[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci
This commit is contained in:
pre-commit-ci[bot] 2024-07-24 15:04:58 +00:00
parent b720bd9eca
commit 8d6feb6a66
5 changed files with 132 additions and 82 deletions

View File

@ -1,12 +1,18 @@
# -*- coding: utf-8 -*-
from abc import ABC, abstractmethod
from typing import Union
import xarray as xr
import numpy as np
import xarray as xr
class BaseCopApproximator(ABC):
"""
Abstract class for approximating the coefficient of performance (COP) of a heat pump."""
Abstract class for approximating the coefficient of performance (COP) of a
heat pump.
"""
def __init__(
self,
forward_temperature_celsius: Union[xr.DataArray, np.array],
@ -26,7 +32,8 @@ class BaseCopApproximator(ABC):
@abstractmethod
def approximate_cop(self) -> Union[xr.DataArray, np.array]:
"""Approximate heat pump coefficient of performance (COP).
"""
Approximate heat pump coefficient of performance (COP).
Returns:
-------
@ -35,27 +42,38 @@ class BaseCopApproximator(ABC):
"""
pass
def celsius_to_kelvin(t_celsius: Union[float, xr.DataArray, np.array]) -> Union[float, xr.DataArray, np.array]:
def celsius_to_kelvin(
t_celsius: Union[float, xr.DataArray, np.array]
) -> Union[float, xr.DataArray, np.array]:
if (np.asarray(t_celsius) > 200).any():
raise ValueError("t_celsius > 200. Are you sure you are using the right units?")
raise ValueError(
"t_celsius > 200. Are you sure you are using the right units?"
)
return t_celsius + 273.15
def logarithmic_mean(t_hot: Union[float, xr.DataArray, np.ndarray], t_cold: Union[float, xr.DataArray, np.ndarray]) -> Union[float, xr.DataArray, np.ndarray]:
def logarithmic_mean(
t_hot: Union[float, xr.DataArray, np.ndarray],
t_cold: Union[float, xr.DataArray, np.ndarray],
) -> Union[float, xr.DataArray, np.ndarray]:
if (np.asarray(t_hot <= t_cold)).any():
raise ValueError("t_hot must be greater than t_cold")
return (t_hot - t_cold) / np.log(t_hot / t_cold)
@staticmethod
def celsius_to_kelvin(t_celsius: Union[float, xr.DataArray, np.array]) -> Union[float, xr.DataArray, np.array]:
def celsius_to_kelvin(
t_celsius: Union[float, xr.DataArray, np.array]
) -> Union[float, xr.DataArray, np.array]:
if (np.asarray(t_celsius) > 200).any():
raise ValueError("t_celsius > 200. Are you sure you are using the right units?")
raise ValueError(
"t_celsius > 200. Are you sure you are using the right units?"
)
return t_celsius + 273.15
@staticmethod
def logarithmic_mean(t_hot: Union[float, xr.DataArray, np.ndarray], t_cold: Union[float, xr.DataArray, np.ndarray]) -> Union[float, xr.DataArray, np.ndarray]:
def logarithmic_mean(
t_hot: Union[float, xr.DataArray, np.ndarray],
t_cold: Union[float, xr.DataArray, np.ndarray],
) -> Union[float, xr.DataArray, np.ndarray]:
if (np.asarray(t_hot <= t_cold)).any():
raise ValueError("t_hot must be greater than t_cold")
return (t_hot - t_cold) / np.log(t_hot / t_cold)

