adjust summary and plot functions

This commit is contained in:
lisazeyen 2021-06-21 12:36:40 +02:00
parent c963d356f7
commit 97f041e82c
2 changed files with 368 additions and 80 deletions

View File

@ -150,7 +150,7 @@ def plot_map(network, components=["links", "stores", "storage_units", "generator
to_drop = costs.index.levels[0].symmetric_difference(n.buses.index)
if len(to_drop) != 0:
print("dropping non-buses", to_drop)
costs.drop(to_drop, level=0, inplace=True, axis=0)
costs.drop(to_drop, level=0, inplace=True, axis=0, errors="ignore")
# make sure they are removed from index
costs.index = pd.MultiIndex.from_tuples(costs.index.values)
@ -251,19 +251,19 @@ def plot_h2_map(network):
# Drop non-electric buses so they don't clutter the plot
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
elec = n.links.index[n.links.carrier == "H2 Electrolysis"]
elec = n.links[n.links.carrier.isin(["H2 Electrolysis", "H2 Fuel Cell"])].index
bus_sizes = n.links.loc[elec,"p_nom_opt"].groupby(n.links.loc[elec,"bus0"]).sum() / bus_size_factor
bus_sizes = n.links.loc[elec,"p_nom_opt"].groupby([n.links["bus0"], n.links.carrier]).sum() / bus_size_factor
# make a fake MultiIndex so that area is correct for legend
bus_sizes.index = pd.MultiIndex.from_product(
[bus_sizes.index, ["electrolysis"]])
bus_sizes.rename(index=lambda x: x.replace(" H2", ""), level=0, inplace=True)
n.links.drop(n.links.index[n.links.carrier != "H2 pipeline"], inplace=True)
n.links.drop(n.links.index[~n.links.carrier.str.contains("H2 pipeline")], inplace=True)
link_widths = n.links.p_nom_opt / linewidth_factor
link_widths[n.links.p_nom_opt < line_lower_threshold] = 0.
n.links.bus0 = n.links.bus0.str.replace(" H2", "")
n.links.bus1 = n.links.bus1.str.replace(" H2", "")
@ -276,7 +276,8 @@ def plot_h2_map(network):
fig.set_size_inches(7, 6)
n.plot(bus_sizes=bus_sizes,
bus_colors={"electrolysis": bus_color},
bus_colors={"H2 Electrolysis": bus_color,
"H2 Fuel Cell": "slateblue"},
link_colors=link_color,
link_widths=link_widths,
branch_components=["Link"],
@ -311,6 +312,266 @@ def plot_h2_map(network):
bbox_inches="tight")
def plot_ch4_map(network):
n = network.copy()
supply_energy = get_nodal_balance().droplevel([0,1]).sort_index()
if "Gas pipeline" not in n.links.carrier.unique():
return
assign_location(n)
bus_size_factor = 1e7
linewidth_factor = 1e4
# MW below which not drawn
line_lower_threshold = 5e3
bus_color = "maroon"
link_color = "lightcoral"
# Drop non-electric buses so they don't clutter the plot
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
elec = n.generators[n.generators.carrier=="gas"].index
methanation_i = n.links[n.links.carrier.isin(["helmeth", "Sabatier"])].index
bus_sizes = n.generators_t.p.loc[:,elec].mul(n.snapshot_weightings, axis=0).sum().groupby(n.generators.loc[elec,"bus"]).sum() / bus_size_factor
bus_sizes.rename(index=lambda x: x.replace(" gas", ""), inplace=True)
bus_sizes = bus_sizes.reindex(n.buses.index).fillna(0)
bus_sizes.index = pd.MultiIndex.from_product(
[bus_sizes.index, ["fossil gas"]])
methanation = abs(n.links_t.p1.loc[:,methanation_i].mul(n.snapshot_weightings, axis=0)).sum().groupby(n.links.loc[methanation_i,"bus1"]).sum() / bus_size_factor
methanation = methanation.groupby(methanation.index).sum().rename(index=lambda x: x.replace(" gas", ""))
# make a fake MultiIndex so that area is correct for legend
methanation.index = pd.MultiIndex.from_product(
[methanation.index, ["methanation"]])
biogas_i = n.stores[n.stores.carrier=="biogas"].index
biogas = n.stores_t.p.loc[:,biogas_i].mul(n.snapshot_weightings, axis=0).sum().groupby(n.stores.loc[biogas_i,"bus"]).sum() / bus_size_factor
biogas = biogas.groupby(biogas.index).sum().rename(index=lambda x: x.replace(" biogas", ""))
# make a fake MultiIndex so that area is correct for legend
biogas.index = pd.MultiIndex.from_product(
[biogas.index, ["biogas"]])
bus_sizes = pd.concat([bus_sizes, methanation, biogas])
bus_sizes.sort_index(inplace=True)
n.links.drop(n.links.index[n.links.carrier != "Gas pipeline"], inplace=True)
link_widths = n.links.p_nom_opt / linewidth_factor
link_widths[n.links.p_nom_opt < line_lower_threshold] = 0.
