll","opts"])
@ -403,8 +403,7 @@ def make_summaries(networks_dict, country='all'):
n = n[n.buses.country == country]
Nyears = n.snapshot_weightings.objective.sum() / 8760.
costs = load_costs(Nyears, snakemake.input[0],
snakemake.config['costs'], snakemake.config['electricity'])
costs = load_costs(paths[0], config['costs'], config['electricity'], Nyears)
update_transmission_costs(n, costs, simple_hvdc_costs=False)
assign_carriers(n)
@ -415,8 +414,7 @@ def make_summaries(networks_dict, country='all'):
return dfs
def to_csv(dfs):
dir = snakemake.output[0]
def to_csv(dfs, dir):
os.makedirs(dir, exist_ok=True)
for key, df in dfs.items():
df.to_csv(os.path.join(dir, f"{key}.csv"))
@ -432,25 +430,27 @@ if __name__ == "__main__":
network_dir = os.path.join('results', 'networks')
configure_logging(snakemake)
def expand_from_wildcard(key):
w = getattr(snakemake.wildcards, key)
return snakemake.config["scenario"][key] if w == "all" else [w]
paths, config, wildcards, logs, out = retrieve_snakemake_keys(snakemake)
if snakemake.wildcards.ll.endswith("all"):
ll = snakemake.config["scenario"]["ll"]
if len(snakemake.wildcards.ll) == 4:
ll = [l for l in ll if l[0] == snakemake.wildcards.ll[0]]
def expand_from_wildcard(key, config):
w = getattr(wildcards, key)
return config["scenario"][key] if w == "all" else [w]
if wildcards.ll.endswith("all"):
ll = config["scenario"]["ll"]
if len(wildcards.ll) == 4:
ll = [l for l in ll if l[0] == wildcards.ll[0]]
else:
ll = [snakemake.wildcards.ll]
ll = [wildcards.ll]
networks_dict = {(simpl,clusters,l,opts) :
os.path.join(network_dir, f'elec_s{simpl}_'
f'{clusters}_ec_l{l}_{opts}.nc')
for simpl in expand_from_wildcard("simpl")
for clusters in expand_from_wildcard("clusters")
for simpl in expand_from_wildcard("simpl", config)
for clusters in expand_from_wildcard("clusters", config)
for l in ll
for opts in expand_from_wildcard("opts")}
for opts in expand_from_wildcard("opts", config)}
dfs = make_summaries(networks_dict, country=snakemake.wildcards.country)
dfs = make_summaries(networks_dict, paths, config, country=wildcards.country)
to_csv(dfs)
to_csv(dfs, out[0])

View File

@ -20,8 +20,8 @@ Description
"""
import logging
from _helpers import (load_network_for_plots, aggregate_p, aggregate_costs,
configure_logging)
from _helpers import (retrieve_snakemake_keys, load_network_for_plots,
aggregate_p, aggregate_costs, configure_logging)
import pandas as pd
import numpy as np
@ -259,18 +259,19 @@ if __name__ == "__main__":
set_plot_style()
opts = snakemake.config['plotting']
map_figsize = opts['map']['figsize']
map_boundaries = opts['map']['boundaries']
paths, config, wildcards, logs, out = retrieve_snakemake_keys(snakemake)
n = load_network_for_plots(snakemake.input.network, snakemake.input.tech_costs, snakemake.config)
map_figsize = config['map']['figsize']
map_boundaries = config['map']['boundaries']
scenario_opts = snakemake.wildcards.opts.split('-')
n = load_network_for_plots(paths.network, paths.tech_costs, config)
scenario_opts = wildcards.opts.split('-')
fig, ax = plt.subplots(figsize=map_figsize, subplot_kw={"projection": ccrs.PlateCarree()})
plot_map(n, ax, snakemake.wildcards.attr, opts)
plot_map(n, ax, wildcards.attr, config)
fig.savefig(snakemake.output.only_map, dpi=150, bbox_inches='tight')
fig.savefig(out.only_map, dpi=150, bbox_inches='tight')
ax1 = fig.add_axes([-0.115, 0.625, 0.2, 0.2])
plot_total_energy_pie(n, ax1)
@ -278,12 +279,12 @@ if __name__ == "__main__":
ax2 = fig.add_axes([-0.075, 0.1, 0.1, 0.45])
plot_total_cost_bar(n, ax2)
ll = snakemake.wildcards.ll
ll = wildcards.ll
ll_type = ll[0]
ll_factor = ll[1:]
lbl = dict(c='line cost', v='line volume')[ll_type]
amnt = '{ll} x today\'s'.format(ll=ll_factor) if ll_factor != 'opt' else 'optimal'
fig.suptitle('Expansion to {amount} {label} at {clusters} clusters'
.format(amount=amnt, label=lbl, clusters=snakemake.wildcards.clusters))
.format(amount=amnt, label=lbl, clusters=wildcards.clusters))
fig.savefig(snakemake.output.ext, transparent=True, bbox_inches='tight')
fig.savefig(out.ext, transparent=True, bbox_inches='tight')

