Merge branch 'master' into jrc-idees-2020
This commit is contained in:
commit
95903eeca7
@ -65,10 +65,10 @@ The dataset consists of:
|
||||
(alternating current lines at and above 220kV voltage level and all high
|
||||
voltage direct current lines) and 3803 substations.
|
||||
- The open power plant database
|
||||
[powerplantmatching](https://github.com/FRESNA/powerplantmatching).
|
||||
[powerplantmatching](https://github.com/PyPSA/powerplantmatching).
|
||||
- Electrical demand time series from the
|
||||
[OPSD project](https://open-power-system-data.org/).
|
||||
- Renewable time series based on ERA5 and SARAH, assembled using the [atlite tool](https://github.com/FRESNA/atlite).
|
||||
- Renewable time series based on ERA5 and SARAH, assembled using the [atlite tool](https://github.com/PyPSA/atlite).
|
||||
- Geographical potentials for wind and solar generators based on land use (CORINE) and excluding nature reserves (Natura2000) are computed with the [atlite library](https://github.com/PyPSA/atlite).
|
||||
|
||||
A sector-coupled extension adds demand
|
||||
|
@ -355,7 +355,6 @@ biomass:
|
||||
- Secondary Forestry residues - woodchips
|
||||
- Sawdust
|
||||
- Residues from landscape care
|
||||
- Municipal waste
|
||||
not included:
|
||||
- Sugar from sugar beet
|
||||
- Rape seed
|
||||
@ -369,6 +368,8 @@ biomass:
|
||||
biogas:
|
||||
- Manure solid, liquid
|
||||
- Sludge
|
||||
municipal solid waste:
|
||||
- Municipal waste
|
||||
|
||||
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solar-thermal
|
||||
solar_thermal:
|
||||
@ -397,6 +398,7 @@ sector:
|
||||
biomass: true
|
||||
industry: true
|
||||
agriculture: true
|
||||
fossil_fuels: true
|
||||
district_heating:
|
||||
potential: 0.6
|
||||
progress:
|
||||
@ -596,7 +598,9 @@ sector:
|
||||
conventional_generation:
|
||||
OCGT: gas
|
||||
biomass_to_liquid: false
|
||||
electrobiofuels: false
|
||||
biosng: false
|
||||
municipal_solid_waste: false
|
||||
limit_max_growth:
|
||||
enable: false
|
||||
# allowing 30% larger than max historic growth
|
||||
@ -618,6 +622,12 @@ sector:
|
||||
max_boost: 0.25
|
||||
var_cf: true
|
||||
sustainability_factor: 0.0025
|
||||
solid_biomass_import:
|
||||
enable: false
|
||||
price: 54 #EUR/MWh
|
||||
max_amount: 1390 # TWh
|
||||
upstream_emissions_factor: .1 #share of solid biomass CO2 emissions at full combustion
|
||||
|
||||
|
||||
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry
|
||||
industry:
|
||||
@ -1015,6 +1025,8 @@ plotting:
|
||||
biogas: '#e3d37d'
|
||||
biomass: '#baa741'
|
||||
solid biomass: '#baa741'
|
||||
municipal solid waste: '#91ba41'
|
||||
solid biomass import: '#d5ca8d'
|
||||
solid biomass transport: '#baa741'
|
||||
solid biomass for industry: '#7a6d26'
|
||||
solid biomass for industry CC: '#47411c'
|
||||
@ -1028,6 +1040,7 @@ plotting:
|
||||
services rural biomass boiler: '#c6cf98'
|
||||
services urban decentral biomass boiler: '#dde5b5'
|
||||
biomass to liquid: '#32CD32'
|
||||
electrobiofuels: 'red'
|
||||
BioSNG: '#123456'
|
||||
# power transmission
|
||||
lines: '#6c9459'
|
||||
|
@ -5,7 +5,7 @@ Cross-Channel,France - Echingen 50°41′48″N 1°38′21″E / 50.69667
|
||||
Volgograd-Donbass,Russia - Volzhskaya 48°49′34″N 44°40′20″E / 48.82611°N 44.67222°E,Ukraine - Mikhailovskaya 48°39′13″N 38°33′56″E / 48.65361°N 38.56556°E,475(0/475),400,750.0,1965,Merc/Thyr,Shut down in 2014,[1],44.672222222222224,48.82611111111111,38.565555555555555,48.65361111111111
|
||||
Konti-Skan 1,Denmark - Vester Hassing 57°3′46″N 10°5′24″E / 57.06278°N 10.09000°E,Sweden - Stenkullen 57°48′15″N 12°19′13″E / 57.80417°N 12.32028°E,176(87/89),250,250.0,1965,Merc,Replaced in August 2006 by modern converters using thyristors,[1],10.09,57.062777777777775,12.320277777777777,57.80416666666667
|
||||
SACOI 1a,Italy - Suvereto 43°3′10″N 10°41′42″E / 43.05278°N 10.69500°E ( before 1992: Italy - San Dalmazio 43°15′43″N 10°55′05″E / 43.26194°N 10.91806°E),"France- Lucciana 42°31′40″N 9°26′59″E / 42.52778°N 9.44972°E",483(365/118),200,200.0,1965,Merc,"Replaced in 1986 by Thyr- multiterminal scheme",[1],10.695,43.05277777777778,9.449722222222222,42.52777777777778
