Implement line rating
This commit is contained in:
parent
47ab49e86b
commit
8febb73bf1
18
Snakefile
18
Snakefile
@ -215,12 +215,25 @@ if 'hydro' in config['renewable'].keys():
|
||||
resources: mem=5000
|
||||
script: 'scripts/build_hydro_profile.py'
|
||||
|
||||
if config['lines'].get('line_rating', False):
|
||||
rule build_line_rating:
|
||||
input:
|
||||
base_network="networks/base.nc",
|
||||
cutout="cutouts/" + config["lines"]['cutout'] + ".nc"
|
||||
output:
|
||||
output="resources/line_rating.nc"
|
||||
log: "logs/build_line_rating.log"
|
||||
benchmark: "benchmarks/build_line_rating"
|
||||
threads: ATLITE_NPROCESSES
|
||||
resources: mem=ATLITE_NPROCESSES * 1000
|
||||
script: "scripts/build_line_rating.py"
|
||||
|
||||
rule add_electricity:
|
||||
input:
|
||||
base_network='networks/base.nc',
|
||||
base_network = "networks/base.nc",
|
||||
tech_costs=COSTS,
|
||||
regions="resources/regions_onshore.geojson",
|
||||
line_rating="resources/line_rating.nc" if config['lines'].get('line_rating', False) else None,
|
||||
powerplants='resources/powerplants.csv',
|
||||
hydro_capacities='data/bundle/hydro_capacities.csv',
|
||||
geth_hydro_capacities='data/geth2015_hydro_capacities.csv',
|
||||
@ -397,5 +410,4 @@ rule plot_p_nom_max:
|
||||
input: input_plot_p_nom_max
|
||||
output: "results/plots/elec_s{simpl}_cum_p_nom_max_{clusts}_{techs}_{country}.{ext}"
|
||||
log: "logs/plot_p_nom_max/elec_s{simpl}_{clusts}_{techs}_{country}_{ext}.log"
|
||||
script: "scripts/plot_p_nom_max.py"
|
||||
|
||||
script: "scripts/plot_p_nom_max.py"
|
265
config.yaml
Normal file
265
config.yaml
Normal file
@ -0,0 +1,265 @@
|
||||
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: CC0-1.0
|
||||
|
||||
version: 0.4.0
|
||||
tutorial: true
|
||||
|
||||
logging:
|
||||
level: INFO
|
||||
format: '%(levelname)s:%(name)s:%(message)s'
|
||||
|
||||
summary_dir: results
|
||||
|
||||
scenario:
|
||||
simpl: ['']
|
||||
ll: ['copt']
|
||||
clusters: [5]
|
||||
opts: [Co2L-24H]
|
||||
|
||||
countries: ['DE']
|
||||
|
||||
clustering:
|
||||
simplify:
|
||||
to_substations: false # network is simplified to nodes with positive or negative power injection (i.e. substations or offwind connections)
|
||||
|
||||
snapshots:
|
||||
start: "2013-03-01"
|
||||
end: "2013-03-07"
|
||||
closed: 'left' # end is not inclusive
|
||||
|
||||
enable:
|
||||
prepare_links_p_nom: false
|
||||
retrieve_databundle: true
|
||||
build_cutout: true
|
||||
retrieve_cutout: false
|
||||
build_natura_raster: false
|
||||
retrieve_natura_raster: true
|
||||
custom_busmap: false
|
||||
|
||||
electricity:
|
||||
voltages: [220., 300., 380.]
|
||||
co2limit: 100.e+6
|
||||
|
||||
extendable_carriers:
|
||||
Generator: [OCGT]
|
||||
StorageUnit: [] #battery, H2
|
||||
Store: [battery, H2]
|
||||
Link: []
|
||||
|
||||
max_hours:
|
||||
battery: 6
|
||||
H2: 168
|
||||
|
||||
powerplants_filter: false # use pandas query strings here, e.g. Country not in ['Germany']
|
||||
custom_powerplants: false # use pandas query strings here, e.g. Country in ['Germany']
|
||||
conventional_carriers: [coal, CCGT] # [nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass]
|
||||
|
||||
atlite:
|
||||
nprocesses: 4
|
||||
cutouts:
|
||||
europe-2013-era5-tutorial:
|
||||
module: era5
|
||||
x: [4., 15.]
|
||||
y: [46., 56.]