View File

@ -19,7 +19,7 @@ Description
"""
import logging
from _helpers import configure_logging
from _helpers import configure_logging, retrieve_snakemake_keys
import pypsa
import pandas as pd
@ -53,11 +53,13 @@ if __name__ == "__main__":
clusts= '5,full', country= 'all')
configure_logging(snakemake)
paths, config, wildcards, logs, out = retrieve_snakemake_keys(snakemake)
plot_kwds = dict(drawstyle="steps-post")
clusters = snakemake.wildcards.clusts.split(',')
techs = snakemake.wildcards.techs.split(',')
country = snakemake.wildcards.country
clusters = wildcards.clusts.split(',')
techs = wildcards.techs.split(',')
country = wildcards.country
if country == 'all':
country = None
else:
@ -66,7 +68,7 @@ if __name__ == "__main__":
fig, axes = plt.subplots(1, len(techs))
for j, cluster in enumerate(clusters):
net = pypsa.Network(snakemake.input[j])
net = pypsa.Network(paths[j])
for i, tech in enumerate(techs):
cum_p_nom_max(net, tech, country).plot(x="p_max_pu", y="cum_p_nom_max",
@ -79,4 +81,4 @@ if __name__ == "__main__":
plt.legend(title="Cluster level")
fig.savefig(snakemake.output[0], transparent=True, bbox_inches='tight')
fig.savefig(out[0], transparent=True, bbox_inches='tight')

View File

@ -21,7 +21,7 @@ Description
import os
import logging
from _helpers import configure_logging
from _helpers import configure_logging, retrieve_snakemake_keys
import pandas as pd
import matplotlib.pyplot as plt
@ -55,7 +55,7 @@ def rename_techs(label):
preferred_order = pd.Index(["transmission lines","hydroelectricity","hydro reservoir","run of river","pumped hydro storage","onshore wind","offshore wind ac", "offshore wind dc","solar PV","solar thermal","OCGT","hydrogen storage","battery storage"])
def plot_costs(infn, fn=None):
def plot_costs(infn, config, fn=None):
## For now ignore the simpl header
cost_df = pd.read_csv(infn,index_col=list(range(3)),header=[1,2,3])
@ -67,7 +67,7 @@ def plot_costs(infn, fn=None):
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.max(axis=1) < snakemake.config['plotting']['costs_threshold']]
to_drop = df.index[df.max(axis=1) < config['plotting']['costs_threshold']]
print("dropping")
@ -84,7 +84,7 @@ def plot_costs(infn, fn=None):
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
@ -92,7 +92,7 @@ def plot_costs(infn, fn=None):
handles.reverse()
labels.reverse()
ax.set_ylim([0,snakemake.config['plotting']['costs_max']])
ax.set_ylim([0,config['plotting']['costs_max']])
ax.set_ylabel("System Cost [EUR billion per year]")
@ -109,7 +109,7 @@ def plot_costs(infn, fn=None):
fig.savefig(fn, transparent=True)
def plot_energy(infn, fn=None):
def plot_energy(infn, config, fn=None):
energy_df = pd.read_csv(infn, index_col=list(range(2)),header=[1,2,3])
@ -120,7 +120,7 @@ def plot_energy(infn, fn=None):
df = df.groupby(df.index.map(rename_techs)).sum()
to_drop = df.index[df.abs().max(axis=1) < snakemake.config['plotting']['energy_threshold']]
to_drop = df.index[df.abs().max(axis=1) < config['plotting']['energy_threshold']]
print("dropping")
@ -137,7 +137,7 @@ def plot_energy(infn, fn=None):
fig, ax = plt.subplots()
fig.set_size_inches((12,8))
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[snakemake.config['plotting']['tech_colors'][i] for i in new_index])
df.loc[new_index,new_columns].T.plot(kind="bar",ax=ax,stacked=True,color=[config['plotting']['tech_colors'][i] for i in new_index])
handles,labels = ax.get_legend_handles_labels()
@ -145,7 +145,7 @@ def plot_energy(infn, fn=None):
handles.reverse()
labels.reverse()
ax.set_ylim([snakemake.config['plotting']['energy_min'],snakemake.config['plotting']['energy_max']])
ax.set_ylim([config['plotting']['energy_min'], config['plotting']['energy_max']])
ax.set_ylabel("Energy [TWh/a]")
@ -170,10 +170,12 @@ if __name__ == "__main__":
attr='', ext='png', country='all')
configure_logging(snakemake)
summary = snakemake.wildcards.summary
paths, config, wildcards, logs, out = retrieve_snakemake_keys(snakemake)
summary = wildcards.summary
try:
func = globals()[f"plot_{summary}"]
except KeyError:
raise RuntimeError(f"plotting function for {summary} has not been defined")
func(os.path.join(snakemake.input[0], f"{summary}.csv"), snakemake.output[0])
func(os.path.join(paths[0], f"{summary}.csv"), config, out[0])

