|
|
@ -1,155 +1,156 @@
|
|
|
|
,Unit,Values,Description
|
|
|
|
,Unit,Values,Description
|
|
|
|
transport,--,"{true, false}",Flag to include transport sector.
|
|
|
|
transport,--,"{true, false}",Flag to include transport sector.
|
|
|
|
heating,--,"{true, false}",Flag to include heating sector.
|
|
|
|
heating,--,"{true, false}",Flag to include heating sector.
|
|
|
|
biomass,--,"{true, false}",Flag to include biomass sector.
|
|
|
|
biomass,--,"{true, false}",Flag to include biomass sector.
|
|
|
|
industry,--,"{true, false}",Flag to include industry sector.
|
|
|
|
industry,--,"{true, false}",Flag to include industry sector.
|
|
|
|
agriculture,--,"{true, false}",Flag to include agriculture sector.
|
|
|
|
agriculture,--,"{true, false}",Flag to include agriculture sector.
|
|
|
|
district_heating,--,,`prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_
|
|
|
|
fossil_fuels,--,"{true, false}","Flag to include imports of fossil fuels ( [""coal"", ""gas"", ""oil"", ""lignite""])"
|
|
|
|
-- potential,--,float,maximum fraction of urban demand which can be supplied by district heating. Ignored where below current fraction.
|
|
|
|
district_heating,--,,`prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_
|
|
|
|
-- progress,--,Dictionary with planning horizons as keys., Increase of today's district heating demand to potential maximum district heating share. Progress = 0 means today's district heating share. Progress = 1 means maximum fraction of urban demand is supplied by district heating
|
|
|
|
-- potential,--,float,maximum fraction of urban demand which can be supplied by district heating. Ignored where below current fraction.
|
|
|
|
-- district_heating_loss,--,float,Share increase in district heat demand in urban central due to heat losses
|
|
|
|
-- progress,--,Dictionary with planning horizons as keys., Increase of today's district heating demand to potential maximum district heating share. Progress = 0 means today's district heating share. Progress = 1 means maximum fraction of urban demand is supplied by district heating
|
|
|
|
cluster_heat_buses,--,"{true, false}",Cluster residential and service heat buses in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_ to one to save memory.
|
|
|
|
-- district_heating_loss,--,float,Share increase in district heat demand in urban central due to heat losses
|
|
|
|
,,,
|
|
|
|
cluster_heat_buses,--,"{true, false}",Cluster residential and service heat buses in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_ to one to save memory.
|
|
|
|
bev_dsm_restriction _value,--,float,Adds a lower state of charge (SOC) limit for battery electric vehicles (BEV) to manage its own energy demand (DSM). Located in `build_transport_demand.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_transport_demand.py>`_. Set to 0 for no restriction on BEV DSM
|
|
|
|
,,,
|
|
|
|
bev_dsm_restriction _time,--,float,Time at which SOC of BEV has to be dsm_restriction_value
|
|
|
|
bev_dsm_restriction _value,--,float,Adds a lower state of charge (SOC) limit for battery electric vehicles (BEV) to manage its own energy demand (DSM). Located in `build_transport_demand.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_transport_demand.py>`_. Set to 0 for no restriction on BEV DSM
|
|
|
|
transport_heating _deadband_upper,°C,float,"The maximum temperature in the vehicle. At higher temperatures, the energy required for cooling in the vehicle increases."
|
|
|
|
bev_dsm_restriction _time,--,float,Time at which SOC of BEV has to be dsm_restriction_value
|
|
|
|
transport_heating _deadband_lower,°C,float,"The minimum temperature in the vehicle. At lower temperatures, the energy required for heating in the vehicle increases."
|
|
|
|
transport_heating _deadband_upper,°C,float,"The maximum temperature in the vehicle. At higher temperatures, the energy required for cooling in the vehicle increases."
|
|
|
|
,,,
|
|
|
|
transport_heating _deadband_lower,°C,float,"The minimum temperature in the vehicle. At lower temperatures, the energy required for heating in the vehicle increases."
|
|
|
|
ICE_lower_degree_factor,--,float,Share increase in energy demand in internal combustion engine (ICE) for each degree difference between the cold environment and the minimum temperature.
|
|
|
|
,,,
|
|
|
|
ICE_upper_degree_factor,--,float,Share increase in energy demand in internal combustion engine (ICE) for each degree difference between the hot environment and the maximum temperature.
|
|
|
|
ICE_lower_degree_factor,--,float,Share increase in energy demand in internal combustion engine (ICE) for each degree difference between the cold environment and the minimum temperature.