|
||||
SACOI 1b,"France- Lucciana 42°31′40″N 9°26′59″E / 42.52778°N 9.44972°E", "Codrongianos- Italy 40°39′7″N 8°42′48″E / 40.65194°N 8.71333°E",483(365/118),200,200.0,1965,Merc,"Replaced in 1986 by Thyr- multiterminal scheme",[1],9.449722222222222,42.52777777777778,8.679351,40.65765
|
||||
SACOI 1b,"France- Lucciana 42°31′40″N 9°26′59″E / 42.52778°N 9.44972°E","Codrongianos- Italy 40°39′7″N 8°42′48″E / 40.65194°N 8.71333°E",483(365/118),200,200.0,1965,Merc,"Replaced in 1986 by Thyr- multiterminal scheme",[1],9.449722222222222,42.52777777777778,8.679351,40.65765
|
||||
Kingsnorth,UK - Kingsnorth 51°25′11″N 0°35′46″E / 51.41972°N 0.59611°E,UK - London-Beddington 51°22′23″N 0°7′38″W / 51.37306°N 0.12722°W,85(85/0),266,320.0,1975,Merc,Bipolar scheme Supplier: English Electric Shut down in 1987,[33],0.5961111111111111,51.41972222222222,-0.1272222222222222,51.37305555555555
|
||||
Skagerrak 1 + 2,Denmark - Tjele 56°28′44″N 9°34′1″E / 56.47889°N 9.56694°E,Norway - Kristiansand 58°15′36″N 7°53′55″E / 58.26000°N 7.89861°E,230(130/100),250,500.0,1977,Thyr,Supplier: STK(Nexans) Control system upgrade by ABB in 2007,[34][35][36],9.566944444444445,56.47888888888889,7.898611111111111,58.26
|
||||
Gotland 2,Sweden - Västervik 57°43′41″N 16°38′51″E / 57.72806°N 16.64750°E,Sweden - Yigne 57°35′13″N 18°11′44″E / 57.58694°N 18.19556°E,99.5(92.9/6.6),150,130.0,1983,Thyr,Supplier: ABB,,16.6475,57.72805555555556,18.195555555555554,57.58694444444444
|
||||
@ -23,7 +23,7 @@ Visby-Nas,Sweden - Nas 57°05′58″N 18°14′27″E / 57.09944°N 18.24
|
||||
SwePol,Poland - Wierzbięcin 54°30′8″N 16°53′28″E / 54.50222°N 16.89111°E,Sweden - Stärnö 56°9′11″N 14°50′29″E / 56.15306°N 14.84139°E,245(245/0),450,600.0,2000,Thyr,Supplier: ABB,[38],16.891111111111112,54.50222222222222,14.841388888888888,56.153055555555554
|
||||
Tjæreborg,Denmark - Tjæreborg/Enge 55°26′52″N 8°35′34″E / 55.44778°N 8.59278°E,Denmark - Tjæreborg/Substation 55°28′07″N 8°33′36″E / 55.46861°N 8.56000°E,4.3(4.3/0),9,7.0,2000,IGBT,Interconnection to wind power generating stations,,8.592777777777778,55.44777777777778,8.56,55.46861111111111
|
||||
Italy-Greece,Greece - Arachthos 39°11′00″N 20°57′48″E / 39.18333°N 20.96333°E,Italy - Galatina 40°9′53″N 18°7′49″E / 40.16472°N 18.13028°E,310(200/110),400,500.0,2001,Thyr,,,20.963333333333335,39.18333333333333,18.130277777777778,40.164722222222224
|
||||
Moyle,UK - Auchencrosh 55°04′10″N 4°58′50″W / 55.06944°N 4.98056°W,UK - N. Ireland- Ballycronan More 54°50′34″N 5°46′11″W / 54.84278°N 5.76972°W,63.5(63.5/0),250,2501.0,2001,Thyr,"Supplier: Siemens- Nexans",[39],-4.980555555555556,55.06944444444444,-5.769722222222223,54.842777777777776
|
||||
Moyle,UK - Auchencrosh 55°04′10″N 4°58′50″W / 55.06944°N 4.98056°W,UK - N. Ireland- Ballycronan More 54°50′34″N 5°46′11″W / 54.84278°N 5.76972°W,63.5(63.5/0),250,500.0,2001,Thyr,"Supplier: Siemens- Nexans",[39],-4.980555555555556,55.06944444444444,-5.769722222222223,54.842777777777776
|
||||
HVDC Troll,Norway - Kollsnes 60°33′01″N 4°50′26″E / 60.55028°N 4.84056°E,Norway - Offshore platform Troll A 60°40′00″N 3°40′00″E / 60.66667°N 3.66667°E,70(70/0),60,80.0,2004,IGBT,Power supply for offshore gas compressor Supplier: ABB,[40],4.8405555555555555,60.55027777777778,3.6666666666666665,60.666666666666664
|
||||
Estlink,Finland - Espoo 60°12′14″N 24°33′06″E / 60.20389°N 24.55167°E,Estonia - Harku 59°23′5″N 24°33′37″E / 59.38472°N 24.56028°E,105(105/0),150,350.0,2006,IGBT,Supplier: ABB,[40],24.551666666666666,60.20388888888889,24.560277777777777,59.38472222222222
|
||||
NorNed,Netherlands - Eemshaven 53°26′4″N 6°51′57″E / 53.43444°N 6.86583°E,Norway - Feda 58°16′58″N 6°51′55″E / 58.28278°N 6.86528°E,580(580/0),450,700.0,2008,Thyr,"Supplier: ABB- Nexans",[40],6.865833333333334,53.434444444444445,6.865277777777778,58.28277777777778
