add function to cluster heat buses
This commit is contained in:
parent
6c13974643
commit
973074de21
@ -19,6 +19,7 @@ from helper import override_component_attrs, generate_periodic_profiles, update_
|
|||||||
from networkx.algorithms.connectivity.edge_augmentation import k_edge_augmentation
|
from networkx.algorithms.connectivity.edge_augmentation import k_edge_augmentation
|
||||||
from networkx.algorithms import complement
|
from networkx.algorithms import complement
|
||||||
from pypsa.geo import haversine_pts
|
from pypsa.geo import haversine_pts
|
||||||
|
from pypsa.io import import_components_from_dataframe
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@ -26,6 +27,9 @@ logger = logging.getLogger(__name__)
|
|||||||
from types import SimpleNamespace
|
from types import SimpleNamespace
|
||||||
spatial = SimpleNamespace()
|
spatial = SimpleNamespace()
|
||||||
|
|
||||||
|
from distutils.version import LooseVersion
|
||||||
|
pd_version = LooseVersion(pd.__version__)
|
||||||
|
agg_group_kwargs = dict(numeric_only=False) if pd_version >= "1.3" else {}
|
||||||
|
|
||||||
def define_spatial(nodes, options):
|
def define_spatial(nodes, options):
|
||||||
"""
|
"""
|
||||||
@ -2323,6 +2327,99 @@ def limit_individual_line_extension(n, maxext):
|
|||||||
hvdc = n.links.index[n.links.carrier == 'DC']
|
hvdc = n.links.index[n.links.carrier == 'DC']
|
||||||
n.links.loc[hvdc, 'p_nom_max'] = n.links.loc[hvdc, 'p_nom'] + maxext
|
n.links.loc[hvdc, 'p_nom_max'] = n.links.loc[hvdc, 'p_nom'] + maxext
|
||||||
|
|
||||||
|
|
||||||
|
aggregate_dict = {
|
||||||
|
"p_nom": "sum",
|
||||||
|
"s_nom": "sum",
|
||||||
|
"v_nom": "max",
|
||||||
|
"v_mag_pu_max": "min",
|
||||||
|
"v_mag_pu_min": "max",
|
||||||
|
"p_nom_max": "sum",
|
||||||
|
"s_nom_max": "sum",
|
||||||
|
"p_nom_min": "sum",
|
||||||
|
"s_nom_min": "sum",
|
||||||
|
'v_ang_min': "max",
|
||||||
|
"v_ang_max":"min",
|
||||||
|
"terrain_factor":"mean",
|
||||||
|
"num_parallel": "sum",
|
||||||
|
"p_set": "sum",
|
||||||
|
"e_initial": "sum",
|
||||||
|
"e_nom": "sum",
|
||||||
|
"e_nom_max": "sum",
|
||||||
|
"e_nom_min": "sum",
|
||||||
|
"state_of_charge_initial": "sum",
|
||||||
|
"state_of_charge_set": "sum",
|
||||||
|
"inflow": "sum",
|
||||||
|
"p_max_pu": "first",
|
||||||
|
"x": "mean",
|
||||||
|
"y": "mean"
|
||||||
|
}
|
||||||
|
|
||||||
|
def cluster_heat_buses(n):
|
||||||
|
"""Cluster residential and service heat buses to one representative bus.
|
||||||
|
This can be done to save memory and speed up optimisation
|
||||||
|
"""
|
||||||
|
|
||||||
|
def define_clustering(attributes, aggregate_dict):
|
||||||
|
"""Define how attributes should be clustered.
|
||||||
|
Input:
|
||||||
|
attributes : pd.Index()
|
||||||
|
aggregate_dict: dictionary (key: name of attribute, value
|
||||||
|
clustering method)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
agg : clustering dictionary
|
||||||
|
"""
|
||||||
|
keys = attributes.intersection(aggregate_dict.keys())
|
||||||
|
agg = dict(
|
||||||
|
zip(
|
||||||
|
attributes.difference(keys),
|
||||||
|
["first"] * len(df.columns.difference(keys)),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
for key in keys:
|
||||||
|
agg[key] = aggregate_dict[key]
|
||||||
|
return agg
|
||||||
|
|
||||||
|
logger.info("Cluster residential and service heat buses.")
|
||||||
|
components = ["Bus", "Carrier", "Generator", "Link", "Load", "Store"]
|
||||||
|
|
||||||
|
for c in n.iterate_components(components):
|
||||||
|
df = c.df
|
||||||
|
cols = df.columns[df.columns.str.contains("bus") | (df.columns=="carrier")]
|
||||||
|
|
||||||
|
# rename columns and index
|
||||||
|
df[cols] = (df[cols]
|
||||||
|
.apply(lambda x: x.str.replace("residential ","")
|
||||||
|
.str.replace("services ", ""), axis=1))
|
||||||
|
df = df.rename(index=lambda x: x.replace("residential ","")
|
||||||
|
.replace("services ", ""))
|
||||||
|
|
||||||
|
|
||||||
|
# cluster heat nodes
|
||||||
|
# static dataframe
|
||||||
|
agg = define_clustering(df.columns, aggregate_dict)
|
||||||
|
df = df.groupby(level=0).agg(agg, **agg_group_kwargs)
|
||||||
|
# time-varying data
|
||||||
|
pnl = c.pnl
|
||||||
|
agg = define_clustering(pd.Index(pnl.keys()), aggregate_dict)
|
||||||
|
for k in pnl.keys():
|
||||||
|
pnl[k].rename(columns=lambda x: x.replace("residential ","")
|
||||||
|
.replace("services ", ""), inplace=True)
|
||||||
|
pnl[k] = (
|
||||||
|
pnl[k]
|
||||||
|
.groupby(level=0, axis=1)
|
||||||
|
.agg(agg[k], **agg_group_kwargs)
|
||||||
|
)
|
||||||
|
|
||||||
|
# remove unclustered assets of service/residential
|
||||||
|
to_drop = c.df.index.difference(df.index)
|
||||||
|
n.mremove(c.name, to_drop)
|
||||||
|
# add clustered assets
|
||||||
|
to_add = df.index.difference(c.df.index)
|
||||||
|
import_components_from_dataframe(n, df.loc[to_add], c.name)
|
||||||
|
|
||||||
|
|
||||||
#%%
|
#%%
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
if 'snakemake' not in globals():
|
if 'snakemake' not in globals():
|
||||||
@ -2467,4 +2564,6 @@ if __name__ == "__main__":
|
|||||||
if options['electricity_grid_connection']:
|
if options['electricity_grid_connection']:
|
||||||
add_electricity_grid_connection(n, costs)
|
add_electricity_grid_connection(n, costs)
|
||||||
|
|
||||||
|
if options["cluster_heat_buses"]:
|
||||||
|
cluster_heat_buses(n)
|
||||||
n.export_to_netcdf(snakemake.output[0])
|
n.export_to_netcdf(snakemake.output[0])
|
||||||
|
Loading…
Reference in New Issue
Block a user