|
||||
time: ["2013-03", "2013-03"]
|
||||
|
||||
renewable:
|
||||
onwind:
|
||||
cutout: europe-2013-era5-tutorial
|
||||
resource:
|
||||
method: wind
|
||||
turbine: Vestas_V112_3MW
|
||||
capacity_per_sqkm: 3 # ScholzPhd Tab 4.3.1: 10MW/km^2
|
||||
# correction_factor: 0.93
|
||||
corine:
|
||||
# Scholz, Y. (2012). Renewable energy based electricity supply at low costs:
|
||||
# development of the REMix model and application for Europe. ( p.42 / p.28)
|
||||
grid_codes: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
|
||||
24, 25, 26, 27, 28, 29, 31, 32]
|
||||
distance: 1000
|
||||
distance_grid_codes: [1, 2, 3, 4, 5, 6]
|
||||
natura: true
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
offwind-ac:
|
||||
cutout: europe-2013-era5-tutorial
|
||||
resource:
|
||||
method: wind
|
||||
turbine: NREL_ReferenceTurbine_5MW_offshore
|
||||
capacity_per_sqkm: 3
|
||||
# correction_factor: 0.93
|
||||
corine: [44, 255]
|
||||
natura: true
|
||||
max_shore_distance: 30000
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
offwind-dc:
|
||||
cutout: europe-2013-era5-tutorial
|
||||
resource:
|
||||
method: wind
|
||||
turbine: NREL_ReferenceTurbine_5MW_offshore
|
||||
# ScholzPhd Tab 4.3.1: 10MW/km^2
|
||||
capacity_per_sqkm: 3
|
||||
# correction_factor: 0.93
|
||||
corine: [44, 255]
|
||||
natura: true
|
||||
min_shore_distance: 30000
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
solar:
|
||||
cutout: europe-2013-era5-tutorial
|
||||
resource:
|
||||
method: pv
|
||||
panel: CSi
|
||||
orientation:
|
||||
slope: 35.
|
||||
azimuth: 180.
|
||||
capacity_per_sqkm: 1.7 # ScholzPhd Tab 4.3.1: 170 MW/km^2
|
||||
# Determined by comparing uncorrected area-weighted full-load hours to those
|
||||
# published in Supplementary Data to
|
||||
# Pietzcker, Robert Carl, et al. "Using the sun to decarbonize the power
|
||||
# sector: The economic potential of photovoltaics and concentrating solar
|
||||
# power." Applied Energy 135 (2014): 704-720.
|
||||
correction_factor: 0.854337
|
||||
corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
|
||||
14, 15, 16, 17, 18, 19, 20, 26, 31, 32]
|
||||
natura: true
|
||||
potential: simple # or conservative
|
||||
clip_p_max_pu: 1.e-2
|
||||
|
||||
lines:
|
||||
types:
|
||||
220.: "Al/St 240/40 2-bundle 220.0"
|
||||
300.: "Al/St 240/40 3-bundle 300.0"
|
||||
380.: "Al/St 240/40 4-bundle 380.0"
|
||||
s_max_pu: 0.7
|
||||
s_nom_max: .inf
|
||||
length_factor: 1.25
|
||||
under_construction: 'zero' # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity
|
||||
cutout: "europe-2013-era5-tutorial"
|
||||
line_rating: true
|
||||
|
||||
links:
|
||||
p_max_pu: 1.0
|
||||
p_nom_max: .inf
|
||||
include_tyndp: true
|
||||
under_construction: 'zero' # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity
|
||||
|
||||
transformers:
|
||||
x: 0.1
|
||||
s_nom: 2000.
|
||||
type: ''
|
||||
|
||||
load:
|
||||
power_statistics: True # only for files from <2019; set false in order to get ENTSOE transparency data
|
||||
interpolate_limit: 3 # data gaps up until this size are interpolated linearly
|
||||
time_shift_for_large_gaps: 1w # data gaps up until this size are copied by copying from
|
||||
manual_adjustments: true # false
|
||||
scaling_factor: 1.0
|
||||
|
||||
costs:
|
||||
year: 2030
|
||||
discountrate: 0.07 # From a Lion Hirth paper, also reflects average of Noothout et al 2016
|
||||
USD2013_to_EUR2013: 0.7532 # [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html
|
||||
marginal_cost:
|
||||
solar: 0.01
|
||||
onwind: 0.015
|
||||
offwind: 0.015
|
||||
H2: 0.
|
||||
battery: 0.
|
||||
emission_prices: # in currency per tonne emission, only used with the option Ep
|
||||
co2: 0.
|
||||
|
||||
solving:
|
||||
options:
|
||||
formulation: kirchhoff
|
||||
load_shedding: false
|
||||
noisy_costs: true
|
||||
min_iterations: 1
|
||||
max_iterations: 1
|
||||
clip_p_max_pu: 0.01
|
||||
skip_iterations: false
|
||||
track_iterations: false
|
||||
solver:
|
||||
name: cbc
|
||||
|
||||
plotting:
|
||||
map:
|
||||
figsize: [7, 7]
|
||||
boundaries: [-10.2, 29, 35, 72]
|
||||
p_nom:
|
||||
bus_size_factor: 5.e+4
|
||||
linewidth_factor: 3.e+3
|
||||
|
||||
costs_max: 800
|
||||
costs_threshold: 1
|
||||
|
||||
energy_max: 15000.
|
||||
energy_min: -10000.
|
||||
energy_threshold: 50.
|
||||
|
||||
vre_techs: ["onwind", "offwind-ac", "offwind-dc", "solar", "ror"]
|
||||
conv_techs: ["OCGT", "CCGT", "Nuclear", "Coal"]
|
||||
storage_techs: ["hydro+PHS", "battery", "H2"]
|
||||
load_carriers: ["AC load"]
|
||||
AC_carriers: ["AC line", "AC transformer"]
|
||||
link_carriers: ["DC line", "Converter AC-DC"]
|
||||
tech_colors:
|
||||
"onwind" : "#235ebc"
|
||||
"onshore wind" : "#235ebc"
|
||||
'offwind' : "#6895dd"
|
||||
'offwind-ac' : "#6895dd"
|
||||
'offshore wind' : "#6895dd"
|
||||
'offshore wind ac' : "#6895dd"
|
||||
'offwind-dc' : "#74c6f2"
|
||||
'offshore wind dc' : "#74c6f2"
|
||||
"hydro" : "#08ad97"
|
||||
"hydro+PHS" : "#08ad97"
|
||||
"PHS" : "#08ad97"
|
||||
"hydro reservoir" : "#08ad97"
|
||||
'hydroelectricity' : '#08ad97'
|
||||
"ror" : "#4adbc8"
|
||||
"run of river" : "#4adbc8"
|
||||
'solar' : "#f9d002"
|
||||
'solar PV' : "#f9d002"
|
||||
'solar thermal' : '#ffef60'
|
||||
'biomass' : '#0c6013'
|
||||
'solid biomass' : '#06540d'
|
||||
'biogas' : '#23932d'
|
||||
'waste' : '#68896b'
|
||||
'geothermal' : '#ba91b1'
|
||||
"OCGT" : "#d35050"
|
||||
"gas" : "#d35050"
|
||||
"natural gas" : "#d35050"
|
||||
"CCGT" : "#b20101"
|
||||
"nuclear" : "#ff9000"
|
||||
"coal" : "#707070"
|
||||
"lignite" : "#9e5a01"
|
||||
"oil" : "#262626"
|
||||
"H2" : "#ea048a"
|
||||
"hydrogen storage" : "#ea048a"
|
||||
"battery" : "#b8ea04"
|
||||
"Electric load" : "#f9d002"
|
||||
"electricity" : "#f9d002"
|
||||
"lines" : "#70af1d"
|
||||
"transmission lines" : "#70af1d"
|
||||
"AC-AC" : "#70af1d"
|
||||
"AC line" : "#70af1d"
|
||||
"links" : "#8a1caf"
|
||||
"HVDC links" : "#8a1caf"
|
||||
"DC-DC" : "#8a1caf"
|
||||
"DC link" : "#8a1caf"
|
||||
nice_names:
|
||||
OCGT: "Open-Cycle Gas"
|
||||
CCGT: "Combined-Cycle Gas"
|
||||
offwind-ac: "Offshore Wind (AC)"
|
||||
offwind-dc: "Offshore Wind (DC)"
|
||||
onwind: "Onshore Wind"
|
||||
solar: "Solar"
|
||||
PHS: "Pumped Hydro Storage"
|
||||
hydro: "Reservoir & Dam"
|
||||
battery: "Battery Storage"
|
||||
H2: "Hydrogen Storage"
|
||||
lines: "Transmission Lines"
|
||||
ror: "Run of River"
|
@ -539,6 +539,10 @@ def estimate_renewable_capacities(n, tech_map=None):
|
||||
.where(lambda s: s>0.1, 0.)) # only capacities above 100kW
|
||||
n.generators.loc[tech_i, 'p_nom_min'] = n.generators.loc[tech_i, 'p_nom']
|
||||
|
||||
def attach_line_rating(n):
|
||||
if snakemake.config["lines"]["line_rating"]:
|
||||
s_max=xr.open_dataarray(snakemake.input.line_rating).to_pandas().transpose()
|
||||
n.lines_t.s_max_pu=s_max/n.lines.loc[s_max.columns,:]['s_nom'] #only considers overhead lines
|
||||
|
||||
def add_nice_carrier_names(n, config=None):
|
||||
if config is None: config = snakemake.config
|
||||
@ -575,9 +579,11 @@ if __name__ == "__main__":
|
||||
attach_hydro(n, costs, ppl)
|
||||
attach_extendable_generators(n, costs, ppl)
|
||||
|
||||
|
||||
estimate_renewable_capacities(n)
|
||||
attach_OPSD_renewables(n)
|
||||
update_p_nom_max(n)
|
||||
attach_line_rating(n)
|
||||
|
||||
add_nice_carrier_names(n)
|
||||
|
||||
|
89
scripts/build_line_rating.py
Normal file
89
scripts/build_line_rating.py
Normal file
@ -0,0 +1,89 @@
|
||||
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# coding: utf-8
|
||||
"""
|
||||
Adds dynamic line rating timeseries to the base network.
|
||||
|
||||
Relevant Settings
|
||||
-----------------
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
lines_t:
|
||||
s_max_pu
|
||||
|
||||
|
||||
.. seealso::
|
||||
Documentation of the configuration file ``config.yaml`
|
||||
Inputs
|
||||
------
|
||||
|
||||
- ``data/cutouts``:
|
||||
- ``networks/base.nc``: confer :ref:`base`
|
||||
|
||||
Outputs
|
||||
-------
|
||||
|
||||
- ``networks/base_with_line_rating.nc``
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The rule :mod:`build_line_rating` calculates the line rating for transmission lines.
|
||||
The line rating provides the maximal capacity of a transmission line considering the heat exchange with the environment.
|
||||
|
||||
The folloing heat gains and losses are considered:
|
||||
|
||||
- heat gain through resistive losses
|
||||
- heat gain trough solar radiation
|
||||
- heat loss through radiation of the trasnmission line
|
||||
- heat loss through forced convection with wind
|
||||
- heat loss through natural convection
|
||||
|
||||
|
||||
With a heat balance considering the maximum temperature threshold of the tranmission line,
|
||||
the maximal possible capacity factor "s_max_pu" for each transmission line at each time step is calculated.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from _helpers import configure_logging
|
||||
|
||||
import pypsa
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import geopandas as gpd
|
||||
from shapely.geometry import Point, LineString as Line
|
||||
import atlite
|
||||
import xarray as xr
|
||||
|
||||
|
||||
def calculate_line_rating(n):
|
||||
relevant_lines=n.lines[(n.lines['underground']==False) & (n.lines['under_construction']==False)]
|
||||
buses = relevant_lines[["bus0", "bus1"]].values
|
||||
x = n.buses.x
|
||||
y = n.buses.y
|
||||
shapes = [Line([Point(x[b0], y[b0]), Point(x[b1], y[b1])]) for (b0, b1) in buses]
|
||||
shapes = gpd.GeoSeries(shapes, index=relevant_lines.index)
|
||||
cutout = atlite.Cutout(snakemake.input.cutout)
|
||||
if relevant_lines.r_pu.eq(0).all():
|
||||
#Overwrite standard line resistance with line resistance obtained from line type
|
||||
relevant_lines["r_pu"]=relevant_lines.join(n.line_types["r_per_length"], on=["type"])['r_per_length']/1000 #in meters
|
||||
Imax=cutout.line_rating(shapes, relevant_lines.r_pu)
|
||||
da = xr.DataArray(data=np.sqrt(3) * Imax * relevant_lines["v_nom"].values.reshape(-1,1) * relevant_lines["num_parallel"].values.reshape(-1,1)/1e3, #in mW
|
||||
attrs=dict(description="Maximal possible power in MW for given line considering line rating"))
|
||||
return da
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
snakemake = mock_snakemake('build_line_rating', network='elec', simpl='',
|
||||
clusters='6', ll='copt', opts='Co2L-24H')
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = pypsa.Network(snakemake.input.base_network)
|
||||
da=calculate_line_rating(n)
|
||||
|
||||
da.to_netcdf(snakemake.output[0])
|
Loading…
Reference in New Issue
Block a user