|
||||
|
|
@ -341,4 +341,6 @@ texinfo_documents = [
|
||||
|
||||
|
||||
# Example configuration for intersphinx: refer to the Python standard library.
|
||||
intersphinx_mapping = {"https://docs.python.org/": None}
|
||||
intersphinx_mapping = {
|
||||
'https://docs.python.org/': ('https://docs.python.org/3', None),
|
||||
}
|
||||
|
@ -4,8 +4,9 @@ heating,--,"{true, false}",Flag to include heating sector.
|
||||
biomass,--,"{true, false}",Flag to include biomass sector.
|
||||
industry,--,"{true, false}",Flag to include industry sector.
|
||||
agriculture,--,"{true, false}",Flag to include agriculture sector.
|
||||
fossil_fuels,--,"{true, false}","Flag to include imports of fossil fuels ( [""coal"", ""gas"", ""oil"", ""lignite""])"
|
||||
district_heating,--,,`prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_
|
||||
-- potential,--,float,maximum fraction of urban demand which can be supplied by district heating. Ignored where below current fraction.
|
||||
-- potential,--,float,maximum fraction of urban demand which can be supplied by district heating
|
||||
-- progress,--,Dictionary with planning horizons as keys., Increase of today's district heating demand to potential maximum district heating share. Progress = 0 means today's district heating share. Progress = 1 means maximum fraction of urban demand is supplied by district heating
|
||||
-- district_heating_loss,--,float,Share increase in district heat demand in urban central due to heat losses
|
||||
cluster_heat_buses,--,"{true, false}",Cluster residential and service heat buses in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_ to one to save memory.
|
||||
@ -71,7 +72,7 @@ boilers,--,"{true, false}",Add option for transforming gas into heat using gas b
|
||||
resistive_heaters,--,"{true, false}",Add option for transforming electricity into heat using resistive heaters (independently from gas boilers)
|
||||
oil_boilers,--,"{true, false}",Add option for transforming oil into heat using boilers
|
||||
biomass_boiler,--,"{true, false}",Add option for transforming biomass into heat using boilers
|
||||
overdimension_individual_heating,--,"float",Add option for overdimensioning individual heating systems by a certain factor. This allows them to cover heat demand peaks e.g. 10% higher than those in the data with a setting of 1.1.
|
||||
overdimension_individual_heating,--,float,Add option for overdimensioning individual heating systems by a certain factor. This allows them to cover heat demand peaks e.g. 10% higher than those in the data with a setting of 1.1.
|
||||
chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP)
|
||||
micro_chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP) for decentral areas.
|
||||
solar_thermal,--,"{true, false}",Add option for using solar thermal to generate heat.
|
||||
@ -138,6 +139,7 @@ biogas_upgrading_cc,--,"{true, false}",Add option to capture CO2 from biomass up
|
||||
conventional_generation,,,Add a more detailed description of conventional carriers. Any power generation requires the consumption of fuel from nodes representing that fuel.
|
||||
biomass_to_liquid,--,"{true, false}",Add option for transforming solid biomass into liquid fuel with the same properties as oil
|
||||
biosng,--,"{true, false}",Add option for transforming solid biomass into synthesis gas with the same properties as natural gas
|
||||
municipal_solid_waste,--,"{true, false}",Add option for municipal solid waste
|
||||
limit_max_growth,,,
|
||||
-- enable,--,"{true, false}",Add option to limit the maximum growth of a carrier
|
||||
-- factor,p.u.,float,The maximum growth factor of a carrier (e.g. 1.3 allows 30% larger than max historic growth)
|
||||
@ -153,3 +155,8 @@ enhanced_geothermal,,,
|
||||
-- max_boost,--,float,The maximum boost in power output under flexible operation
|
||||
-- var_cf,--,"{true, false}",Add option for variable capacity factor (see Ricks et al. 2024)
|
||||
-- sustainability_factor,--,float,Share of sourced heat that is replenished by the earth's core (see details in `build_egs_potentials.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_egs_potentials.py>`_)
|
||||
solid_biomass_import,,,
|
||||
-- enable,--,"{true, false}",Add option to include solid biomass imports
|
||||
-- price,currency/MWh,float,Price for importing solid biomass
|
||||
-- max_amount,Twh,float,Maximum solid biomass import potential
|
||||
-- upstream_emissions_factor,p.u.,float,Upstream emissions of solid biomass imports
|
||||
|
|
@ -242,7 +242,7 @@ Rule overview
|
||||
file
|
||||
<https://pypsa-eur.readthedocs.io/en/latest/preparation/build_powerplants.html?highlight=powerplants>`__
|
||||
generated by pypsa-eur which, in turn, is based on the `powerplantmatching
|
||||
<https://github.com/FRESNA/powerplantmatching>`__ database.