|
|
|
|
EV_lower_degree_factor,--,float,Share increase in energy demand in electric vehicles (EV) for each degree difference between the cold environment and the minimum temperature.
|
|
|
|
ICE_upper_degree_factor,--,float,Share increase in energy demand in internal combustion engine (ICE) for each degree difference between the hot environment and the maximum temperature.
|
|
|
|
EV_upper_degree_factor,--,float,Share increase in energy demand in electric vehicles (EV) for each degree difference between the hot environment and the maximum temperature.
|
|
|
|
EV_lower_degree_factor,--,float,Share increase in energy demand in electric vehicles (EV) for each degree difference between the cold environment and the minimum temperature.
|
|
|
|
bev_dsm,--,"{true, false}",Add the option for battery electric vehicles (BEV) to participate in demand-side management (DSM)
|
|
|
|
EV_upper_degree_factor,--,float,Share increase in energy demand in electric vehicles (EV) for each degree difference between the hot environment and the maximum temperature.
|
|
|
|
,,,
|
|
|
|
bev_dsm,--,"{true, false}",Add the option for battery electric vehicles (BEV) to participate in demand-side management (DSM)
|
|
|
|
bev_availability,--,float,The share for battery electric vehicles (BEV) that are able to do demand side management (DSM)
|
|
|
|
,,,
|
|
|
|
bev_energy,--,float,The average size of battery electric vehicles (BEV) in MWh
|
|
|
|
bev_availability,--,float,The share for battery electric vehicles (BEV) that are able to do demand side management (DSM)
|
|
|
|
bev_charge_efficiency,--,float,Battery electric vehicles (BEV) charge and discharge efficiency
|
|
|
|
bev_energy,--,float,The average size of battery electric vehicles (BEV) in MWh
|
|
|
|
bev_charge_rate,MWh,float,The power consumption for one electric vehicle (EV) in MWh. Value derived from 3-phase charger with 11 kW.
|
|
|
|
bev_charge_efficiency,--,float,Battery electric vehicles (BEV) charge and discharge efficiency
|
|
|
|
bev_avail_max,--,float,The maximum share plugged-in availability for passenger electric vehicles.
|
|
|
|
bev_charge_rate,MWh,float,The power consumption for one electric vehicle (EV) in MWh. Value derived from 3-phase charger with 11 kW.
|
|
|
|
bev_avail_mean,--,float,The average share plugged-in availability for passenger electric vehicles.
|
|
|
|
bev_avail_max,--,float,The maximum share plugged-in availability for passenger electric vehicles.
|
|
|
|
v2g,--,"{true, false}",Allows feed-in to grid from EV battery
|
|
|
|
bev_avail_mean,--,float,The average share plugged-in availability for passenger electric vehicles.
|
|
|
|
land_transport_fuel_cell _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses fuel cells in a given year
|
|
|
|
v2g,--,"{true, false}",Allows feed-in to grid from EV battery
|
|
|
|
land_transport_electric _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses electric vehicles (EV) in a given year
|
|
|
|
land_transport_fuel_cell _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses fuel cells in a given year
|
|
|
|
land_transport_ice _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses internal combustion engines (ICE) in a given year. What is not EV or FCEV is oil-fuelled ICE.
|
|
|
|
land_transport_electric _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses electric vehicles (EV) in a given year
|
|
|
|
transport_electric_efficiency,MWh/100km,float,The conversion efficiencies of electric vehicles in transport
|
|
|
|
land_transport_ice _share,--,Dictionary with planning horizons as keys.,The share of vehicles that uses internal combustion engines (ICE) in a given year. What is not EV or FCEV is oil-fuelled ICE.
|
|
|
|
transport_fuel_cell_efficiency,MWh/100km,float,The H2 conversion efficiencies of fuel cells in transport
|
|
|
|
transport_electric_efficiency,MWh/100km,float,The conversion efficiencies of electric vehicles in transport
|
|
|
|
transport_ice_efficiency,MWh/100km,float,The oil conversion efficiencies of internal combustion engine (ICE) in transport
|
|
|
|
transport_fuel_cell_efficiency,MWh/100km,float,The H2 conversion efficiencies of fuel cells in transport
|
|
|
|
agriculture_machinery _electric_share,--,float,The share for agricultural machinery that uses electricity
|
|
|
|
transport_ice_efficiency,MWh/100km,float,The oil conversion efficiencies of internal combustion engine (ICE) in transport
|
|
|
|
agriculture_machinery _oil_share,--,float,The share for agricultural machinery that uses oil
|
|
|
|
agriculture_machinery _electric_share,--,float,The share for agricultural machinery that uses electricity
|
|
|
|
agriculture_machinery _fuel_efficiency,--,float,The efficiency of electric-powered machinery in the conversion of electricity to meet agricultural needs.