n.links.bus0 = n.links.bus0.str.replace(" gas", "")
n.links.bus1 = n.links.bus1.str.replace(" gas", "")
print(link_widths.sort_values())
print(n.links[["bus0", "bus1"]])
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
fig.set_size_inches(7, 6)
n.plot(bus_sizes=bus_sizes,
bus_colors={"fossil gas": bus_color,
"methanation": "steelblue",
"biogas": "seagreen"},
link_colors=link_color,
link_widths=link_widths,
branch_components=["Link"],
ax=ax, boundaries=(-10, 30, 34, 70))
handles = make_legend_circles_for(
[200, 1000], scale=bus_size_factor, facecolor=bus_color)
labels = ["{} MW".format(s) for s in (200, 1000)]
l2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.01, 1.01),
labelspacing=1.0,
framealpha=1.,
title='Biomass potential',
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l2)
handles = []
labels = []
for s in (50, 10):
handles.append(plt.Line2D([0], [0], color=link_color,
linewidth=s * 1e3 / linewidth_factor))
labels.append("{} GW".format(s))
l1_1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.30, 1.01),
framealpha=1,
labelspacing=0.8, handletextpad=1.5,
title='CH4 pipeline capacity')
ax.add_artist(l1_1)
fig.savefig(snakemake.output.map.replace("-costs-all","-ch4_network"), transparent=True,
bbox_inches="tight")
##################################################
supply_energy.drop("Gas pipeline", level=1, inplace=True)
supply_energy = supply_energy[abs(supply_energy)>5]
supply_energy.rename(index=lambda x: x.replace(" gas",""), level=0, inplace=True)
demand = supply_energy[supply_energy<0].groupby(level=[0,1]).sum()
supply = supply_energy[supply_energy>0].groupby(level=[0,1]).sum()
#### DEMAND #######################################
bus_size_factor = 2e7
bus_sizes = abs(demand) / bus_size_factor
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
fig.set_size_inches(7, 6)
n.plot(bus_sizes=bus_sizes,
bus_colors={"CHP": "r",
"OCGT": "wheat",
"SMR": "darkkhaki",
"SMR CC": "tan",
"gas boiler": "orange",
"gas for industry": "grey",
'gas for industry CC': "lightgrey"},
link_colors=link_color,
link_widths=link_widths,
branch_components=["Link"],
ax=ax, boundaries=(-10, 30, 34, 70))
handles = make_legend_circles_for(
[10e6, 20e6], scale=bus_size_factor, facecolor=bus_color)
labels = ["{} TWh".format(s) for s in (10, 20)]
l2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.01, 1.01),
labelspacing=1.0,
framealpha=1.,
title='CH4 demand',
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l2)
handles = []
labels = []
for s in (50, 10):
handles.append(plt.Line2D([0], [0], color=link_color,
linewidth=s * 1e3 / linewidth_factor))
labels.append("{} GW".format(s))
l1_1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.30, 1.01),
framealpha=1,
labelspacing=0.8, handletextpad=1.5,
title='CH4 pipeline capacity')
ax.add_artist(l1_1)
fig.savefig(snakemake.output.map.replace("-costs-all","-ch4_demand"), transparent=True,
bbox_inches="tight")
#### SUPPLY #######################################
bus_size_factor = 2e7
