apply automated formatting
This commit is contained in:
parent
d3cf329456
commit
9865a97089
@ -710,8 +710,6 @@ rule build_transport_demand:
|
||||
"../scripts/build_transport_demand.py"
|
||||
|
||||
|
||||
|
||||
|
||||
rule build_district_heat_share:
|
||||
params:
|
||||
sector=config["sector"],
|
||||
@ -719,7 +717,8 @@ rule build_district_heat_share:
|
||||
district_heat_share=RESOURCES + "district_heat_share.csv",
|
||||
clustered_pop_layout=RESOURCES + "pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
output:
|
||||
district_heat_share=RESOURCES + "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
district_heat_share=RESOURCES
|
||||
+ "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=1000,
|
||||
@ -782,8 +781,10 @@ rule prepare_sector_network:
|
||||
simplified_pop_layout=RESOURCES + "pop_layout_elec_s{simpl}.csv",
|
||||
industrial_demand=RESOURCES
|
||||
+ "industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
hourly_heat_demand_total=RESOURCES + "hourly_heat_demand_total_elec_s{simpl}_{clusters}.nc",
|
||||
district_heat_share=RESOURCES + "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
hourly_heat_demand_total=RESOURCES
|
||||
+ "hourly_heat_demand_total_elec_s{simpl}_{clusters}.nc",
|
||||
district_heat_share=RESOURCES
|
||||
+ "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
temp_soil_total=RESOURCES + "temp_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_rural=RESOURCES + "temp_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_urban=RESOURCES + "temp_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
|
@ -11,8 +11,10 @@ rule build_existing_heating_distribution:
|
||||
input:
|
||||
existing_heating="data/existing_infrastructure/existing_heating_raw.csv",
|
||||
clustered_pop_layout=RESOURCES + "pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
clustered_pop_energy_layout=RESOURCES + "pop_weighted_energy_totals_s{simpl}_{clusters}.csv",
|
||||
district_heat_share=RESOURCES + "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
clustered_pop_energy_layout=RESOURCES
|
||||
+ "pop_weighted_energy_totals_s{simpl}_{clusters}.csv",
|
||||
district_heat_share=RESOURCES
|
||||
+ "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
output:
|
||||
existing_heating_distribution=RESOURCES
|
||||
+ "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
|
@ -409,15 +409,13 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
# file: "WP2_DataAnnex_1_BuildingTechs_ForPublication_201603.xls" -> "existing_heating_raw.csv".
|
||||
# TODO start from original file
|
||||
|
||||
existing_heating = pd.read_csv(snakemake.input.existing_heating_distribution,
|
||||
header=[0,1],
|
||||
index_col=0)
|
||||
|
||||
existing_heating = pd.read_csv(
|
||||
snakemake.input.existing_heating_distribution, header=[0, 1], index_col=0
|
||||
)
|
||||
|
||||
techs = existing_heating.columns.get_level_values(1).unique()
|
||||
|
||||
for name in existing_heating.columns.get_level_values(0).unique():
|
||||
|
||||
name_type = "central" if name == "urban central" else "decentral"
|
||||
|
||||
nodes = pd.Index(n.buses.location[n.buses.index.str.contains(f"{name} heat")])
|
||||
@ -451,7 +449,9 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
efficiency=efficiency,
|
||||
capital_cost=costs.at[costs_name, "efficiency"]
|
||||
* costs.at[costs_name, "fixed"],
|
||||
p_nom=existing_heating.loc[nodes, (name, f"{heat_pump_type} heat pump")] * ratio / costs.at[costs_name, "efficiency"],
|
||||
p_nom=existing_heating.loc[nodes, (name, f"{heat_pump_type} heat pump")]
|
||||
* ratio
|
||||
/ costs.at[costs_name, "efficiency"],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name, "lifetime"],
|
||||
)
|
||||
@ -516,7 +516,8 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
p_nom=(
|
||||
existing_heating.loc[nodes, (name, "oil boiler")]
|
||||
* ratio
|
||||
/ costs.at["decentral oil boiler", "efficiency"]),
|
||||
/ costs.at["decentral oil boiler", "efficiency"]
|
||||
),
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[f"{name_type} gas boiler", "lifetime"],
|
||||
)
|
||||
|
@ -6,12 +6,10 @@
|
||||
Build district heat shares at each node, depending on investment year.