|
|
|
|
agriculture_machinery _oil_share,--,float,The share for agricultural machinery that uses oil
|
|
|
|
agriculture_machinery _electric_efficiency,--,float,The efficiency of oil-powered machinery in the conversion of oil to meet agricultural needs.
|
|
|
|
agriculture_machinery _fuel_efficiency,--,float,The efficiency of electric-powered machinery in the conversion of electricity to meet agricultural needs.
|
|
|
|
Mwh_MeOH_per_MWh_H2,LHV,float,"The energy amount of the produced methanol per energy amount of hydrogen. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
|
|
|
|
agriculture_machinery _electric_efficiency,--,float,The efficiency of oil-powered machinery in the conversion of oil to meet agricultural needs.
|
|
|
|
MWh_MeOH_per_tCO2,LHV,float,"The energy amount of the produced methanol per ton of CO2. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 66."
|
|
|
|
Mwh_MeOH_per_MWh_H2,LHV,float,"The energy amount of the produced methanol per energy amount of hydrogen. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
|
|
|
|
MWh_MeOH_per_MWh_e,LHV,float,"The energy amount of the produced methanol per energy amount of electricity. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
|
|
|
|
MWh_MeOH_per_tCO2,LHV,float,"The energy amount of the produced methanol per ton of CO2. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 66."
|
|
|
|
shipping_hydrogen _liquefaction,--,"{true, false}",Whether to include liquefaction costs for hydrogen demand in shipping.
|
|
|
|
MWh_MeOH_per_MWh_e,LHV,float,"The energy amount of the produced methanol per energy amount of electricity. From `DECHEMA (2017) <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf>`_, page 64."
|
|
|
|
,,,
|
|
|
|
shipping_hydrogen _liquefaction,--,"{true, false}",Whether to include liquefaction costs for hydrogen demand in shipping.
|
|
|
|
shipping_hydrogen_share,--,Dictionary with planning horizons as keys.,The share of ships powered by hydrogen in a given year
|
|
|
|
,,,
|
|
|
|
shipping_methanol_share,--,Dictionary with planning horizons as keys.,The share of ships powered by methanol in a given year
|
|
|
|
shipping_hydrogen_share,--,Dictionary with planning horizons as keys.,The share of ships powered by hydrogen in a given year
|
|
|
|
shipping_oil_share,--,Dictionary with planning horizons as keys.,The share of ships powered by oil in a given year
|
|
|
|
shipping_methanol_share,--,Dictionary with planning horizons as keys.,The share of ships powered by methanol in a given year
|
|
|
|
shipping_methanol _efficiency,--,float,The efficiency of methanol-powered ships in the conversion of methanol to meet shipping needs (propulsion). The efficiency increase from oil can be 10-15% higher according to the `IEA <https://www.iea-amf.org/app/webroot/files/file/Annex%20Reports/AMF_Annex_56.pdf>`_
|
|
|
|
shipping_oil_share,--,Dictionary with planning horizons as keys.,The share of ships powered by oil in a given year
|
|
|
|
,,,
|
|
|
|
shipping_methanol _efficiency,--,float,The efficiency of methanol-powered ships in the conversion of methanol to meet shipping needs (propulsion). The efficiency increase from oil can be 10-15% higher according to the `IEA <https://www.iea-amf.org/app/webroot/files/file/Annex%20Reports/AMF_Annex_56.pdf>`_
|
|
|
|
shipping_oil_efficiency,--,float,The efficiency of oil-powered ships in the conversion of oil to meet shipping needs (propulsion). Base value derived from 2011
|
|
|
|
,,,
|
|
|
|
aviation_demand_factor,--,float,The proportion of demand for aviation compared to today's consumption
|
|
|
|
shipping_oil_efficiency,--,float,The efficiency of oil-powered ships in the conversion of oil to meet shipping needs (propulsion). Base value derived from 2011
|
|
|
|
HVC_demand_factor,--,float,The proportion of demand for high-value chemicals compared to today's consumption
|
|
|
|
aviation_demand_factor,--,float,The proportion of demand for aviation compared to today's consumption
|
|
|
|
,,,
|
|
|
|
HVC_demand_factor,--,float,The proportion of demand for high-value chemicals compared to today's consumption
|
|
|
|
time_dep_hp_cop,--,"{true, false}",Consider the time dependent coefficient of performance (COP) of the heat pump
|
|
|
|
,,,
|
|
|
|
heat_pump_sink_T,°C,float,The temperature heat sink used in heat pumps based on DTU / large area radiators. The value is conservatively high to cover hot water and space heating in poorly-insulated buildings
|
|
|
|
time_dep_hp_cop,--,"{true, false}",Consider the time dependent coefficient of performance (COP) of the heat pump
|
|
|
|
reduce_space_heat _exogenously,--,"{true, false}",Influence on space heating demand by a certain factor (applied before losses in district heating).