|
||||
<https://github.com/PyPSA/powerplantmatching>`__ database.
|
||||
|
||||
Existing wind and solar capacities are retrieved from `IRENA annual statistics
|
||||
<https://www.irena.org/Statistics/Download-Data>`__ and distributed among the
|
||||
|
@ -25,7 +25,7 @@ With these and the externally extracted ENTSO-E online map topology
|
||||
|
||||
Then the process continues by calculating conventional power plant capacities, potentials, and per-unit availability time series for variable renewable energy carriers and hydro power plants with the following rules:
|
||||
|
||||
- :mod:`build_powerplants` for today's thermal power plant capacities using `powerplantmatching <https://github.com/FRESNA/powerplantmatching>`__ allocating these to the closest substation for each powerplant,
|
||||
- :mod:`build_powerplants` for today's thermal power plant capacities using `powerplantmatching <https://github.com/PyPSA/powerplantmatching>`__ allocating these to the closest substation for each powerplant,
|
||||
- :mod:`build_ship_raster` for building shipping traffic density,
|
||||
- :mod:`build_renewable_profiles` for the hourly capacity factors and installation potentials constrained by land-use in each substation's Voronoi cell for PV, onshore and offshore wind, and
|
||||
- :mod:`build_hydro_profile` for the hourly per-unit hydro power availability time series.
|
||||
|
@ -19,6 +19,14 @@ Upcoming Release
|
||||
|
||||
* Add flag ``sector: fossil_fuels`` in config to remove the option of importing fossil fuels
|
||||
|
||||
* split solid biomass potentials into solid biomass and municipal solid waste. Add option to use municipal solid waste. This option is only activated in combination with the flag ``waste_to_energy``
|
||||
|
||||
* Add option to import solid biomass
|
||||
|
||||
* Add option to produce electrobiofuels (flag ``electrobiofuels``) from solid biomass and hydrogen, as a combination of BtL and Fischer-Tropsch to make more use of the biogenic carbon
|
||||
|
||||
* Add flag ``sector: fossil_fuels`` in config to remove the option of importing fossil fuels
|
||||
|
||||
* Renamed the carrier of batteries in BEVs from `battery storage` to `EV battery` and the corresponding bus carrier from `Li ion` to `EV battery`. This is to avoid confusion with stationary battery storage.
|
||||
|
||||
* Changed default assumptions about waste heat usage from PtX and fuel cells in district heating.
|
||||
|
@ -52,6 +52,8 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle",
|
||||
log:
|
||||
"logs/retrieve_eurostat_data.log",
|
||||
retries: 2
|
||||
conda:
|
||||
"../envs/retrieve.yaml"
|
||||
script:
|
||||
"../scripts/retrieve_eurostat_data.py"
|
||||
|
||||
@ -70,6 +72,8 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle",
|
||||
log:
|
||||
"logs/retrieve_eurostat_household_data.log",
|
||||
retries: 2
|
||||
conda:
|
||||
"../envs/retrieve.yaml"
|
||||
script:
|
||||
"../scripts/retrieve_eurostat_household_data.py"
|
||||
|
||||
|
@ -808,7 +808,7 @@ def voronoi(points, outline, crs=4326):
|
||||
voronoi = gpd.GeoDataFrame(geometry=voronoi)
|
||||
joined = gpd.sjoin_nearest(pts, voronoi, how="right")
|
||||
|
||||
return joined.dissolve(by="Bus").squeeze()
|
||||
return joined.dissolve(by="Bus").reindex(points.index).squeeze()
|
||||
|
||||
|
||||
def build_bus_shapes(n, country_shapes, offshore_shapes, countries):
|
||||
|
@ -6,7 +6,7 @@
|
||||
# coding: utf-8
|
||||
"""
|
||||
Retrieves conventional powerplant capacities and locations from
|
||||
`powerplantmatching <https://github.com/FRESNA/powerplantmatching>`_, assigns
|
||||
`powerplantmatching <https://github.com/PyPSA/powerplantmatching>`_, assigns
|
||||
these to buses and creates a ``.csv`` file. It is possible to amend the
|
||||
powerplant database with custom entries provided in
|
||||
``data/custom_powerplants.csv``.
|
||||
@ -30,17 +30,17 @@ Inputs
|
||||
------
|
||||
|
||||
- ``networks/base.nc``: confer :ref:`base`.