bus_sizes = supply / bus_size_factor
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
fig.set_size_inches(7, 6)
n.plot(bus_sizes=bus_sizes,
bus_colors={"gas": "maroon",
"methanation": "steelblue",
"helmeth": "slateblue",
"biogas": "seagreen"},
link_colors=link_color,
link_widths=link_widths,
branch_components=["Link"],
ax=ax, boundaries=(-10, 30, 34, 70))
handles = make_legend_circles_for(
[10e6, 20e6], scale=bus_size_factor, facecolor="black")
labels = ["{} TWh".format(s) for s in (10, 20)]
l2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.01, 1.01),
labelspacing=1.0,
framealpha=1.,
title='CH4 supply',
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l2)
handles = []
labels = []
for s in (50, 10):
handles.append(plt.Line2D([0], [0], color=link_color,
linewidth=s * 1e3 / linewidth_factor))
labels.append("{} GW".format(s))
l1_1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.30, 1.01),
framealpha=1,
labelspacing=0.8, handletextpad=1.5,
title='CH4 pipeline capacity')
ax.add_artist(l1_1)
fig.savefig(snakemake.output.map.replace("-costs-all","-ch4_supply"), transparent=True,
bbox_inches="tight")
###########################################################################
net = pd.concat([demand.groupby(level=0).sum().rename("demand"),
supply.groupby(level=0).sum().rename("supply")], axis=1).sum(axis=1)
mask = net>0
net_importer = net.mask(mask).rename("net_importer")
net_exporter = net.mask(~mask).rename("net_exporter")
bus_size_factor = 2e7
linewidth_factor = 1e-1
bus_sizes = pd.concat([abs(net_importer), net_exporter], axis=1).fillna(0).stack() / bus_size_factor
link_widths = abs(n.links_t.p0).max().loc[n.links.index] / n.links.p_nom_opt
link_widths /= linewidth_factor
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
fig.set_size_inches(7, 6)
n.plot(bus_sizes=bus_sizes,
bus_colors={"net_importer": "r",
"net_exporter": "darkgreen",
},
link_colors="lightgrey",
link_widths=link_widths,
branch_components=["Link"],
ax=ax, boundaries=(-10, 30, 34, 70))
handles = make_legend_circles_for(
[10e6, 20e6], scale=bus_size_factor, facecolor="black")
labels = ["{} TWh".format(s) for s in (10, 20)]
l2 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.01, 1.01),
labelspacing=1.0,
framealpha=1.,
title='Net Import/Export',
handler_map=make_handler_map_to_scale_circles_as_in(ax))
ax.add_artist(l2)
handles = []
labels = []
for s in (0.5, 1):
handles.append(plt.Line2D([0], [0], color="lightgrey",
linewidth=s / linewidth_factor))
labels.append("{} per unit".format(s))
l1_1 = ax.legend(handles, labels,
loc="upper left", bbox_to_anchor=(0.30, 1.01),
framealpha=1,
labelspacing=0.8, handletextpad=1.5,
title='maximum used CH4 pipeline capacity')
ax.add_artist(l1_1)
fig.savefig(snakemake.output.map.replace("-costs-all","-ch4_net_balance"), transparent=True,
bbox_inches="tight")
def plot_map_without(network):
n = network.copy()
@ -331,7 +592,8 @@ def plot_map_without(network):
dc_color = "m"