|
|
|
|
heat_pump_sink_T,°C,float,The temperature heat sink used in heat pumps based on DTU / large area radiators. The value is conservatively high to cover hot water and space heating in poorly-insulated buildings
|
|
|
|
reduce_space_heat _exogenously_factor,--,Dictionary with planning horizons as keys.,"A positive factor can mean renovation or demolition of a building. If the factor is negative, it can mean an increase in floor area, increased thermal comfort, population growth. The default factors are determined by the `Eurocalc Homes and buildings decarbonization scenario <http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221>`_"
|
|
|
|
reduce_space_heat _exogenously,--,"{true, false}",Influence on space heating demand by a certain factor (applied before losses in district heating).
|
|
|
|
retrofitting,,,
|
|
|
|
reduce_space_heat _exogenously_factor,--,Dictionary with planning horizons as keys.,"A positive factor can mean renovation or demolition of a building. If the factor is negative, it can mean an increase in floor area, increased thermal comfort, population growth. The default factors are determined by the `Eurocalc Homes and buildings decarbonization scenario <http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221>`_"
|
|
|
|
-- retro_endogen,--,"{true, false}",Add retrofitting as an endogenous system which co-optimise space heat savings.
|
|
|
|
retrofitting,,,
|
|
|
|
-- cost_factor,--,float,Weight costs for building renovation
|
|
|
|
-- retro_endogen,--,"{true, false}",Add retrofitting as an endogenous system which co-optimise space heat savings.
|
|
|
|
-- interest_rate,--,float,The interest rate for investment in building components
|
|
|
|
-- cost_factor,--,float,Weight costs for building renovation
|
|
|
|
-- annualise_cost,--,"{true, false}",Annualise the investment costs of retrofitting
|
|
|
|
-- interest_rate,--,float,The interest rate for investment in building components
|
|
|
|
-- tax_weighting,--,"{true, false}",Weight the costs of retrofitting depending on taxes in countries
|
|
|
|
-- annualise_cost,--,"{true, false}",Annualise the investment costs of retrofitting
|
|
|
|
-- construction_index,--,"{true, false}",Weight the costs of retrofitting depending on labour/material costs per country
|
|
|
|
-- tax_weighting,--,"{true, false}",Weight the costs of retrofitting depending on taxes in countries
|
|
|
|
tes,--,"{true, false}",Add option for storing thermal energy in large water pits associated with district heating systems and individual thermal energy storage (TES)
|
|
|
|
-- construction_index,--,"{true, false}",Weight the costs of retrofitting depending on labour/material costs per country
|
|
|
|
tes_tau,,,The time constant used to calculate the decay of thermal energy in thermal energy storage (TES): 1- :math:`e^{-1/24τ}`.
|
|
|
|
tes,--,"{true, false}",Add option for storing thermal energy in large water pits associated with district heating systems and individual thermal energy storage (TES)
|
|
|
|
-- decentral,days,float,The time constant in decentralized thermal energy storage (TES)
|
|
|
|
tes_tau,,,The time constant used to calculate the decay of thermal energy in thermal energy storage (TES): 1- :math:`e^{-1/24τ}`.