|
||||
- ``data/custom_powerplants.csv``: custom powerplants in the same format as `powerplantmatching <https://github.com/FRESNA/powerplantmatching>`_ provides
|
||||
- ``data/custom_powerplants.csv``: custom powerplants in the same format as `powerplantmatching <https://github.com/PyPSA/powerplantmatching>`_ provides
|
||||
|
||||
Outputs
|
||||
-------
|
||||
|
||||
- ``resource/powerplants.csv``: A list of conventional power plants (i.e. neither wind nor solar) with fields for name, fuel type, technology, country, capacity in MW, duration, commissioning year, retrofit year, latitude, longitude, and dam information as documented in the `powerplantmatching README <https://github.com/FRESNA/powerplantmatching/blob/master/README.md>`_; additionally it includes information on the closest substation/bus in ``networks/base.nc``.
|
||||
- ``resource/powerplants.csv``: A list of conventional power plants (i.e. neither wind nor solar) with fields for name, fuel type, technology, country, capacity in MW, duration, commissioning year, retrofit year, latitude, longitude, and dam information as documented in the `powerplantmatching README <https://github.com/PyPSA/powerplantmatching/blob/master/README.md>`_; additionally it includes information on the closest substation/bus in ``networks/base.nc``.
|
||||
|
||||
.. image:: img/powerplantmatching.png
|
||||
:scale: 30 %
|
||||
|
||||
**Source:** `powerplantmatching on GitHub <https://github.com/FRESNA/powerplantmatching>`_
|
||||
**Source:** `powerplantmatching on GitHub <https://github.com/PyPSA/powerplantmatching>`_
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
@ -56,19 +56,25 @@ def define_spatial(nodes, options):
|
||||
# biomass
|
||||
|
||||
spatial.biomass = SimpleNamespace()
|
||||
spatial.msw = SimpleNamespace()
|
||||
|
||||
if options.get("biomass_spatial", options["biomass_transport"]):
|
||||
spatial.biomass.nodes = nodes + " solid biomass"
|
||||
spatial.biomass.locations = nodes
|
||||
spatial.biomass.industry = nodes + " solid biomass for industry"
|
||||
spatial.biomass.industry_cc = nodes + " solid biomass for industry CC"
|
||||
spatial.msw.nodes = nodes + " municipal solid waste"
|
||||
spatial.msw.locations = nodes
|
||||
else:
|
||||
spatial.biomass.nodes = ["EU solid biomass"]
|
||||
spatial.biomass.locations = ["EU"]
|
||||
spatial.biomass.industry = ["solid biomass for industry"]
|
||||
spatial.biomass.industry_cc = ["solid biomass for industry CC"]
|
||||
spatial.msw.nodes = ["EU municipal solid waste"]
|
||||
spatial.msw.locations = ["EU"]
|
||||
|
||||
spatial.biomass.df = pd.DataFrame(vars(spatial.biomass), index=nodes)
|
||||
spatial.msw.df = pd.DataFrame(vars(spatial.msw), index=nodes)
|
||||
|
||||
# co2
|
||||
|
||||
@ -542,14 +548,17 @@ def add_carrier_buses(n, carrier, nodes=None):
|
||||
capital_cost=capital_cost,
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Generator",
|
||||
nodes,
|
||||
bus=nodes,
|
||||
p_nom_extendable=True,
|
||||
carrier=carrier,
|
||||
marginal_cost=costs.at[carrier, "fuel"],
|
||||
)
|
||||
fossils = ["coal", "gas", "oil", "lignite"]
|
||||
if options.get("fossil_fuels", True) and carrier in fossils:
|
||||
|
||||
n.madd(
|
||||
"Generator",
|
||||
nodes,
|
||||
bus=nodes,
|
||||
p_nom_extendable=True,
|
||||
carrier=carrier,
|
||||
marginal_cost=costs.at[carrier, "fuel"],
|
||||
)
|
||||
|
||||
|
||||
# TODO: PyPSA-Eur merge issue
|
||||
@ -2246,12 +2255,54 @@ def add_biomass(n, costs):
|
||||
solid_biomass_potentials_spatial = biomass_potentials["solid biomass"].rename(
|
||||
index=lambda x: x + " solid biomass"
|
||||
)
|
||||
msw_biomass_potentials_spatial = biomass_potentials[
|
||||
"municipal solid waste"
|
||||
].rename(index=lambda x: x + " municipal solid waste")
|
||||
else:
|
||||
solid_biomass_potentials_spatial = biomass_potentials["solid biomass"].sum()
|
||||
msw_biomass_potentials_spatial = biomass_potentials[
|
||||
"municipal solid waste"
|
||||
].sum()
|
||||
|
||||
n.add("Carrier", "biogas")
|
||||
n.add("Carrier", "solid biomass")
|
||||
|
||||
if (
|
||||
options["municipal_solid_waste"]
|
||||
and not options["industry"]
|
||||
and cf_industry["waste_to_energy"]
|
||||
or cf_industry["waste_to_energy_cc"]
|
||||
):
|
||||
logger.warning(
|
||||
"Flag municipal_solid_waste can be only used with industry "
|
||||
"sector waste to energy."