View File

@ -37,7 +37,7 @@ Description
"""
import logging
from _helpers import configure_logging
from _helpers import configure_logging, retrieve_snakemake_keys
import pandas as pd
@ -63,6 +63,8 @@ if __name__ == "__main__":
snakemake = mock_snakemake('prepare_links_p_nom', simpl='', network='elec')
configure_logging(snakemake)
paths, config, wildcards, logs, out = retrieve_snakemake_keys(snakemake)
links_p_nom = pd.read_html('https://en.wikipedia.org/wiki/List_of_HVDC_projects', header=0, match="SwePol")[0]
mw = "Power (MW)"
@ -74,4 +76,4 @@ if __name__ == "__main__":
links_p_nom['x1'], links_p_nom['y1'] = extract_coordinates(links_p_nom['Converterstation 1'])
links_p_nom['x2'], links_p_nom['y2'] = extract_coordinates(links_p_nom['Converterstation 2'])
links_p_nom.dropna(subset=['x1', 'y1', 'x2', 'y2']).to_csv(snakemake.output[0], index=False)
links_p_nom.dropna(subset=['x1', 'y1', 'x2', 'y2']).to_csv(out[0], index=False)

View File

@ -70,21 +70,14 @@ idx = pd.IndexSlice
logger = logging.getLogger(__name__)
def add_co2limit(n, Nyears=1., factor=None):
if factor is not None:
annual_emissions = factor*snakemake.config['electricity']['co2base']
else:
annual_emissions = snakemake.config['electricity']['co2limit']
def add_co2limit(n, co2limit, Nyears=1.):
n.add("GlobalConstraint", "CO2Limit",
carrier_attribute="co2_emissions", sense="<=",
constant=annual_emissions * Nyears)
constant=co2limit * Nyears)
def add_emission_prices(n, emission_prices=None, exclude_co2=False):
if emission_prices is None:
emission_prices = snakemake.config['costs']['emission_prices']
def add_emission_prices(n, emission_prices={'co2': 0.}, exclude_co2=False):
if exclude_co2: emission_prices.pop('co2')
ep = (pd.Series(emission_prices).rename(lambda x: x+'_emissions') *
n.carriers.filter(like='_emissions')).sum(axis=1)
@ -94,13 +87,12 @@ def add_emission_prices(n, emission_prices=None, exclude_co2=False):
n.storage_units['marginal_cost'] += su_ep
def set_line_s_max_pu(n):
s_max_pu = snakemake.config['lines']['s_max_pu']
def set_line_s_max_pu(n, s_max_pu = 0.7):
n.lines['s_max_pu'] = s_max_pu
logger.info(f"N-1 security margin of lines set to {s_max_pu}")
def set_transmission_limit(n, ll_type, factor, Nyears=1):
def set_transmission_limit(n, ll_type, factor, costs, Nyears=1):
links_dc_b = n.links.carrier == 'DC' if not n.links.empty else pd.Series()
_lines_s_nom = (np.sqrt(3) * n.lines.type.map(n.line_types.i_nom) *
@ -112,9 +104,6 @@ def set_transmission_limit(n, ll_type, factor, Nyears=1):
ref = (lines_s_nom @ n.lines[col] +
n.links.loc[links_dc_b, "p_nom"] @ n.links.loc[links_dc_b, col])
costs = load_costs(Nyears, snakemake.input.tech_costs,
snakemake.config['costs'],
snakemake.config['electricity'])
update_transmission_costs(n, costs, simple_hvdc_costs=False)
if factor == 'opt' or float(factor) > 1.0:
@ -151,7 +140,7 @@ def average_every_nhours(n, offset):
return m
def apply_time_segmentation(n, segments):
def apply_time_segmentation(n, segments, solver_name="cbc"):
logger.info(f"Aggregating time series to {segments} segments.")
try:
import tsam.timeseriesaggregation as tsam
@ -170,8 +159,6 @@ def apply_time_segmentation(n, segments):
raw = pd.concat([p_max_pu, load, inflow], axis=1, sort=False)
solver_name = snakemake.config["solving"]["solver"]["name"]
agg = tsam.TimeSeriesAggregation(raw, hoursPerPeriod=len(raw),
noTypicalPeriods=1, noSegments=int(segments),
segmentation=True, solver=solver_name)
@ -208,9 +195,7 @@ def enforce_autarky(n, only_crossborder=False):
n.mremove("Line", lines_rm)
n.mremove("Link", links_rm)
def set_line_nom_max(n):
s_nom_max_set = snakemake.config["lines"].get("s_nom_max,", np.inf)
p_nom_max_set = snakemake.config["links"].get("p_nom_max", np.inf)
def set_line_nom_max(n, s_nom_max_set=np.inf, p_nom_max_set=np.inf):
n.lines.s_nom_max.clip(upper=s_nom_max_set, inplace=True)
n.links.p_nom_max.clip(upper=p_nom_max_set, inplace=True)
@ -225,8 +210,9 @@ if __name__ == "__main__":
n = pypsa.Network(snakemake.input[0])
Nyears = n.snapshot_weightings.objective.sum() / 8760.
costs = load_costs(snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity'], Nyears)
set_line_s_max_pu(n)
set_line_s_max_pu(n, snakemake.config['lines']['s_max_pu'])
for o in opts:
m = re.match(r'^\d+h$', o, re.IGNORECASE)
@ -237,16 +223,18 @@ if __name__ == "__main__":
for o in opts:
m = re.match(r'^\d+seg$', o, re.IGNORECASE)
if m is not None:
n = apply_time_segmentation(n, m.group(0)[:-3])
solver_name = snakemake.config["solving"]["solver"]["name"]
n = apply_time_segmentation(n, m.group(0)[:-3], solver_name)
break
for o in opts:
if "Co2L" in o:
m = re.findall("[0-9]*\.?[0-9]+$", o)
if len(m) > 0:
add_co2limit(n, Nyears, float(m[0]))
co2limit = float(m[0]) * snakemake.config['electricity']['co2base']
add_co2limit(n, co2limit, Nyears)
else:
add_co2limit(n, Nyears)
add_co2limit(n, snakemake.config['electricity']['co2limit'], Nyears)
break
for o in opts:
@ -267,12 +255,13 @@ if __name__ == "__main__":
c.df.loc[sel,attr] *= factor
if 'Ep' in opts:
add_emission_prices(n)
add_emission_prices(n, snakemake.config['costs']['emission_prices'])
ll_type, factor = snakemake.wildcards.ll[0], snakemake.wildcards.ll[1:]
set_transmission_limit(n, ll_type, factor, Nyears)
set_transmission_limit(n, ll_type, factor, costs, Nyears)
set_line_nom_max(n)
set_line_nom_max(n, s_nom_max_set=snakemake.config["lines"].get("s_nom_max,", np.inf),
p_nom_max_set=snakemake.config["links"].get("p_nom_max,", np.inf))
if "ATK" in opts:
enforce_autarky(n)