|
|
|
|
-- central,days,float,The time constant in centralized thermal energy storage (TES)
|
|
|
|
-- decentral,days,float,The time constant in decentralized thermal energy storage (TES)
|
|
|
|
boilers,--,"{true, false}",Add option for transforming gas into heat using gas boilers
|
|
|
|
-- central,days,float,The time constant in centralized thermal energy storage (TES)
|
|
|
|
resistive_heaters,--,"{true, false}",Add option for transforming electricity into heat using resistive heaters (independently from gas boilers)
|
|
|
|
boilers,--,"{true, false}",Add option for transforming gas into heat using gas boilers
|
|
|
|
oil_boilers,--,"{true, false}",Add option for transforming oil into heat using boilers
|
|
|
|
resistive_heaters,--,"{true, false}",Add option for transforming electricity into heat using resistive heaters (independently from gas boilers)
|
|
|
|
biomass_boiler,--,"{true, false}",Add option for transforming biomass into heat using boilers
|
|
|
|
oil_boilers,--,"{true, false}",Add option for transforming oil into heat using boilers
|
|
|
|
overdimension_individual_heating,--,"float",Add option for overdimensioning individual heating systems by a certain factor. This allows them to cover heat demand peaks e.g. 10% higher than those in the data with a setting of 1.1.
|
|
|
|
biomass_boiler,--,"{true, false}",Add option for transforming biomass into heat using boilers
|
|
|
|
chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP)
|
|
|
|
overdimension_individual_heating,--,float,Add option for overdimensioning individual heating systems by a certain factor. This allows them to cover heat demand peaks e.g. 10% higher than those in the data with a setting of 1.1.
|
|
|
|
micro_chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP) for decentral areas.
|
|
|
|
chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP)
|
|
|
|
solar_thermal,--,"{true, false}",Add option for using solar thermal to generate heat.
|
|
|
|
micro_chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP) for decentral areas.
|
|
|
|
solar_cf_correction,--,float,The correction factor for the value provided by the solar thermal profile calculations
|
|
|
|
solar_thermal,--,"{true, false}",Add option for using solar thermal to generate heat.
|
|
|
|
marginal_cost_storage,currency/MWh ,float,The marginal cost of discharging batteries in distributed grids
|
|
|
|
solar_cf_correction,--,float,The correction factor for the value provided by the solar thermal profile calculations
|
|
|
|
methanation,--,"{true, false}",Add option for transforming hydrogen and CO2 into methane using methanation.
|
|
|
|
marginal_cost_storage,currency/MWh ,float,The marginal cost of discharging batteries in distributed grids
|
|
|
|
coal_cc,--,"{true, false}",Add option for coal CHPs with carbon capture
|
|
|
|
methanation,--,"{true, false}",Add option for transforming hydrogen and CO2 into methane using methanation.
|
|
|
|
dac,--,"{true, false}",Add option for Direct Air Capture (DAC)
|
|
|
|
coal_cc,--,"{true, false}",Add option for coal CHPs with carbon capture
|
|
|
|
co2_vent,--,"{true, false}",Add option for vent out CO2 from storages to the atmosphere.
|
|
|
|
dac,--,"{true, false}",Add option for Direct Air Capture (DAC)
|
|
|
|
allam_cycle,--,"{true, false}",Add option to include `Allam cycle gas power plants <https://en.wikipedia.org/wiki/Allam_power_cycle>`_
|
|
|
|
co2_vent,--,"{true, false}",Add option for vent out CO2 from storages to the atmosphere.
|
|
|
|
hydrogen_fuel_cell,--,"{true, false}",Add option to include hydrogen fuel cell for re-electrification. Assuming OCGT technology costs
|
|
|
|
allam_cycle,--,"{true, false}",Add option to include `Allam cycle gas power plants <https://en.wikipedia.org/wiki/Allam_power_cycle>`_
|
|
|
|
hydrogen_turbine,--,"{true, false}",Add option to include hydrogen turbine for re-electrification. Assuming OCGT technology costs
|
|
|
|
hydrogen_fuel_cell,--,"{true, false}",Add option to include hydrogen fuel cell for re-electrification. Assuming OCGT technology costs
|
|
|
|
SMR,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR)
|
|
|
|
hydrogen_turbine,--,"{true, false}",Add option to include hydrogen turbine for re-electrification. Assuming OCGT technology costs
|
|
|
|
SMR CC,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR) and Carbon Capture (CC)
|
|
|
|
SMR,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR)
|
|
|
|
regional_methanol_demand,--,"{true, false}",Spatially resolve methanol demand. Set to true if regional CO2 constraints needed.
|
|
|
|
SMR CC,--,"{true, false}",Add option for transforming natural gas into hydrogen and CO2 using Steam Methane Reforming (SMR) and Carbon Capture (CC)
|
|
|
|
regional_oil_demand,--,"{true, false}",Spatially resolve oil demand. Set to true if regional CO2 constraints needed.
|
|
|
|
regional_methanol_demand,--,"{true, false}",Spatially resolve methanol demand. Set to true if regional CO2 constraints needed.