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from prepare_sector_network import get
|
||||
|
||||
import logging
|
||||
|
||||
import pandas as pd
|
||||
from prepare_sector_network import get
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -29,11 +27,11 @@ if __name__ == "__main__":
|
||||
|
||||
investment_year = int(snakemake.wildcards.planning_horizons[-4:])
|
||||
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,
|
||||
index_col=0)
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
|
||||
district_heat_share = pd.read_csv(snakemake.input.district_heat_share,
|
||||
index_col=0).squeeze()
|
||||
district_heat_share = pd.read_csv(
|
||||
snakemake.input.district_heat_share, index_col=0
|
||||
).squeeze()
|
||||
|
||||
# make ct-based share nodal
|
||||
district_heat_share = district_heat_share.loc[pop_layout.ct]
|
||||
@ -62,17 +60,22 @@ if __name__ == "__main__":
|
||||
|
||||
# difference of max potential and today's share of district heating
|
||||
diff = (urban_fraction * central_fraction) - dist_fraction_node
|
||||
progress = get(snakemake.config["sector"]["district_heating"]["progress"], investment_year)
|
||||
progress = get(
|
||||
snakemake.config["sector"]["district_heating"]["progress"], investment_year
|
||||
)
|
||||
dist_fraction_node += diff * progress
|
||||
logger.info(
|
||||
f"Increase district heating share by a progress factor of {progress:.2%} "
|
||||
f"resulting in new average share of {dist_fraction_node.mean():.2%}"
|
||||
)
|
||||
|
||||
df = pd.DataFrame({
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"original district heat share": district_heat_share,
|
||||
"district fraction of node": dist_fraction_node,
|
||||
"urban fraction": urban_fraction
|
||||
}, dtype=float)
|
||||
"urban fraction": urban_fraction,
|
||||
},
|
||||
dtype=float,
|
||||
)
|
||||
|
||||
df.to_csv(snakemake.output.district_heat_share)
|
||||
|
@ -569,21 +569,24 @@ def build_energy_totals(countries, eurostat, swiss, idees):
|
||||
|
||||
|
||||
def build_district_heat_share(countries, idees):
|
||||
|
||||
# district heating share
|
||||
district_heat = idees[
|
||||
["derived heat residential", "derived heat services"]
|
||||
].sum(axis=1)
|
||||
total_heat = idees[["thermal uses residential", "thermal uses services"]].sum(axis=1)
|
||||
district_heat = idees[["derived heat residential", "derived heat services"]].sum(
|
||||
axis=1
|
||||
)
|
||||
total_heat = idees[["thermal uses residential", "thermal uses services"]].sum(
|
||||
axis=1
|
||||
)
|
||||
|
||||
district_heat_share = district_heat / total_heat
|
||||
|
||||
district_heat_share = district_heat_share.reindex(countries)
|
||||
|
||||
# Missing district heating share
|
||||
dh_share = pd.read_csv(
|
||||
snakemake.input.district_heat_share, index_col=0, usecols=[0, 1]
|
||||
).div(100).squeeze()
|
||||
dh_share = (
|
||||
pd.read_csv(snakemake.input.district_heat_share, index_col=0, usecols=[0, 1])
|
||||
.div(100)
|
||||
.squeeze()
|
||||
)
|
||||
# make conservative assumption and take minimum from both data sets
|
||||
district_heat_share = pd.concat(
|
||||
[district_heat_share, dh_share.reindex_like(district_heat_share)], axis=1
|
||||
|
@ -6,9 +6,9 @@
|
||||
Builds table of existing heat generation capacities for initial planning
|
||||
horizon.