View File

@ -138,19 +138,15 @@ def simplify_network_to_380(n):
return n, trafo_map
def _prepare_connection_costs_per_link(n):
def _prepare_connection_costs_per_link(n, costs, config):
if n.links.empty: return {}
Nyears = n.snapshot_weightings.objective.sum() / 8760
costs = load_costs(Nyears, snakemake.input.tech_costs,
snakemake.config['costs'], snakemake.config['electricity'])
connection_costs_per_link = {}
for tech in snakemake.config['renewable']:
for tech in config['renewable']:
if tech.startswith('offwind'):
connection_costs_per_link[tech] = (
n.links.length * snakemake.config['lines']['length_factor'] *
n.links.length * config['lines']['length_factor'] *
(n.links.underwater_fraction * costs.at[tech + '-connection-submarine', 'capital_cost'] +
(1. - n.links.underwater_fraction) * costs.at[tech + '-connection-underground', 'capital_cost'])
)
@ -158,9 +154,9 @@ def _prepare_connection_costs_per_link(n):
return connection_costs_per_link
def _compute_connection_costs_to_bus(n, busmap, connection_costs_per_link=None, buses=None):
def _compute_connection_costs_to_bus(n, busmap, costs, config, connection_costs_per_link=None, buses=None):
if connection_costs_per_link is None:
connection_costs_per_link = _prepare_connection_costs_per_link(n)
connection_costs_per_link = _prepare_connection_costs_per_link(n, costs, config)
if buses is None:
buses = busmap.index[busmap.index != busmap.values]
@ -178,7 +174,7 @@ def _compute_connection_costs_to_bus(n, busmap, connection_costs_per_link=None,
return connection_costs_to_bus
def _adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus):
def _adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus, output):
connection_costs = {}
for tech in connection_costs_to_bus:
tech_b = n.generators.carrier == tech
@ -188,11 +184,11 @@ def _adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus):
logger.info("Displacing {} generator(s) and adding connection costs to capital_costs: {} "
.format(tech, ", ".join("{:.0f} Eur/MW/a for `{}`".format(d, b) for b, d in costs.iteritems())))
connection_costs[tech] = costs
pd.DataFrame(connection_costs).to_csv(snakemake.output.connection_costs)
pd.DataFrame(connection_costs).to_csv(output.connection_costs)
def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, aggregate_one_ports={"Load", "StorageUnit"}):
def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, output, aggregate_one_ports={"Load", "StorageUnit"}):
def replace_components(n, c, df, pnl):
n.mremove(c, n.df(c).index)
@ -201,7 +197,7 @@ def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, aggregate
if not df.empty:
import_series_from_dataframe(n, df, c, attr)
_adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus)
_adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus, output)
generators, generators_pnl = aggregategenerators(n, busmap, custom_strategies={'p_nom_min': np.sum})
replace_components(n, "Generator", generators, generators_pnl)
@ -217,7 +213,7 @@ def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, aggregate
n.mremove(c, df.index[df.bus0.isin(buses_to_del) | df.bus1.isin(buses_to_del)])
def simplify_links(n):
def simplify_links(n, costs, config, output):
## Complex multi-node links are folded into end-points
logger.info("Simplifying connected link components")
@ -264,7 +260,7 @@ def simplify_links(n):
busmap = n.buses.index.to_series()
connection_costs_per_link = _prepare_connection_costs_per_link(n)
connection_costs_per_link = _prepare_connection_costs_per_link(n, costs, config)
connection_costs_to_bus = pd.DataFrame(0., index=n.buses.index, columns=list(connection_costs_per_link))