# hack because impossible to drop buses...
n.buses.loc["EU gas", ["x", "y"]] = n.buses.loc["DE0 0", ["x", "y"]]
if "EU gas" in n.buses.index:
n.buses.loc["EU gas", ["x", "y"]] = n.buses.loc["DE0 0", ["x", "y"]]
n.links.drop(n.links.index[(n.links.carrier != "DC") & (
n.links.carrier != "B2B")], inplace=True)
@ -502,35 +764,59 @@ def plot_series(network, carrier="AC", name="test"):
transparent=True)
def get_nodal_balance(carrier="gas"):
bus_map = (n.buses.carrier == carrier)
bus_map.at[""] = False
supply_energy = pd.Series(dtype="float64")
for c in n.iterate_components(n.one_port_components):
items = c.df.index[c.df.bus.map(bus_map).fillna(False)]
if len(items) == 0:
continue
s = round(c.pnl.p.multiply(n.snapshot_weightings,axis=0).sum().multiply(c.df['sign']).loc[items]
.groupby([c.df.bus, c.df.carrier]).sum())
s = pd.concat([s], keys=[c.list_name])
s = pd.concat([s], keys=[carrier])
supply_energy = supply_energy.reindex(s.index.union(supply_energy.index))
supply_energy.loc[s.index] = s
for c in n.iterate_components(n.branch_components):
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
items = c.df.index[c.df["bus" + str(end)].map(bus_map,na_action=False)]
if len(items) == 0:
continue
s = ((-1)*c.pnl["p"+end][items].multiply(n.snapshot_weightings,axis=0).sum()
.groupby([c.df.loc[items,'bus{}'.format(end)], c.df.loc[items,'carrier']]).sum())
s.index = s.index
s = pd.concat([s], keys=[c.list_name])
s = pd.concat([s], keys=[carrier])
supply_energy = supply_energy.reindex(s.index.union(supply_energy.index))
supply_energy.loc[s.index] = s
supply_energy = supply_energy.rename(index=lambda x: rename_techs(x), level=3)
return supply_energy
# %%
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
if 'snakemake' not in globals():
from vresutils import Dict
import yaml
snakemake = Dict()
with open('config.yaml') as f:
snakemake.config = yaml.safe_load(f)
snakemake.config['run'] = "retro_vs_noretro"
snakemake.wildcards = {"lv": "1.0"} # lv1.0, lv1.25, lvopt
name = "elec_s_48_lv{}__Co2L0-3H-T-H-B".format(snakemake.wildcards["lv"])
suffix = "_retro_tes"
name = name + suffix
snakemake.input = Dict()
snakemake.output = Dict(
map=(snakemake.config['results_dir'] + snakemake.config['run']
+ "/maps/{}".format(name)),
today=(snakemake.config['results_dir'] + snakemake.config['run']
+ "/maps/{}.pdf".format(name)))
snakemake.input.scenario = "lv" + snakemake.wildcards["lv"]
# snakemake.config["run"] = "bio_costs"
path = snakemake.config['results_dir'] + snakemake.config['run']
snakemake.input.network = (path +
"/postnetworks/{}.nc"
.format(name))
snakemake.output.network = (path +
"/maps/{}"
.format(name))
from helper import mock_snakemake
snakemake = mock_snakemake('plot_network',
network='elec', simpl='', clusters='128',
lv='1.0', opts='', planning_horizons='2030',
sector_opts='Co2L0-168H-T-H-B-I-solar+p3-dist1')
n = pypsa.Network(snakemake.input.network,
override_component_attrs=override_component_attrs)
@ -539,6 +825,7 @@ if __name__ == "__main__":
bus_size_factor=1.5e10, transmission=False)
plot_h2_map(n)
plot_ch4_map(n)
plot_map_without(n)
#plot_series(n, carrier="AC", name=suffix)

View File

@ -22,7 +22,8 @@ def rename_techs(label):
"retrofitting" : "building retrofitting",
"H2" : "hydrogen storage",