|
||||
"""
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import country_converter as coco
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
cc = coco.CountryConverter()
|
||||
|
||||
@ -16,9 +16,9 @@ cc = coco.CountryConverter()
|
||||
def build_existing_heating():
|
||||
# retrieve existing heating capacities
|
||||
|
||||
existing_heating = pd.read_csv(snakemake.input.existing_heating,
|
||||
index_col=0,
|
||||
header=0)
|
||||
existing_heating = pd.read_csv(
|
||||
snakemake.input.existing_heating, index_col=0, header=0
|
||||
)
|
||||
|
||||
# data for Albania, Montenegro and Macedonia not included in database
|
||||
existing_heating.loc["Albania"] = np.nan
|
||||
@ -33,24 +33,25 @@ def build_existing_heating():
|
||||
existing_heating.index = cc.convert(existing_heating.index, to="iso2")
|
||||
|
||||
# coal and oil boilers are assimilated to oil boilers
|
||||
existing_heating["oil boiler"] = existing_heating["oil boiler"] + existing_heating["coal boiler"]
|
||||
existing_heating["oil boiler"] = (
|
||||
existing_heating["oil boiler"] + existing_heating["coal boiler"]
|
||||
)
|
||||
existing_heating.drop(["coal boiler"], axis=1, inplace=True)
|
||||
|
||||
# distribute technologies to nodes by population
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout,
|
||||
index_col=0)
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
|
||||
nodal_heating = existing_heating.loc[pop_layout.ct]
|
||||
nodal_heating.index = pop_layout.index
|
||||
nodal_heating = nodal_heating.multiply(pop_layout.fraction, axis=0)
|
||||
|
||||
district_heat_info = pd.read_csv(snakemake.input.district_heat_share,
|
||||
index_col=0)
|
||||
district_heat_info = pd.read_csv(snakemake.input.district_heat_share, index_col=0)
|
||||
dist_fraction = district_heat_info["district fraction of node"]
|
||||
urban_fraction = district_heat_info["urban fraction"]
|
||||
|
||||
energy_layout = pd.read_csv(snakemake.input.clustered_pop_energy_layout,
|
||||
index_col=0)
|
||||
energy_layout = pd.read_csv(
|
||||
snakemake.input.clustered_pop_energy_layout, index_col=0
|
||||
)
|
||||
|
||||
uses = ["space", "water"]
|
||||
sectors = ["residential", "services"]
|
||||
@ -58,39 +59,51 @@ def build_existing_heating():
|
||||
nodal_sectoral_totals = pd.DataFrame(dtype=float)
|
||||
|
||||
for sector in sectors:
|
||||
nodal_sectoral_totals[sector] = energy_layout[[f"total {sector} {use}" for use in uses]].sum(axis=1)
|
||||
|
||||
nodal_sectoral_fraction = nodal_sectoral_totals.div(nodal_sectoral_totals.sum(axis=1),
|
||||
axis=0)
|
||||
nodal_sectoral_totals[sector] = energy_layout[
|
||||
[f"total {sector} {use}" for use in uses]
|
||||
].sum(axis=1)
|
||||
|
||||
nodal_sectoral_fraction = nodal_sectoral_totals.div(
|
||||
nodal_sectoral_totals.sum(axis=1), axis=0
|
||||
)
|
||||
|
||||
nodal_heat_name_fraction = pd.DataFrame(dtype=float)
|
||||
|
||||
nodal_heat_name_fraction["urban central"] = dist_fraction
|
||||
|
||||
for sector in sectors:
|
||||
nodal_heat_name_fraction[f"{sector} rural"] = nodal_sectoral_fraction[
|
||||
sector
|
||||
] * (1 - urban_fraction)
|
||||
nodal_heat_name_fraction[f"{sector} urban decentral"] = nodal_sectoral_fraction[
|
||||
sector
|
||||
] * (urban_fraction - dist_fraction)
|
||||
|
||||
nodal_heat_name_fraction[f"{sector} rural"] = nodal_sectoral_fraction[sector]*(1 - urban_fraction)
|
||||
nodal_heat_name_fraction[f"{sector} urban decentral"] = nodal_sectoral_fraction[sector]*(urban_fraction - dist_fraction)
|
||||
|
||||
|
||||
nodal_heat_name_tech = pd.concat({name : nodal_heating .multiply(nodal_heat_name_fraction[name],
|
||||
axis=0) for name in nodal_heat_name_fraction.columns},
|
||||
nodal_heat_name_tech = pd.concat(
|
||||
{
|
||||
name: nodal_heating.multiply(nodal_heat_name_fraction[name], axis=0)
|
||||
for name in nodal_heat_name_fraction.columns
|
||||
},
|
||||
axis=1,
|
||||
names=["heat name","technology"])
|
||||
|
||||
names=["heat name", "technology"],
|
||||
)
|
||||
|
||||
# move all ground HPs to rural, all air to urban
|
||||
|
||||
for sector in sectors:
|
||||
nodal_heat_name_tech[(f"{sector} rural","ground heat pump")] += (nodal_heat_name_tech[("urban central","ground heat pump")]*nodal_sectoral_fraction[sector]
|
||||
+ nodal_heat_name_tech[(f"{sector} urban decentral","ground heat pump")])
|
||||
nodal_heat_name_tech[(f"{sector} urban decentral","ground heat pump")] = 0.