View File

@ -1,16 +1,21 @@
# -*- coding: utf-8 -*-
from typing import Union
import xarray as xr
import numpy as np
import numpy as np
import xarray as xr
from BaseCopApproximator import BaseCopApproximator
class CentralHeatingCopApproximator(BaseCopApproximator):
"""
Approximate the coefficient of performance (COP) for a heat pump in a central heating system (district heating).
Approximate the coefficient of performance (COP) for a heat pump in a
central heating system (district heating).
Uses an approximation method proposed by Jensen et al. (2018) and default parameters from Pieper et al. (2020).
The method is based on a thermodynamic heat pump model with some hard-to-know parameters being approximated.
Uses an approximation method proposed by Jensen et al. (2018) and
default parameters from Pieper et al. (2020). The method is based on
a thermodynamic heat pump model with some hard-to-know parameters
being approximated.
"""
def __init__(
@ -42,11 +47,19 @@ class CentralHeatingCopApproximator(BaseCopApproximator):
heat_loss : float, optional
The heat loss, by default 0.0.
"""
self.t_source_in_kelvin = BaseCopApproximator.celsius_to_kelvin(source_inlet_temperature_celsius)
self.t_sink_out_kelvin = BaseCopApproximator.celsius_to_kelvin(forward_temperature_celsius)
self.t_source_in_kelvin = BaseCopApproximator.celsius_to_kelvin(
source_inlet_temperature_celsius
)
self.t_sink_out_kelvin = BaseCopApproximator.celsius_to_kelvin(
forward_temperature_celsius
)
self.t_sink_in_kelvin = BaseCopApproximator.celsius_to_kelvin(return_temperature_celsius)
self.t_source_out = BaseCopApproximator.celsius_to_kelvin(source_outlet_temperature_celsius)
self.t_sink_in_kelvin = BaseCopApproximator.celsius_to_kelvin(
return_temperature_celsius
)
self.t_source_out = BaseCopApproximator.celsius_to_kelvin(
source_outlet_temperature_celsius
)
self.isentropic_efficiency_compressor_kelvin = isentropic_compressor_efficiency
self.heat_loss = heat_loss
@ -87,14 +100,17 @@ class CentralHeatingCopApproximator(BaseCopApproximator):
@property
def t_sink_mean_kelvin(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the logarithmic mean temperature difference between the cold and hot sinks.
Calculate the logarithmic mean temperature difference between the cold
and hot sinks.
Returns
-------
Union[xr.DataArray, np.array]
The mean temperature difference.
"""
return BaseCopApproximator.logarithmic_mean(t_cold=self.t_sink_in_kelvin, t_hot=self.t_sink_out_kelvin)
return BaseCopApproximator.logarithmic_mean(
t_cold=self.t_sink_in_kelvin, t_hot=self.t_sink_out_kelvin
)
@property
def t_source_mean_kelvin(self) -> Union[xr.DataArray, np.array]:
@ -106,12 +122,15 @@ class CentralHeatingCopApproximator(BaseCopApproximator):
Union[xr.DataArray, np.array]
The mean temperature of the heat source.
"""
return BaseCopApproximator.logarithmic_mean(t_hot=self.t_source_in_kelvin, t_cold=self.t_source_out)
return BaseCopApproximator.logarithmic_mean(
t_hot=self.t_source_in_kelvin, t_cold=self.t_source_out
)
@property
def delta_t_lift(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the temperature lift as the difference between the logarithmic sink and source temperatures.
Calculate the temperature lift as the difference between the
logarithmic sink and source temperatures.
Returns
-------
@ -132,14 +151,14 @@ class CentralHeatingCopApproximator(BaseCopApproximator):
-------
np.array
The ideal Lorenz COP.
"""
return self.t_sink_mean_kelvin / self.delta_t_lift
@property
def delta_t_refrigerant_source(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the temperature difference between the refrigerant source inlet and outlet.
Calculate the temperature difference between the refrigerant source
inlet and outlet.
Returns
-------
@ -153,7 +172,8 @@ class CentralHeatingCopApproximator(BaseCopApproximator):
@property
def delta_t_refrigerant_sink(self) -> Union[xr.DataArray, np.array]:
"""
Temperature difference between the refrigerant and the sink based on approximation.
Temperature difference between the refrigerant and the sink based on
approximation.
Returns
-------
@ -165,7 +185,8 @@ class CentralHeatingCopApproximator(BaseCopApproximator):
@property
def ratio_evaporation_compression_work(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the ratio of evaporation to compression work based on approximation.
Calculate the ratio of evaporation to compression work based on
approximation.
Returns
-------
@ -190,7 +211,8 @@ class CentralHeatingCopApproximator(BaseCopApproximator):
self, delta_t_source: Union[xr.DataArray, np.array]
) -> Union[xr.DataArray, np.array]:
"""
Approximates the temperature difference between the refrigerant and the source.
Approximates the temperature difference between the refrigerant and the
source.
Parameters
----------
@ -212,7 +234,8 @@ class CentralHeatingCopApproximator(BaseCopApproximator):
c: float = {"ammonia": 0.016, "isobutane": 2.4},
) -> Union[xr.DataArray, np.array]:
"""
Approximates the temperature difference between the refrigerant and heat sink.
Approximates the temperature difference between the refrigerant and
heat sink.
Parameters:
----------
@ -236,7 +259,6 @@ class CentralHeatingCopApproximator(BaseCopApproximator):
The approximate temperature difference at the refrigerant sink is calculated using the following formula:
a * (t_sink_out - t_source_out + 2 * delta_t_pinch) + b * delta_t_sink + c
"""
if refrigerant not in a.keys():
raise ValueError(
@ -292,4 +314,3 @@ class CentralHeatingCopApproximator(BaseCopApproximator):
+ b[refrigerant] * self.delta_t_sink
+ c[refrigerant]
)