|
||||
"Setting municipal_solid_waste=False."
|
||||
)
|
||||
options["municipal_solid_waste"] = False
|
||||
|
||||
if options["municipal_solid_waste"]:
|
||||
|
||||
n.add("Carrier", "municipal solid waste")
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
spatial.msw.nodes,
|
||||
location=spatial.msw.locations,
|
||||
carrier="municipal solid waste",
|
||||
)
|
||||
|
||||
e_max_pu = pd.Series([1] * (len(n.snapshots) - 1) + [0], index=n.snapshots)
|
||||
n.madd(
|
||||
"Store",
|
||||
spatial.msw.nodes,
|
||||
bus=spatial.msw.nodes,
|
||||
carrier="municipal solid waste",
|
||||
e_nom=msw_biomass_potentials_spatial,
|
||||
marginal_cost=0, # costs.at["municipal solid waste", "fuel"],
|
||||
e_max_pu=e_max_pu,
|
||||
e_initial=msw_biomass_potentials_spatial,
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
spatial.gas.biogas,
|
||||
@ -2288,6 +2339,54 @@ def add_biomass(n, costs):
|
||||
e_initial=solid_biomass_potentials_spatial,
|
||||
)
|
||||
|
||||
if options["solid_biomass_import"].get("enable", False):
|
||||
biomass_import_price = options["solid_biomass_import"]["price"]
|
||||
# convert TWh in MWh
|
||||
biomass_import_max_amount = options["solid_biomass_import"]["max_amount"] * 1e6
|
||||
biomass_import_upstream_emissions = options["solid_biomass_import"][
|
||||
"upstream_emissions_factor"
|
||||
]
|
||||
|
||||
logger.info(
|
||||
"Adding biomass import with cost %.2f EUR/MWh, a limit of %.2f TWh, and embedded emissions of %.2f%%",
|
||||
biomass_import_price,
|
||||
options["solid_biomass_import"]["max_amount"],
|
||||
biomass_import_upstream_emissions * 100,
|
||||
)
|
||||
|
||||
n.add("Carrier", "solid biomass import")
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
["EU solid biomass import"],
|
||||
location="EU",
|
||||
carrier="solid biomass import",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Store",
|
||||
["solid biomass import"],
|
||||
bus=["EU solid biomass import"],
|
||||
carrier="solid biomass import",
|
||||
e_nom=biomass_import_max_amount,
|
||||
marginal_cost=biomass_import_price,
|
||||
e_initial=biomass_import_max_amount,
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.biomass.nodes,
|
||||
suffix=" solid biomass import",
|
||||
bus0=["EU solid biomass import"],
|
||||
bus1=spatial.biomass.nodes,
|
||||
bus2="co2 atmosphere",
|
||||
carrier="solid biomass import",
|
||||
efficiency=1.0,
|
||||
efficiency2=biomass_import_upstream_emissions
|
||||
* costs.at["solid biomass", "CO2 intensity"],
|
||||
p_nom_extendable=True,
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.gas.biogas_to_gas,
|
||||
@ -2359,6 +2458,19 @@ def add_biomass(n, costs):
|
||||
carrier="solid biomass transport",
|
||||
)
|
||||
|
||||
if options["municipal_solid_waste"]:
|
||||
n.madd(
|
||||
"Link",
|
||||
biomass_transport.index,
|
||||
bus0=biomass_transport.bus0 + " municipal solid waste",
|
||||
bus1=biomass_transport.bus1 + " municipal solid waste",
|
||||
p_nom_extendable=False,
|
||||
p_nom=5e4,
|
||||
length=biomass_transport.length.values,
|
||||
marginal_cost=biomass_transport.costs * biomass_transport.length.values,
|
||||
carrier="municipal solid waste transport",
|
||||
)
|
||||
|
||||
elif options["biomass_spatial"]:
|
||||
# add artificial biomass generators at nodes which include transport costs
|
||||
transport_costs = pd.read_csv(
|
||||
@ -2388,6 +2500,26 @@ def add_biomass(n, costs):
|
||||
type="operational_limit",
|
||||
)
|
||||
|
||||
if options["municipal_solid_waste"]:
|
||||
# Add municipal solid waste
|
||||
n.madd(
|
||||
"Generator",
|
||||
spatial.msw.nodes,
|
||||
bus=spatial.msw.nodes,