for lbl in labels.value_counts().loc[lambda s: s > 2].index:
@ -278,11 +274,11 @@ def simplify_links(n):
m = sp.spatial.distance_matrix(n.buses.loc[b, ['x', 'y']],
n.buses.loc[buses[1:-1], ['x', 'y']])
busmap.loc[buses] = b[np.r_[0, m.argmin(axis=0), 1]]
connection_costs_to_bus.loc[buses] += _compute_connection_costs_to_bus(n, busmap, connection_costs_per_link, buses)
connection_costs_to_bus.loc[buses] += _compute_connection_costs_to_bus(n, busmap, costs, config, connection_costs_per_link, buses)
all_links = [i for _, i in sum(links, [])]
p_max_pu = snakemake.config['links'].get('p_max_pu', 1.)
p_max_pu = config['links'].get('p_max_pu', 1.)
lengths = n.links.loc[all_links, 'length']
name = lengths.idxmax() + '+{}'.format(len(links) - 1)
params = dict(
@ -309,17 +305,17 @@ def simplify_links(n):
logger.debug("Collecting all components using the busmap")
_aggregate_and_move_components(n, busmap, connection_costs_to_bus)
_aggregate_and_move_components(n, busmap, connection_costs_to_bus, output)
return n, busmap
def remove_stubs(n):
def remove_stubs(n, costs, config, output):
logger.info("Removing stubs")
busmap = busmap_by_stubs(n) # ['country'])
connection_costs_to_bus = _compute_connection_costs_to_bus(n, busmap)
connection_costs_to_bus = _compute_connection_costs_to_bus(n, busmap, costs, config)
_aggregate_and_move_components(n, busmap, connection_costs_to_bus)
_aggregate_and_move_components(n, busmap, connection_costs_to_bus, output)
return n, busmap
@ -360,25 +356,25 @@ def aggregate_to_substations(n, buses_i=None):
return clustering.network, busmap
def cluster(n, n_clusters):
def cluster(n, n_clusters, config):
logger.info(f"Clustering to {n_clusters} buses")
focus_weights = snakemake.config.get('focus_weights', None)
focus_weights = config.get('focus_weights', None)
renewable_carriers = pd.Index([tech
for tech in n.generators.carrier.unique()
if tech.split('-', 2)[0] in snakemake.config['renewable']])
if tech.split('-', 2)[0] in config['renewable']])
def consense(x):
v = x.iat[0]
assert ((x == v).all() or x.isnull().all()), (
"The `potential` configuration option must agree for all renewable carriers, for now!"
)
return v
potential_mode = (consense(pd.Series([snakemake.config['renewable'][tech]['potential']
potential_mode = (consense(pd.Series([config['renewable'][tech]['potential']
for tech in renewable_carriers]))
if len(renewable_carriers) > 0 else 'conservative')
clustering = clustering_for_n_clusters(n, n_clusters, custom_busmap=False, potential_mode=potential_mode,
solver_name=snakemake.config['solving']['solver']['name'],
solver_name=config['solving']['solver']['name'],
focus_weights=focus_weights)
return clustering.network, clustering.busmap
@ -394,9 +390,13 @@ if __name__ == "__main__":
n, trafo_map = simplify_network_to_380(n)
n, simplify_links_map = simplify_links(n)
Nyears = n.snapshot_weightings.objective.sum() / 8760
n, stub_map = remove_stubs(n)
technology_costs = load_costs(snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity'], Nyears)
n, simplify_links_map = simplify_links(n, technology_costs, snakemake.config, snakemake.output)
n, stub_map = remove_stubs(n, technology_costs, snakemake.config, snakemake.output)
busmaps = [trafo_map, simplify_links_map, stub_map]
@ -405,7 +405,7 @@ if __name__ == "__main__":
busmaps.append(substation_map)
if snakemake.wildcards.simpl:
n, cluster_map = cluster(n, int(snakemake.wildcards.simpl))
n, cluster_map = cluster(n, int(snakemake.wildcards.simpl), snakemake.config)
busmaps.append(cluster_map)
# some entries in n.buses are not updated in previous functions, therefore can be wrong. as they are not needed