"battery" : "battery storage",
"CC" : "CC"}
#"CC" : "CC"
}
rename = {"solar" : "solar PV",
"Sabatier" : "methanation",
@ -258,7 +259,7 @@ def historical_emissions(cts):
e["domestic navigation"] = "1.A.3.d - Domestic Navigation"
e['international navigation'] = '1.D.1.b - International Navigation'
e["domestic aviation"] = '1.A.3.a - Domestic Aviation'
e["international aviation"] = '1.D.1.a - International Aviation'
e["international aviation"] = '1.D.1.a - International Aviation'
e['total energy'] = '1 - Energy'
e['industrial processes'] = '2 - Industrial Processes and Product Use'
e['agriculture'] = '3 - Agriculture'
@ -268,25 +269,25 @@ def historical_emissions(cts):
e['indirect'] = 'ind_CO2 - Indirect CO2'
e["total wL"] = "Total (with LULUCF)"
e["total woL"] = "Total (without LULUCF)"
pol = ["CO2"] # ["All greenhouse gases - (CO2 equivalent)"]
pol = ["CO2"] # ["All greenhouse gases - (CO2 equivalent)"]
cts
if "GB" in cts:
cts.remove("GB")
cts.append("UK")
year = np.arange(1990,2018).tolist()
idx = pd.IndexSlice
co2_totals = df.loc[idx[year,e.values,cts,pol],"emissions"].unstack("Year").rename(index=pd.Series(e.index,e.values))
co2_totals = df.loc[idx[year,e.values,cts,pol],"emissions"].unstack("Year").rename(index=pd.Series(e.index,e.values))
co2_totals = (1/1e6)*co2_totals.groupby(level=0, axis=0).sum() #Gton CO2
co2_totals.loc['industrial non-elec'] = co2_totals.loc['total energy'] - co2_totals.loc[['electricity', 'services non-elec','residential non-elec', 'road non-elec',
'rail non-elec', 'domestic aviation', 'international aviation', 'domestic navigation',
'international navigation']].sum()
emissions = co2_totals.loc["electricity"]
emissions = co2_totals.loc["electricity"]
if "T" in opts:
emissions += co2_totals.loc[[i+ " non-elec" for i in ["rail","road"]]].sum()
if "H" in opts:
@ -294,7 +295,7 @@ def historical_emissions(cts):
if "I" in opts:
emissions += co2_totals.loc[["industrial non-elec","industrial processes",
"domestic aviation","international aviation",
"domestic navigation","international navigation"]].sum()
"domestic navigation","international navigation"]].sum()
return emissions
@ -302,8 +303,8 @@ def historical_emissions(cts):
def plot_carbon_budget_distribution():
"""
Plot historical carbon emissions in the EU and decarbonization path
"""
"""
import matplotlib.gridspec as gridspec
import seaborn as sns; sns.set()
sns.set_style('ticks')
@ -311,7 +312,7 @@ def plot_carbon_budget_distribution():
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.rcParams['xtick.labelsize'] = 20
plt.rcParams['ytick.labelsize'] = 20
plt.rcParams['ytick.labelsize'] = 20
plt.figure(figsize=(10, 7))
gs1 = gridspec.GridSpec(1, 1)
@ -319,55 +320,55 @@ def plot_carbon_budget_distribution():
ax1.set_ylabel('CO$_2$ emissions (Gt per year)',fontsize=22)
ax1.set_ylim([0,5])
ax1.set_xlim([1990,snakemake.config['scenario']['planning_horizons'][-1]+1])
path_cb = snakemake.config['results_dir'] + snakemake.config['run'] + '/csvs/'
countries=pd.read_csv(path_cb + 'countries.csv', index_col=1)
countries=pd.read_csv(path_cb + 'countries.csv', index_col=1)
cts=countries.index.to_list()
e_1990 = co2_emissions_year(cts, opts, year=1990)
CO2_CAP=pd.read_csv(path_cb + 'carbon_budget_distribution.csv',
index_col=0)