|
||||
carrier="municipal solid waste",
|
||||
p_nom=10000,
|
||||
marginal_cost=0 # costs.at["municipal solid waste", "fuel"]
|
||||
+ bus_transport_costs * average_distance,
|
||||
)
|
||||
n.add(
|
||||
"GlobalConstraint",
|
||||
"msw limit",
|
||||
carrier_attribute="municipal solid waste",
|
||||
sense="<=",
|
||||
constant=biomass_potentials["municipal solid waste"].sum(),
|
||||
type="operational_limit",
|
||||
)
|
||||
|
||||
# AC buses with district heating
|
||||
urban_central = n.buses.index[n.buses.carrier == "urban central heat"]
|
||||
if not urban_central.empty and options["chp"]:
|
||||
@ -2420,28 +2552,23 @@ def add_biomass(n, costs):
|
||||
bus4=spatial.co2.df.loc[urban_central, "nodes"].values,
|
||||
carrier="urban central solid biomass CHP CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at[key, "fixed"] * costs.at[key, "efficiency"]
|
||||
capital_cost=costs.at[key + " CC", "fixed"]
|
||||
* costs.at[key + " CC", "efficiency"]
|
||||
+ costs.at["biomass CHP capture", "fixed"]
|
||||
* costs.at["solid biomass", "CO2 intensity"],
|
||||
marginal_cost=costs.at[key, "VOM"],
|
||||
efficiency=costs.at[key, "efficiency"]
|
||||
marginal_cost=costs.at[key + " CC", "VOM"],
|
||||
efficiency=costs.at[key + " CC", "efficiency"]
|
||||
- costs.at["solid biomass", "CO2 intensity"]
|
||||
* (
|
||||
costs.at["biomass CHP capture", "electricity-input"]
|
||||
+ costs.at["biomass CHP capture", "compression-electricity-input"]
|
||||
),
|
||||
efficiency2=costs.at[key, "efficiency-heat"]
|
||||
+ costs.at["solid biomass", "CO2 intensity"]
|
||||
* (
|
||||
costs.at["biomass CHP capture", "heat-output"]
|
||||
+ costs.at["biomass CHP capture", "compression-heat-output"]
|
||||
- costs.at["biomass CHP capture", "heat-input"]
|
||||
),
|
||||
efficiency2=costs.at[key + " CC", "efficiency-heat"],
|
||||
efficiency3=-costs.at["solid biomass", "CO2 intensity"]
|
||||
* costs.at["biomass CHP capture", "capture_rate"],
|
||||
efficiency4=costs.at["solid biomass", "CO2 intensity"]
|
||||
* costs.at["biomass CHP capture", "capture_rate"],
|
||||
lifetime=costs.at[key, "lifetime"],
|
||||
lifetime=costs.at[key + " CC", "lifetime"],
|
||||
)
|
||||
|
||||
if options["biomass_boiler"]:
|
||||
@ -2483,11 +2610,12 @@ def add_biomass(n, costs):
|
||||
efficiency2=-costs.at["solid biomass", "CO2 intensity"]
|
||||
+ costs.at["BtL", "CO2 stored"],
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["BtL", "fixed"],
|
||||
marginal_cost=costs.at["BtL", "efficiency"] * costs.at["BtL", "VOM"],
|
||||
capital_cost=costs.at["BtL", "fixed"] * costs.at["BtL", "efficiency"],
|
||||
marginal_cost=costs.at["BtL", "VOM"] * costs.at["BtL", "efficiency"],
|
||||
)
|
||||
|
||||
# TODO: Update with energy penalty
|
||||
# Assuming that acid gas removal (incl. CO2) from syngas i performed with Rectisol
|
||||
# process (Methanol) and that electricity demand for this is included in the base process
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.biomass.nodes,
|
||||
@ -2503,9 +2631,46 @@ def add_biomass(n, costs):
|
||||
+ costs.at["BtL", "CO2 stored"] * (1 - costs.at["BtL", "capture rate"]),
|
||||
efficiency3=costs.at["BtL", "CO2 stored"] * costs.at["BtL", "capture rate"],
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["BtL", "fixed"]
|
||||
capital_cost=costs.at["BtL", "fixed"] * costs.at["BtL", "efficiency"]
|
||||
+ costs.at["biomass CHP capture", "fixed"] * costs.at["BtL", "CO2 stored"],
|
||||
marginal_cost=costs.at["BtL", "efficiency"] * costs.at["BtL", "VOM"],
|
||||
marginal_cost=costs.at["BtL", "VOM"] * costs.at["BtL", "efficiency"],
|
||||
)
|
||||
|
||||
# Electrobiofuels (BtL with hydrogen addition to make more use of biogenic carbon).
|
||||
# Combination of efuels and biomass to liquid, both based on Fischer-Tropsch.
|
||||
# Experimental version - use with caution
|
||||
if options["electrobiofuels"]:
|
||||
|
||||
efuel_scale_factor = costs.at["BtL", "C stored"]
|
||||
name = (
|
||||
pd.Index(spatial.biomass.nodes)
|
||||
+ " "
|
||||
+ pd.Index(spatial.h2.nodes.str.replace(" H2", ""))
|
||||
)
|
||||
n.madd(
|
||||
"Link",
|
||||
name,
|
||||
suffix=" electrobiofuels",
|
||||
bus0=spatial.biomass.nodes,
|
||||
bus1=spatial.oil.nodes,
|
||||
bus2=spatial.h2.nodes,
|
||||
bus3="co2 atmosphere",
|
||||
carrier="electrobiofuels",
|
||||
lifetime=costs.at["electrobiofuels", "lifetime"],
|
||||
efficiency=costs.at["electrobiofuels", "efficiency-biomass"],
|
||||
efficiency2=-costs.at["electrobiofuels", "efficiency-hydrogen"],
|
||||
efficiency3=-costs.at["solid biomass", "CO2 intensity"]
|
||||
+ costs.at["BtL", "CO2 stored"]
|
||||
* (1 - costs.at["Fischer-Tropsch", "capture rate"]),
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["BtL", "fixed"] * costs.at["BtL", "efficiency"]
|
||||
+ efuel_scale_factor
|
||||
* costs.at["Fischer-Tropsch", "fixed"]
|
||||
* costs.at["Fischer-Tropsch", "efficiency"],
|
||||
marginal_cost=costs.at["BtL", "VOM"] * costs.at["BtL", "efficiency"]
|
||||
+ efuel_scale_factor
|
||||
* costs.at["Fischer-Tropsch", "VOM"]
|
||||
* costs.at["Fischer-Tropsch", "efficiency"],
|
||||
)
|
||||
|
||||
# BioSNG from solid biomass
|
||||
@ -2523,11 +2688,12 @@ def add_biomass(n, costs):
|
||||
efficiency3=-costs.at["solid biomass", "CO2 intensity"]
|
||||
+ costs.at["BioSNG", "CO2 stored"],
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["BioSNG", "fixed"],
|
||||
marginal_cost=costs.at["BioSNG", "efficiency"] * costs.at["BioSNG", "VOM"],
|
||||
capital_cost=costs.at["BioSNG", "fixed"] * costs.at["BioSNG", "efficiency"],
|
||||
marginal_cost=costs.at["BioSNG", "VOM"] * costs.at["BioSNG", "efficiency"],
|
||||
)
|
||||
|
||||
# TODO: Update with energy penalty for CC
|
||||
# Assuming that acid gas removal (incl. CO2) from syngas i performed with Rectisol
|
||||
# process (Methanol) and that electricity demand for this is included in the base process
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.biomass.nodes,
|
||||
@ -2545,10 +2711,10 @@ def add_biomass(n, costs):
|
||||
+ costs.at["BioSNG", "CO2 stored"]
|
||||
* (1 - costs.at["BioSNG", "capture rate"]),
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["BioSNG", "fixed"]
|
||||
capital_cost=costs.at["BioSNG", "fixed"] * costs.at["BioSNG", "efficiency"]
|
||||
+ costs.at["biomass CHP capture", "fixed"]
|
||||
* costs.at["BioSNG", "CO2 stored"],
|
||||
marginal_cost=costs.at["BioSNG", "efficiency"] * costs.at["BioSNG", "VOM"],
|
||||
marginal_cost=costs.at["BioSNG", "VOM"] * costs.at["BioSNG", "efficiency"],
|
||||
)
|
||||
|
||||
|
||||
@ -2898,7 +3064,7 @@ def add_industry(n, costs):
|
||||
carrier="oil",
|
||||
)
|
||||
|
||||
if "oil" not in n.generators.carrier.unique():
|
||||
if options.get("fossil_fuels", True) and "oil" not in n.generators.carrier.unique():
|
||||
n.madd(
|
||||
"Generator",
|
||||
spatial.oil.nodes,
|
||||
@ -3059,6 +3225,17 @@ def add_industry(n, costs):
|
||||
efficiency3=process_co2_per_naphtha,
|
||||
)
|
||||
|
||||
if options.get("biomass", True) and options["municipal_solid_waste"]:
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.msw.locations,
|
||||
bus0=spatial.msw.nodes,
|
||||
bus1=non_sequestered_hvc_locations,
|
||||
carrier="municipal solid waste",
|
||||
p_nom_extendable=True,
|
||||
efficiency=1.0,
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
spatial.oil.demand_locations,
|
||||
@ -3108,7 +3285,9 @@ def add_industry(n, costs):
|
||||
carrier="waste CHP CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["waste CHP CC", "fixed"]
|
||||
* costs.at["waste CHP CC", "efficiency"],
|
||||
* costs.at["waste CHP CC", "efficiency"]
|
||||
+ costs.at["biomass CHP capture", "fixed"]
|
||||
* costs.at["oil", "CO2 intensity"],
|
||||
marginal_cost=costs.at["waste CHP CC", "VOM"],
|
||||
efficiency=costs.at["waste CHP CC", "efficiency"],
|
||||
efficiency2=costs.at["waste CHP CC", "efficiency-heat"],
|
||||
@ -3949,7 +4128,7 @@ if __name__ == "__main__":
|
||||
"prepare_sector_network",
|
||||
simpl="",
|
||||
opts="",
|
||||
clusters="1",
|
||||
clusters="37",
|
||||
ll="vopt",
|
||||
sector_opts="",
|
||||
planning_horizons="2050",
|
||||
|
Loading…
Reference in New Issue
Block a user