|
|
|
|
regional_co2 _sequestration_potential,,,
|
|
|
|
regional_oil_demand,--,"{true, false}",Spatially resolve oil demand. Set to true if regional CO2 constraints needed.
|
|
|
|
-- enable,--,"{true, false}",Add option for regionally-resolved geological carbon dioxide sequestration potentials based on `CO2StoP <https://setis.ec.europa.eu/european-co2-storage-database_en>`_.
|
|
|
|
regional_co2 _sequestration_potential,,,
|
|
|
|
-- attribute,--,string or list,Name (or list of names) of the attribute(s) for the sequestration potential
|
|
|
|
-- enable,--,"{true, false}",Add option for regionally-resolved geological carbon dioxide sequestration potentials based on `CO2StoP <https://setis.ec.europa.eu/european-co2-storage-database_en>`_.
|
|
|
|
-- include_onshore,--,"{true, false}",Add options for including onshore sequestration potentials
|
|
|
|
-- attribute,--,string or list,Name (or list of names) of the attribute(s) for the sequestration potential
|
|
|
|
-- min_size,Gt ,float,Any sites with lower potential than this value will be excluded
|
|
|
|
-- include_onshore,--,"{true, false}",Add options for including onshore sequestration potentials
|
|
|
|
-- max_size,Gt ,float,The maximum sequestration potential for any one site.
|
|
|
|
-- min_size,Gt ,float,Any sites with lower potential than this value will be excluded
|
|
|
|
-- years_of_storage,years,float,The years until potential exhausted at optimised annual rate
|
|
|
|
-- max_size,Gt ,float,The maximum sequestration potential for any one site.
|
|
|
|
co2_sequestration_potential,MtCO2/a,float,The potential of sequestering CO2 in Europe per year
|
|
|
|
-- years_of_storage,years,float,The years until potential exhausted at optimised annual rate
|
|
|
|
co2_sequestration_cost,currency/tCO2,float,The cost of sequestering a ton of CO2
|
|
|
|
co2_sequestration_potential,MtCO2/a,float,The potential of sequestering CO2 in Europe per year
|
|
|
|
co2_sequestration_lifetime,years,int,The lifetime of a CO2 sequestration site
|
|
|
|
co2_sequestration_cost,currency/tCO2,float,The cost of sequestering a ton of CO2
|
|
|
|
co2_spatial,--,"{true, false}","Add option to spatially resolve carrier representing stored carbon dioxide. This allows for more detailed modelling of CCUTS, e.g. regarding the capturing of industrial process emissions, usage as feedstock for electrofuels, transport of carbon dioxide, and geological sequestration sites."
|
|
|
|
co2_sequestration_lifetime,years,int,The lifetime of a CO2 sequestration site
|
|
|
|
,,,
|
|
|
|
co2_spatial,--,"{true, false}","Add option to spatially resolve carrier representing stored carbon dioxide. This allows for more detailed modelling of CCUTS, e.g. regarding the capturing of industrial process emissions, usage as feedstock for electrofuels, transport of carbon dioxide, and geological sequestration sites."
|
|
|
|
co2network,--,"{true, false}",Add option for planning a new carbon dioxide transmission network
|
|
|
|
,,,
|
|
|
|
co2_network_cost_factor,p.u.,float,The cost factor for the capital cost of the carbon dioxide transmission network
|
|
|
|
co2network,--,"{true, false}",Add option for planning a new carbon dioxide transmission network
|
|
|
|
,,,
|
|
|
|
co2_network_cost_factor,p.u.,float,The cost factor for the capital cost of the carbon dioxide transmission network
|
|
|
|
cc_fraction,--,float,The default fraction of CO2 captured with post-combustion capture
|
|
|
|
,,,
|
|
|
|
hydrogen_underground _storage,--,"{true, false}",Add options for storing hydrogen underground. Storage potential depends regionally.
|
|
|
|
cc_fraction,--,float,The default fraction of CO2 captured with post-combustion capture
|
|
|
|
hydrogen_underground _storage_locations,,"{onshore, nearshore, offshore}","The location where hydrogen underground storage can be located. Onshore, nearshore, offshore means it must be located more than 50 km away from the sea, within 50 km of the sea, or within the sea itself respectively."
|
|
|
|
hydrogen_underground _storage,--,"{true, false}",Add options for storing hydrogen underground. Storage potential depends regionally.
|
|
|
|
,,,
|
|
|
|
hydrogen_underground _storage_locations,,"{onshore, nearshore, offshore}","The location where hydrogen underground storage can be located. Onshore, nearshore, offshore means it must be located more than 50 km away from the sea, within 50 km of the sea, or within the sea itself respectively."