View File

@ -1,15 +1,17 @@
# -*- coding: utf-8 -*-
from typing import Union
import xarray as xr
import numpy as np
import numpy as np
import xarray as xr
from BaseCopApproximator import BaseCopApproximator
class DecentralHeatingCopApproximator(BaseCopApproximator):
"""
Approximate the coefficient of performance (COP) for a heat pump in a decentral heating system (individual/household heating).
Approximate the coefficient of performance (COP) for a heat pump in a
decentral heating system (individual/household heating).
Uses a quadratic regression on the temperature difference between the source and sink based on empirical data proposed by Staffell et al. 2012 .
@ -22,7 +24,7 @@ class DecentralHeatingCopApproximator(BaseCopApproximator):
self,
forward_temperature_celsius: Union[xr.DataArray, np.array],
source_inlet_temperature_celsius: Union[xr.DataArray, np.array],
source_type: str
source_type: str,
):
"""
Initialize the COPProfileBuilder object.
@ -45,9 +47,11 @@ class DecentralHeatingCopApproximator(BaseCopApproximator):
def approximate_cop(self) -> Union[xr.DataArray, np.array]:
"""
Compute output of quadratic regression for air-/ground-source heat pumps.
Compute output of quadratic regression for air-/ground-source heat
pumps.
Calls the appropriate method depending on `source`."""
Calls the appropriate method depending on `source`.
"""
if self.source_type == "air":
return self._approximate_cop_air_source()
elif self.source_type == "soil":
@ -62,7 +66,8 @@ class DecentralHeatingCopApproximator(BaseCopApproximator):
Returns
-------
Union[xr.DataArray, np.array]
The calculated COP values."""
The calculated COP values.
"""
return 6.81 - 0.121 * self.delta_t + 0.000630 * self.delta_t**2
def _approximate_cop_ground_source(self) -> Union[xr.DataArray, np.array]:
@ -74,6 +79,6 @@ class DecentralHeatingCopApproximator(BaseCopApproximator):
Returns
-------
Union[xr.DataArray, np.array]
The calculated COP values."""
The calculated COP values.
"""
return 8.77 - 0.150 * self.delta_t + 0.000734 * self.delta_t**2

View File

@ -1,10 +1,11 @@
# -*- coding: utf-8 -*-
import xarray as xr
import numpy as np
import xarray as xr
from _helpers import set_scenario_config
from CentralHeatingCopApproximator import CentralHeatingCopApproximator
from DecentralHeatingCopApproximator import DecentralHeatingCopApproximator
from _helpers import set_scenario_config
if __name__ == "__main__":
if "snakemake" not in globals():
@ -20,23 +21,28 @@ if __name__ == "__main__":
for source_type in ["air", "soil"]:
# source inlet temperature (air/soil) is based on weather data
source_inlet_temperature_celsius = xr.open_dataarray(snakemake.input[f"temp_{source_type}_total"])
source_inlet_temperature_celsius = xr.open_dataarray(
snakemake.input[f"temp_{source_type}_total"]
)
# Approximate COP for decentral (individual) heating
cop_individual_heating = DecentralHeatingCopApproximator(
forward_temperature_celsius=snakemake.params.heat_pump_sink_T_decentral_heating,
source_inlet_temperature_celsius=source_inlet_temperature_celsius,
source_type=source_type
source_type=source_type,
).approximate_cop()
cop_individual_heating.to_netcdf(snakemake.output[f"cop_{source_type}_decentral_heating"])
cop_individual_heating.to_netcdf(
snakemake.output[f"cop_{source_type}_decentral_heating"]
)
# Approximate COP for central (district) heating
cop_central_heating = CentralHeatingCopApproximator(
forward_temperature_celsius=snakemake.params.forward_temperature_central_heating,
return_temperature_celsius=snakemake.params.return_temperature_central_heating,
source_inlet_temperature_celsius=source_inlet_temperature_celsius,
source_outlet_temperature_celsius=source_inlet_temperature_celsius - snakemake.params.heat_source_cooling_central_heating,
source_outlet_temperature_celsius=source_inlet_temperature_celsius
- snakemake.params.heat_source_cooling_central_heating,
).approximate_cop()
cop_central_heating.to_netcdf(snakemake.output[f"cop_{source_type}_central_heating"])
cop_central_heating.to_netcdf(
snakemake.output[f"cop_{source_type}_central_heating"]
)