|
||||
nodal_heat_name_tech[(f"{sector} rural", "ground heat pump")] += (
|
||||
nodal_heat_name_tech[("urban central", "ground heat pump")]
|
||||
* nodal_sectoral_fraction[sector]
|
||||
+ nodal_heat_name_tech[(f"{sector} urban decentral", "ground heat pump")]
|
||||
)
|
||||
nodal_heat_name_tech[(f"{sector} urban decentral", "ground heat pump")] = 0.0
|
||||
|
||||
nodal_heat_name_tech[(f"{sector} urban decentral","air heat pump")] += nodal_heat_name_tech[(f"{sector} rural","air heat pump")]
|
||||
nodal_heat_name_tech[(f"{sector} rural","air heat pump")] = 0.
|
||||
nodal_heat_name_tech[
|
||||
(f"{sector} urban decentral", "air heat pump")
|
||||
] += nodal_heat_name_tech[(f"{sector} rural", "air heat pump")]
|
||||
nodal_heat_name_tech[(f"{sector} rural", "air heat pump")] = 0.0
|
||||
|
||||
nodal_heat_name_tech[("urban central","ground heat pump")] = 0.
|
||||
nodal_heat_name_tech[("urban central", "ground heat pump")] = 0.0
|
||||
|
||||
nodal_heat_name_tech.to_csv(snakemake.output.existing_heating_distribution)
|
||||
|
||||
|
@ -48,13 +48,13 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
if use == "space":
|
||||
heat_demand[f"{sector} {use}"] = daily_space_heat_demand * intraday_year_profile
|
||||
heat_demand[f"{sector} {use}"] = (
|
||||
daily_space_heat_demand * intraday_year_profile
|
||||
)
|
||||
else:
|
||||
heat_demand[f"{sector} {use}"] = intraday_year_profile
|
||||
|
||||
heat_demand = pd.concat(heat_demand,
|
||||
axis=1,
|
||||
names = ["sector use", "node"])
|
||||
heat_demand = pd.concat(heat_demand, axis=1, names=["sector use", "node"])
|
||||
|
||||
heat_demand.index.name = "snapshots"
|
||||
|
||||
|
@ -1639,8 +1639,11 @@ def add_land_transport(n, costs):
|
||||
|
||||
|
||||
def build_heat_demand(n):
|
||||
|
||||
heat_demand_shape = xr.open_dataset(snakemake.input.hourly_heat_demand_total).to_dataframe().unstack(level=1)
|
||||
heat_demand_shape = (
|
||||
xr.open_dataset(snakemake.input.hourly_heat_demand_total)
|
||||
.to_dataframe()
|
||||
.unstack(level=1)
|
||||
)
|
||||
|
||||
sectors = ["residential", "services"]
|
||||
uses = ["water", "space"]
|
||||
@ -1648,7 +1651,6 @@ def build_heat_demand(n):
|
||||
heat_demand = {}
|
||||
electric_heat_supply = {}
|
||||
for sector, use in product(sectors, uses):
|
||||
|
||||
name = f"{sector} {use}"
|
||||
|
||||
heat_demand[name] = (
|
||||
@ -1678,8 +1680,7 @@ def add_heat(n, costs):
|
||||
|
||||
heat_demand = build_heat_demand(n)
|
||||
|
||||
district_heat_info = pd.read_csv(snakemake.input.district_heat_share,
|
||||
index_col=0)
|
||||
district_heat_info = pd.read_csv(snakemake.input.district_heat_share, index_col=0)
|
||||
dist_fraction = district_heat_info["district fraction of node"]
|
||||
urban_fraction = district_heat_info["urban fraction"]
|
||||
|
||||
@ -1718,7 +1719,6 @@ def add_heat(n, costs):
|
||||
# 1e3 converts from W/m^2 to MW/(1000m^2) = kW/m^2
|
||||
solar_thermal = options["solar_cf_correction"] * solar_thermal / 1e3
|
||||
|
||||
|
||||
for name in heat_systems:
|
||||
name_type = "central" if name == "urban central" else "decentral"
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user