|
|
|
|
ammonia,--,"{true, false, regional}","Add ammonia as a carrrier. It can be either true (copperplated NH3), false (no NH3 carrier) or ""regional"" (regionalised NH3 without network)"
|
|
|
|
,,,
|
|
|
|
min_part_load_fischer _tropsch,per unit of p_nom ,float,The minimum unit dispatch (``p_min_pu``) for the Fischer-Tropsch process
|
|
|
|
ammonia,--,"{true, false, regional}","Add ammonia as a carrrier. It can be either true (copperplated NH3), false (no NH3 carrier) or ""regional"" (regionalised NH3 without network)"
|
|
|
|
min_part_load _methanolisation,per unit of p_nom ,float,The minimum unit dispatch (``p_min_pu``) for the methanolisation process
|
|
|
|
min_part_load_fischer _tropsch,per unit of p_nom ,float,The minimum unit dispatch (``p_min_pu``) for the Fischer-Tropsch process
|
|
|
|
,,,
|
|
|
|
min_part_load _methanolisation,per unit of p_nom ,float,The minimum unit dispatch (``p_min_pu``) for the methanolisation process
|
|
|
|
use_fischer_tropsch _waste_heat,--,"{true, false}",Add option for using waste heat of Fischer Tropsch in district heating networks
|
|
|
|
,,,
|
|
|
|
use_fuel_cell_waste_heat,--,"{true, false}",Add option for using waste heat of fuel cells in district heating networks
|
|
|
|
use_fischer_tropsch _waste_heat,--,"{true, false}",Add option for using waste heat of Fischer Tropsch in district heating networks
|
|
|
|
use_electrolysis_waste _heat,--,"{true, false}",Add option for using waste heat of electrolysis in district heating networks
|
|
|
|
use_fuel_cell_waste_heat,--,"{true, false}",Add option for using waste heat of fuel cells in district heating networks
|
|
|
|
electricity_transmission _grid,--,"{true, false}",Switch for enabling/disabling the electricity transmission grid.
|
|
|
|
use_electrolysis_waste _heat,--,"{true, false}",Add option for using waste heat of electrolysis in district heating networks
|
|
|
|
electricity_distribution _grid,--,"{true, false}",Add a simplified representation of the exchange capacity between transmission and distribution grid level through a link.
|
|
|
|
electricity_transmission _grid,--,"{true, false}",Switch for enabling/disabling the electricity transmission grid.
|
|
|
|
electricity_distribution _grid_cost_factor,,,Multiplies the investment cost of the electricity distribution grid
|
|
|
|
electricity_distribution _grid,--,"{true, false}",Add a simplified representation of the exchange capacity between transmission and distribution grid level through a link.
|
|
|
|
,,,
|
|
|
|
electricity_distribution _grid_cost_factor,,,Multiplies the investment cost of the electricity distribution grid
|
|
|
|
electricity_grid _connection,--,"{true, false}",Add the cost of electricity grid connection for onshore wind and solar
|
|
|
|
,,,
|
|
|
|
transmission_efficiency,,,Section to specify transmission losses or compression energy demands of bidirectional links. Splits them into two capacity-linked unidirectional links.
|
|
|
|
electricity_grid _connection,--,"{true, false}",Add the cost of electricity grid connection for onshore wind and solar
|
|
|
|
-- {carrier},--,str,The carrier of the link.
|
|
|
|
transmission_efficiency,,,Section to specify transmission losses or compression energy demands of bidirectional links. Splits them into two capacity-linked unidirectional links.
|
|
|
|
-- -- efficiency_static,p.u.,float,Length-independent transmission efficiency.
|
|
|
|
-- {carrier},--,str,The carrier of the link.
|
|
|
|
-- -- efficiency_per_1000km,p.u. per 1000 km,float,Length-dependent transmission efficiency ($\eta^{\text{length}}$)
|
|
|
|
-- -- efficiency_static,p.u.,float,Length-independent transmission efficiency.
|
|
|
|
-- -- compression_per_1000km,p.u. per 1000 km,float,Length-dependent electricity demand for compression ($\eta \cdot \text{length}$) implemented as multi-link to local electricity bus.