ax1.plot(e_1990*CO2_CAP[o],linewidth=3,
e_1990 = co2_emissions_year(cts, opts, year=1990)
CO2_CAP=pd.read_csv(path_cb + 'carbon_budget_distribution.csv',
index_col=0)
ax1.plot(e_1990*CO2_CAP[o],linewidth=3,
color='dodgerblue', label=None)
emissions = historical_emissions(cts)
ax1.plot(emissions, color='black', linewidth=3, label=None)
#plot commited and uder-discussion targets
ax1.plot(emissions, color='black', linewidth=3, label=None)
#plot commited and uder-discussion targets
#(notice that historical emissions include all countries in the
# network, but targets refer to EU)
ax1.plot([2020],[0.8*emissions[1990]],
marker='*', markersize=12, markerfacecolor='black',
markeredgecolor='black')
markeredgecolor='black')
ax1.plot([2030],[0.45*emissions[1990]],
marker='*', markersize=12, markerfacecolor='white',
markeredgecolor='black')
markeredgecolor='black')
ax1.plot([2030],[0.6*emissions[1990]],
marker='*', markersize=12, markerfacecolor='black',
markeredgecolor='black')
ax1.plot([2050, 2050],[x*emissions[1990] for x in [0.2, 0.05]],
color='gray', linewidth=2, marker='_', alpha=0.5)
color='gray', linewidth=2, marker='_', alpha=0.5)
ax1.plot([2050],[0.01*emissions[1990]],
marker='*', markersize=12, markerfacecolor='white',
linewidth=0, markeredgecolor='black',
label='EU under-discussion target', zorder=10,
clip_on=False)
marker='*', markersize=12, markerfacecolor='white',
linewidth=0, markeredgecolor='black',
label='EU under-discussion target', zorder=10,
clip_on=False)
ax1.plot([2050],[0.125*emissions[1990]],'ro',
marker='*', markersize=12, markerfacecolor='black',
markeredgecolor='black', label='EU commited target')
ax1.legend(fancybox=True, fontsize=18, loc=(0.01,0.01),
facecolor='white', frameon=True)
path_cb_plot = snakemake.config['results_dir'] + snakemake.config['run'] + '/graphs/'
plt.savefig(path_cb_plot+'carbon_budget_plot.pdf', dpi=300)
ax1.legend(fancybox=True, fontsize=18, loc=(0.01,0.01),
facecolor='white', frameon=True)
path_cb_plot = snakemake.config['results_dir'] + snakemake.config['run'] + '/graphs/'
plt.savefig(path_cb_plot+'carbon_budget_plot.pdf', dpi=300)
if __name__ == "__main__":
# Detect running outside of snakemake and mock snakemake for testing
@ -380,15 +381,15 @@ if __name__ == "__main__":
snakemake.input = Dict()
snakemake.output = Dict()
snakemake.wildcards = Dict()
#snakemake.wildcards['sector_opts']='3H-T-H-B-I-solar3-dist1-cb48be3'
#snakemake.wildcards['sector_opts']='3H-T-H-B-I-solar3-dist1-cb48be3'
for item in ["costs", "energy"]:
snakemake.input[item] = snakemake.config['summary_dir'] + '/{name}/csvs/{item}.csv'.format(name=snakemake.config['run'],item=item)
snakemake.output[item] = snakemake.config['summary_dir'] + '/{name}/graphs/{item}.pdf'.format(name=snakemake.config['run'],item=item)
snakemake.input["balances"] = snakemake.config['summary_dir'] + '/{name}/csvs/supply_energy.csv'.format(name=snakemake.config['run'],item=item)
snakemake.output["balances"] = snakemake.config['summary_dir'] + '/{name}/graphs/balances-energy.csv'.format(name=snakemake.config['run'],item=item)
n_header = 4
plot_costs()
@ -396,7 +397,7 @@ if __name__ == "__main__":
plot_energy()
plot_balances()
for sector_opts in snakemake.config['scenario']['sector_opts']:
opts=sector_opts.split('-')
for o in opts: