Merge branch 'master' into dh-share

This commit is contained in:
Fabian Neumann 2021-09-30 14:48:26 +02:00 committed by GitHub
commit 90079248a3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 264 additions and 104 deletions

1
.gitignore vendored
View File

@ -29,6 +29,7 @@ gurobi.log
/data/Industrial_Database.csv /data/Industrial_Database.csv
/data/retro/tabula-calculator-calcsetbuilding.csv /data/retro/tabula-calculator-calcsetbuilding.csv
/data/nuts* /data/nuts*
*.org *.org
*.nc *.nc

View File

@ -24,7 +24,6 @@ subworkflow pypsaeur:
snakefile: "../pypsa-eur/Snakefile" snakefile: "../pypsa-eur/Snakefile"
configfile: "../pypsa-eur/config.yaml" configfile: "../pypsa-eur/config.yaml"
rule all: rule all:
input: SDIR + '/graphs/costs.pdf' input: SDIR + '/graphs/costs.pdf'
@ -174,13 +173,19 @@ rule build_energy_totals:
rule build_biomass_potentials: rule build_biomass_potentials:
input: input:
jrc_potentials="data/biomass/JRC Biomass Potentials.xlsx" enspreso_biomass=HTTP.remote("https://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/ENSPRESO/ENSPRESO_BIOMASS.xlsx", keep_local=True),
nuts2="data/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson"),
nuts3_population="../pypsa-eur/data/bundle/nama_10r_3popgdp.tsv.gz",
swiss_cantons="../pypsa-eur/data/bundle/ch_cantons.csv",
swiss_population="../pypsa-eur/data/bundle/je-e-21.03.02.xls",
country_shapes=pypsaeur('resources/country_shapes.geojson')
output: output:
biomass_potentials_all='resources/biomass_potentials_all.csv', biomass_potentials_all='resources/biomass_potentials_all_s{simpl}_{clusters}.csv',
biomass_potentials='resources/biomass_potentials.csv' biomass_potentials='resources/biomass_potentials_s{simpl}_{clusters}.csv'
threads: 1 threads: 1
resources: mem_mb=1000 resources: mem_mb=1000
benchmark: "benchmarks/build_biomass_potentials" benchmark: "benchmarks/build_biomass_potentials_s{simpl}_{clusters}"
script: 'scripts/build_biomass_potentials.py' script: 'scripts/build_biomass_potentials.py'
@ -342,7 +347,7 @@ rule prepare_sector_network:
transport_name='resources/transport_data.csv', transport_name='resources/transport_data.csv',
traffic_data_KFZ = "data/emobility/KFZ__count", traffic_data_KFZ = "data/emobility/KFZ__count",
traffic_data_Pkw = "data/emobility/Pkw__count", traffic_data_Pkw = "data/emobility/Pkw__count",
biomass_potentials='resources/biomass_potentials.csv', biomass_potentials='resources/biomass_potentials_s{simpl}_{clusters}.csv',
heat_profile="data/heat_load_profile_BDEW.csv", heat_profile="data/heat_load_profile_BDEW.csv",
costs=CDIR + "costs_{planning_horizons}.csv", costs=CDIR + "costs_{planning_horizons}.csv",
profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"), profile_offwind_ac=pypsaeur("resources/profile_offwind-ac.nc"),

View File

@ -99,28 +99,28 @@ energy:
biomass: biomass:
year: 2030 year: 2030
scenario: Med scenario: ENS_Med
classes: classes:
solid biomass: solid biomass:
- Primary agricultural residues - Agricultural waste
- Forestry energy residue - Fuelwood residues
- Secondary forestry residues - Secondary Forestry residues - woodchips
- Secondary Forestry residues sawdust - Sawdust
- Forestry residues from landscape care biomass - Residues from landscape care
- Municipal waste - Municipal waste
not included: not included:
- Bioethanol sugar beet biomass - Sugar from sugar beet
- Rapeseeds for biodiesel - Rape seed
- sunflower and soya for Biodiesel - "Sunflower, soya seed "
- Starchy crops biomass - Bioethanol barley, wheat, grain maize, oats, other cereals and rye
- Grassy crops biomass - Miscanthus, switchgrass, RCG
- Willow biomass - Willow
- Poplar biomass potential - Poplar
- Roundwood fuelwood - FuelwoodRW
- Roundwood Chips & Pellets - C&P_RW
biogas: biogas:
- Manure biomass potential - Manure solid, liquid
- Sludge biomass - Sludge
solar_thermal: solar_thermal:

View File

@ -1,28 +1,30 @@
description,file/folder,licence,source,, description,file/folder,licence,source
JRC IDEES database,jrc-idees-2015/,CC BY 4.0,https://ec.europa.eu/jrc/en/potencia/jrc-idees,, JRC IDEES database,jrc-idees-2015/,CC BY 4.0,https://ec.europa.eu/jrc/en/potencia/jrc-idees
urban/rural fraction,urban_percent.csv,unknown,unknown,, urban/rural fraction,urban_percent.csv,unknown,unknown
JRC biomass potentials,biomass/,unknown,https://doi.org/10.2790/39014,, JRC biomass potentials,biomass/,unknown,https://doi.org/10.2790/39014
EEA emission statistics,eea/UNFCCC_v23.csv,EEA standard re-use policy,https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16,, JRC ENSPRESO biomass potentials,remote,CC BY 4.0,https://data.jrc.ec.europa.eu/dataset/74ed5a04-7d74-4807-9eab-b94774309d9f
Eurostat Energy Balances,eurostat-energy_balances-*/,Eurostat,https://ec.europa.eu/eurostat/web/energy/data/energy-balances,, EEA emission statistics,eea/UNFCCC_v23.csv,EEA standard re-use policy,https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16
Swiss energy statistics from Swiss Federal Office of Energy,switzerland-sfoe/,unknown,http://www.bfe.admin.ch/themen/00526/00541/00542/02167/index.html?dossier_id=02169,, Eurostat Energy Balances,eurostat-energy_balances-*/,Eurostat,https://ec.europa.eu/eurostat/web/energy/data/energy-balances
BASt emobility statistics,emobility/,unknown,http://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Stundenwerte.html?nn=626916,, Swiss energy statistics from Swiss Federal Office of Energy,switzerland-sfoe/,unknown,http://www.bfe.admin.ch/themen/00526/00541/00542/02167/index.html?dossier_id=02169
timezone mappings,timezone_mappings.csv,CC BY 4.0,Tom Brown,, BASt emobility statistics,emobility/,unknown,http://www.bast.de/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Stundenwerte.html?nn=626916
BDEW heating profile,heat_load_profile_BDEW.csv,unknown,https://github.com/oemof/demandlib,, timezone mappings,timezone_mappings.csv,CC BY 4.0,Tom Brown
heating profiles for Aarhus,heat_load_profile_DK_AdamJensen.csv,unknown,Adam Jensen MA thesis at Aarhus University,, BDEW heating profile,heat_load_profile_BDEW.csv,unknown,https://github.com/oemof/demandlib
George Lavidas wind/wave costs,WindWaveWEC_GLTB.xlsx,unknown,George Lavidas,, heating profiles for Aarhus,heat_load_profile_DK_AdamJensen.csv,unknown,Adam Jensen MA thesis at Aarhus University
country codes,Country_codes.csv,CC BY 4.0,Marta Victoria,, George Lavidas wind/wave costs,WindWaveWEC_GLTB.xlsx,unknown,George Lavidas
co2 budgets,co2_budget.csv,CC BY 4.0,https://arxiv.org/abs/2004.11009,, country codes,Country_codes.csv,CC BY 4.0,Marta Victoria
existing heating potentials,existing_infrastructure/existing_heating_raw.csv,unknown,https://ec.europa.eu/energy/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment_en?redir=1,, co2 budgets,co2_budget.csv,CC BY 4.0,https://arxiv.org/abs/2004.11009
IRENA existing VRE capacities,existing_infrastructure/{solar,onwind,offwind}_capcity_IRENA.csv,unknown,https://www.irena.org/Statistics/Download-Data existing heating potentials,existing_infrastructure/existing_heating_raw.csv,unknown,https://ec.europa.eu/energy/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment_en?redir=1
USGS ammonia production,myb1-2017-nitro.xls,unknown,https://www.usgs.gov/centers/nmic/nitrogen-statistics-and-information,, IRENA existing VRE capacities,existing_infrastructure/{solar|onwind|offwind}_capcity_IRENA.csv,unknown,https://www.irena.org/Statistics/Download-Data
hydrogen salt cavern potentials,hydrogen_salt_cavern_potentials.csv,CC BY 4.0,https://doi.org/10.1016/j.ijhydene.2019.12.161,, USGS ammonia production,myb1-2017-nitro.xls,unknown,https://www.usgs.gov/centers/nmic/nitrogen-statistics-and-information
hotmaps industrial site database,Industrial_Database.csv,CC BY 4.0,https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database,, hydrogen salt cavern potentials,hydrogen_salt_cavern_potentials.csv,CC BY 4.0,https://doi.org/10.1016/j.ijhydene.2019.12.161
Hotmaps building stock data,data_building_stock.csv,CC BY 4.0,https://gitlab.com/hotmaps/building-stock,, hotmaps industrial site database,Industrial_Database.csv,CC BY 4.0,https://gitlab.com/hotmaps/industrial_sites/industrial_sites_Industrial_Database
U-values Poland,u_values_poland.csv,unknown,https://data.europa.eu/euodp/de/data/dataset/building-stock-observatory,, Hotmaps building stock data,data_building_stock.csv,CC BY 4.0,https://gitlab.com/hotmaps/building-stock
Floor area missing in hotmaps building stock data,floor_area_missing.csv,unknown,https://data.europa.eu/euodp/de/data/dataset/building-stock-observatory,, U-values Poland,u_values_poland.csv,unknown,https://data.europa.eu/euodp/de/data/dataset/building-stock-observatory
Comparative level investment,comparative_level_investment.csv,Eurostat,https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Comparative_price_levels_for_investment,, Floor area missing in hotmaps building stock data,floor_area_missing.csv,unknown,https://data.europa.eu/euodp/de/data/dataset/building-stock-observatory
Electricity taxes,electricity_taxes_eu.csv,Eurostat,https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en,, Comparative level investment,comparative_level_investment.csv,Eurostat,https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Comparative_price_levels_for_investment
Building topologies and corresponding standard values,tabula-calculator-calcsetbuilding.csv,unknown,https://episcope.eu/fileadmin/tabula/public/calc/tabula-calculator.xlsx,, Electricity taxes,electricity_taxes_eu.csv,Eurostat,https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en
Retrofitting thermal envelope costs for Germany,retro_cost_germany.csv,unkown,https://www.iwu.de/forschung/handlungslogiken/kosten-energierelevanter-bau-und-anlagenteile-bei-modernisierung/,, Building topologies and corresponding standard values,tabula-calculator-calcsetbuilding.csv,unknown,https://episcope.eu/fileadmin/tabula/public/calc/tabula-calculator.xlsx
Retrofitting thermal envelope costs for Germany,retro_cost_germany.csv,unkown,https://www.iwu.de/forschung/handlungslogiken/kosten-energierelevanter-bau-und-anlagenteile-bei-modernisierung/
District heating most countries,jrc-idees-2015/,CC BY 4.0,https://ec.europa.eu/jrc/en/potencia/jrc-idees,, District heating most countries,jrc-idees-2015/,CC BY 4.0,https://ec.europa.eu/jrc/en/potencia/jrc-idees,,
District heating missing countries,district_heat_share.csv,unkown,https://www.euroheat.org/knowledge-hub/country-profiles,, District heating missing countries,district_heat_share.csv,unkown,https://www.euroheat.org/knowledge-hub/country-profiles,,

Can't render this file because it has a wrong number of fields in line 28.

View File

@ -82,6 +82,9 @@ Future release
The transport costs are determined based on the `JRC-EU-Times Bioenergy report <http://dx.doi.org/10.2790/01017>`_ The transport costs are determined based on the `JRC-EU-Times Bioenergy report <http://dx.doi.org/10.2790/01017>`_
in the new optional rule ``build_biomass_transport_costs``. in the new optional rule ``build_biomass_transport_costs``.
Biomass transport can be activated with the setting ``sector: biomass_transport: true``. Biomass transport can be activated with the setting ``sector: biomass_transport: true``.
* Use `JRC ENSPRESO database <https://data.jrc.ec.europa.eu/dataset/74ed5a04-7d74-4807-9eab-b94774309d9f>`_ to
spatially disaggregate biomass potentials to PyPSA-Eur regions based on overlaps with NUTS2 regions from ENSPRESO
(proportional to area) (`#151 <https://github.com/PyPSA/pypsa-eur-sec/pull/151>`_).
* Compatibility with ``xarray`` version 0.19. * Compatibility with ``xarray`` version 0.19.
* Separate basic chemicals into HVC, chlorine, methanol and ammonia [`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_]. * Separate basic chemicals into HVC, chlorine, methanol and ammonia [`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_].
* Add option to specify reuse, primary production, and mechanical and chemical recycling fraction of platics [`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_]. * Add option to specify reuse, primary production, and mechanical and chemical recycling fraction of platics [`#166 <https://github.com/PyPSA/PyPSA-Eur-Sec/pull/166>`_].

View File

@ -183,7 +183,7 @@ Solid biomass provides process heat up to 500 Celsius in industry, as well as fe
Solid biomass supply Solid biomass supply
===================== =====================
Only wastes and residues from the JRC biomass dataset. Only wastes and residues from the JRC ENSPRESO biomass dataset.
Oil product demand Oil product demand

View File

@ -1,55 +1,194 @@
import pandas as pd import pandas as pd
import geopandas as gpd
rename = {"UK" : "GB", "BH" : "BA"}
def build_biomass_potentials(): def build_nuts_population_data(year=2013):
config = snakemake.config['biomass'] pop = pd.read_csv(
year = config["year"] snakemake.input.nuts3_population,
scenario = config["scenario"] sep=r'\,| \t|\t',
engine='python',
na_values=[":"],
index_col=1
)[str(year)]
df = pd.read_excel(snakemake.input.jrc_potentials, # only countries
"Potentials (PJ)", pop.drop("EU28", inplace=True)
index_col=[0,1])
df.rename(columns={"Unnamed: 18": "Municipal waste"}, inplace=True) # mapping from Cantons to NUTS3
df.drop(columns="Total", inplace=True) cantons = pd.read_csv(snakemake.input.swiss_cantons)
df.replace("-", 0., inplace=True) cantons = cantons.set_index(cantons.HASC.str[3:]).NUTS
cantons = cantons.str.pad(5, side='right', fillchar='0')
column = df.iloc[:,0] # get population by NUTS3
countries = column.where(column.str.isalpha()).pad() swiss = pd.read_excel(snakemake.input.swiss_population, skiprows=3, index_col=0).loc["Residents in 1000"]
countries = [rename.get(ct, ct) for ct in countries] swiss = swiss.rename(cantons).filter(like="CH")
countries_i = pd.Index(countries, name='country')
df.set_index(countries_i, append=True, inplace=True)
df.drop(index='MS', level=0, inplace=True) # aggregate also to higher order NUTS levels
swiss = [swiss.groupby(swiss.index.str[:i]).sum() for i in range(2, 6)]
# convert from PJ to MWh # merge Europe + Switzerland
df = df / 3.6 * 1e6 pop = pd.DataFrame(pop.append(swiss), columns=["total"])
df.to_csv(snakemake.output.biomass_potentials_all) # add missing manually
pop["AL"] = 2893
pop["BA"] = 3871
pop["RS"] = 7210
# solid biomass includes: pop["ct"] = pop.index.str[:2]
# Primary agricultural residues (MINBIOAGRW1),
# Forestry energy residue (MINBIOFRSF1),
# Secondary forestry residues (MINBIOWOOW1),
# Secondary Forestry residues sawdust (MINBIOWOO1a)',
# Forestry residues from landscape care biomass (MINBIOFRSF1a),
# Municipal waste (MINBIOMUN1)',
# biogas includes: return pop
# Manure biomass potential (MINBIOGAS1),
# Sludge biomass (MINBIOSLU1),
df = df.loc[year, scenario, :]
grouper = {v: k for k, vv in config["classes"].items() for v in vv} def enspreso_biomass_potentials(year=2020, scenario="ENS_Low"):
df = df.groupby(grouper, axis=1).sum() """
Loads the JRC ENSPRESO biomass potentials.
df.index.name = "MWh/a" Parameters
----------
year : int
The year for which potentials are to be taken.
Can be {2010, 2020, 2030, 2040, 2050}.
scenario : str
The scenario. Can be {"ENS_Low", "ENS_Med", "ENS_High"}.
df.to_csv(snakemake.output.biomass_potentials) Returns
-------
pd.DataFrame
Biomass potentials for given year and scenario
in TWh/a by commodity and NUTS2 region.
"""
glossary = pd.read_excel(
str(snakemake.input.enspreso_biomass),
sheet_name="Glossary",
usecols="B:D",
skiprows=1,
index_col=0
)
df = pd.read_excel(
str(snakemake.input.enspreso_biomass),
sheet_name="ENER - NUTS2 BioCom E",
usecols="A:H"
)
df["group"] = df["E-Comm"].map(glossary.group)
df["commodity"] = df["E-Comm"].map(glossary.description)
to_rename = {
"NUTS2 Potential available by Bio Commodity": "potential",
"NUST2": "NUTS2",
}
df.rename(columns=to_rename, inplace=True)
# fill up with NUTS0 if NUTS2 is not given
df.NUTS2 = df.apply(lambda x: x.NUTS0 if x.NUTS2 == '-' else x.NUTS2, axis=1)
# convert PJ to TWh
df.potential /= 3.6
df.Unit = "TWh/a"
dff = df.query("Year == @year and Scenario == @scenario")
bio = dff.groupby(["NUTS2", "commodity"]).potential.sum().unstack()
# currently Serbia and Kosovo not split, so aggregate
bio.loc["RS"] += bio.loc["XK"]
bio.drop("XK", inplace=True)
return bio
def disaggregate_nuts0(bio):
"""
Some commodities are only given on NUTS0 level.
These are disaggregated here using the NUTS2
population as distribution key.
Parameters
----------
bio : pd.DataFrame
from enspreso_biomass_potentials()
Returns
-------
pd.DataFrame
"""
pop = build_nuts_population_data()
# get population in nuts2
pop_nuts2 = pop.loc[pop.index.str.len() == 4]
by_country = pop_nuts2.total.groupby(pop_nuts2.ct).sum()
pop_nuts2["fraction"] = pop_nuts2.total / pop_nuts2.ct.map(by_country)
# distribute nuts0 data to nuts2 by population
bio_nodal = bio.loc[pop_nuts2.ct]
bio_nodal.index = pop_nuts2.index
bio_nodal = bio_nodal.mul(pop_nuts2.fraction, axis=0)
# update inplace
bio.update(bio_nodal)
return bio
def build_nuts2_shapes():
"""
- load NUTS2 geometries
- add RS, AL, BA country shapes (not covered in NUTS 2013)
- consistently name ME, MK
"""
nuts2 = gpd.GeoDataFrame(gpd.read_file(snakemake.input.nuts2).set_index('id').geometry)
countries = gpd.read_file(snakemake.input.country_shapes).set_index('name')
missing = countries.loc[["AL", "RS", "BA"]]
nuts2.rename(index={"ME00": "ME", "MK00": "MK"}, inplace=True)
return nuts2.append(missing)
def area(gdf):
"""Returns area of GeoDataFrame geometries in square kilometers."""
return gdf.to_crs(epsg=3035).area.div(1e6)
def convert_nuts2_to_regions(bio_nuts2, regions):
"""
Converts biomass potentials given in NUTS2 to PyPSA-Eur regions based on the
overlay of both GeoDataFrames in proportion to the area.
Parameters
----------
bio_nuts2 : gpd.GeoDataFrame
JRC ENSPRESO biomass potentials indexed by NUTS2 shapes.
regions : gpd.GeoDataFrame
PyPSA-Eur clustered onshore regions
Returns
-------
gpd.GeoDataFrame
"""
# calculate area of nuts2 regions
bio_nuts2["area_nuts2"] = area(bio_nuts2)
overlay = gpd.overlay(regions, bio_nuts2)
# calculate share of nuts2 area inside region
overlay["share"] = area(overlay) / overlay["area_nuts2"]
# multiply all nuts2-level values with share of nuts2 inside region
adjust_cols = overlay.columns.difference({"name", "area_nuts2", "geometry", "share"})
overlay[adjust_cols] = overlay[adjust_cols].multiply(overlay["share"], axis=0)
bio_regions = overlay.groupby("name").sum()
bio_regions.drop(["area_nuts2", "share"], axis=1, inplace=True)
return bio_regions
if __name__ == "__main__": if __name__ == "__main__":
@ -57,12 +196,28 @@ if __name__ == "__main__":
from helper import mock_snakemake from helper import mock_snakemake
snakemake = mock_snakemake('build_biomass_potentials') snakemake = mock_snakemake('build_biomass_potentials')
config = snakemake.config['biomass']
year = config["year"]
scenario = config["scenario"]
# This is a hack, to be replaced once snakemake is unicode-conform enspreso = enspreso_biomass_potentials(year, scenario)
solid_biomass = snakemake.config['biomass']['classes']['solid biomass'] enspreso = disaggregate_nuts0(enspreso)
if 'Secondary Forestry residues sawdust' in solid_biomass:
solid_biomass.remove('Secondary Forestry residues sawdust')
solid_biomass.append('Secondary Forestry residues sawdust')
build_biomass_potentials() nuts2 = build_nuts2_shapes()
df_nuts2 = gpd.GeoDataFrame(nuts2.geometry).join(enspreso)
regions = gpd.read_file(snakemake.input.regions_onshore)
df = convert_nuts2_to_regions(df_nuts2, regions)
df.to_csv(snakemake.output.biomass_potentials_all)
grouper = {v: k for k, vv in config["classes"].items() for v in vv}
df = df.groupby(grouper, axis=1).sum()
df *= 1e6 # TWh/a to MWh/a
df.index.name = "MWh/a"
df.to_csv(snakemake.output.biomass_potentials)

View File

@ -1711,17 +1711,10 @@ def add_biomass(n, costs):
print("adding biomass") print("adding biomass")
# biomass distributed at country level - i.e. transport within country allowed
countries = n.buses.country.dropna().unique()
biomass_potentials = pd.read_csv(snakemake.input.biomass_potentials, index_col=0) biomass_potentials = pd.read_csv(snakemake.input.biomass_potentials, index_col=0)
if options["biomass_transport"]: if options["biomass_transport"]:
# potential per node distributed within country by population biomass_potentials_spatial = biomass_potentials.rename(index=lambda x: x + " solid biomass")
biomass_potentials_spatial = (biomass_potentials.loc[pop_layout.ct]
.set_index(pop_layout.index)
.mul(pop_layout.fraction, axis="index")
.rename(index=lambda x: x + " solid biomass"))
else: else:
biomass_potentials_spatial = biomass_potentials.sum() biomass_potentials_spatial = biomass_potentials.sum()
@ -1744,9 +1737,9 @@ def add_biomass(n, costs):
"EU biogas", "EU biogas",
bus="EU biogas", bus="EU biogas",
carrier="biogas", carrier="biogas",
e_nom=biomass_potentials.loc[countries, "biogas"].sum(), e_nom=biomass_potentials["biogas"].sum(),
marginal_cost=costs.at['biogas', 'fuel'], marginal_cost=costs.at['biogas', 'fuel'],
e_initial=biomass_potentials.loc[countries, "biogas"].sum() e_initial=biomass_potentials["biogas"].sum()
) )
n.madd("Store", n.madd("Store",
@ -2237,6 +2230,7 @@ if __name__ == "__main__":
lv=1.0, lv=1.0,
sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1', sector_opts='Co2L0-168H-T-H-B-I-solar3-dist1',
planning_horizons="2020", planning_horizons="2020",
planning_horizons="2030",
) )
logging.basicConfig(level=snakemake.config['logging_level']) logging.basicConfig(level=snakemake.config['logging_level'])