View File

@ -283,8 +283,7 @@ if __name__ == "__main__":
with memory_logger(filename=fn, interval=30.) as mem:
n = pypsa.Network(snakemake.input[0])
n = prepare_network(n, solve_opts)
n = solve_network(n, config=snakemake.config, opts=opts,
solver_dir=tmpdir,
n = solve_network(n, snakemake.config, opts, solver_dir=tmpdir,
solver_logfile=snakemake.log.solver)
n.export_to_netcdf(snakemake.output[0])

View File

@ -109,15 +109,13 @@ if __name__ == "__main__":
n = set_parameters_from_optimized(n, n_optim)
del n_optim
config = snakemake.config
opts = snakemake.wildcards.opts.split('-')
config['solving']['options']['skip_iterations'] = False
snakemake.config['solving']['options']['skip_iterations'] = False
fn = getattr(snakemake.log, 'memory', None)
with memory_logger(filename=fn, interval=30.) as mem:
n = prepare_network(n, solve_opts=snakemake.config['solving']['options'])
n = solve_network(n, config=config, opts=opts,
solver_dir=tmpdir,
n = prepare_network(n, snakemake.config['solving']['options'])
n = solve_network(n, snakemake.config, opts, solver_dir=tmpdir,
solver_logfile=snakemake.log.solver)
n.export_to_netcdf(snakemake.output[0])