|
|
|
|
-- -- efficiency_per_1000km,p.u. per 1000 km,float,Length-dependent transmission efficiency ($\eta^{\text{length}}$)
|
|
|
|
H2_network,--,"{true, false}",Add option for new hydrogen pipelines
|
|
|
|
-- -- compression_per_1000km,p.u. per 1000 km,float,Length-dependent electricity demand for compression ($\eta \cdot \text{length}$) implemented as multi-link to local electricity bus.
|
|
|
|
gas_network,--,"{true, false}","Add existing natural gas infrastructure, incl. LNG terminals, production and entry-points. The existing gas network is added with a lossless transport model. A length-weighted `k-edge augmentation algorithm <https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_ can be run to add new candidate gas pipelines such that all regions of the model can be connected to the gas network. When activated, all the gas demands are regionally disaggregated as well."
|
|
|
|
H2_network,--,"{true, false}",Add option for new hydrogen pipelines
|
|
|
|
H2_retrofit,--,"{true, false}",Add option for retrofiting existing pipelines to transport hydrogen.
|
|
|
|
gas_network,--,"{true, false}","Add existing natural gas infrastructure, incl. LNG terminals, production and entry-points. The existing gas network is added with a lossless transport model. A length-weighted `k-edge augmentation algorithm <https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_ can be run to add new candidate gas pipelines such that all regions of the model can be connected to the gas network. When activated, all the gas demands are regionally disaggregated as well."
|
|
|
|
H2_retrofit_capacity _per_CH4,--,float,"The ratio for H2 capacity per original CH4 capacity of retrofitted pipelines. The `European Hydrogen Backbone (April, 2020) p.15 <https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf>`_ 60% of original natural gas capacity could be used in cost-optimal case as H2 capacity."
|
|
|
|
H2_retrofit,--,"{true, false}",Add option for retrofiting existing pipelines to transport hydrogen.
|
|
|
|
gas_network_connectivity _upgrade ,--,float,The number of desired edge connectivity (k) in the length-weighted `k-edge augmentation algorithm <https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_ used for the gas network
|
|
|
|
H2_retrofit_capacity _per_CH4,--,float,"The ratio for H2 capacity per original CH4 capacity of retrofitted pipelines. The `European Hydrogen Backbone (April, 2020) p.15 <https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf>`_ 60% of original natural gas capacity could be used in cost-optimal case as H2 capacity."
|
|
|
|
gas_distribution_grid,--,"{true, false}",Add a gas distribution grid
|
|
|
|
gas_network_connectivity _upgrade ,--,float,The number of desired edge connectivity (k) in the length-weighted `k-edge augmentation algorithm <https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_ used for the gas network
|
|
|
|
gas_distribution_grid _cost_factor,,,Multiplier for the investment cost of the gas distribution grid
|
|
|
|
gas_distribution_grid,--,"{true, false}",Add a gas distribution grid
|
|
|
|
,,,
|
|
|
|
gas_distribution_grid _cost_factor,,,Multiplier for the investment cost of the gas distribution grid
|
|
|
|
biomass_spatial,--,"{true, false}",Add option for resolving biomass demand regionally
|
|
|
|
,,,
|
|
|
|
biomass_transport,--,"{true, false}",Add option for transporting solid biomass between nodes
|
|
|
|
biomass_spatial,--,"{true, false}",Add option for resolving biomass demand regionally
|
|
|
|
biogas_upgrading_cc,--,"{true, false}",Add option to capture CO2 from biomass upgrading
|
|
|
|
biomass_transport,--,"{true, false}",Add option for transporting solid biomass between nodes
|
|
|
|
conventional_generation,,,Add a more detailed description of conventional carriers. Any power generation requires the consumption of fuel from nodes representing that fuel.
|
|
|
|
biogas_upgrading_cc,--,"{true, false}",Add option to capture CO2 from biomass upgrading
|
|
|
|
biomass_to_liquid,--,"{true, false}",Add option for transforming solid biomass into liquid fuel with the same properties as oil
|
|
|
|
conventional_generation,,,Add a more detailed description of conventional carriers. Any power generation requires the consumption of fuel from nodes representing that fuel.
|
|
|
|
biosng,--,"{true, false}",Add option for transforming solid biomass into synthesis gas with the same properties as natural gas
|
|
|
|
biomass_to_liquid,--,"{true, false}",Add option for transforming solid biomass into liquid fuel with the same properties as oil
|
|
|
|
limit_max_growth,,,
|
|
|
|
biosng,--,"{true, false}",Add option for transforming solid biomass into synthesis gas with the same properties as natural gas
|
|
|
|
-- enable,--,"{true, false}",Add option to limit the maximum growth of a carrier
|
|
|
|
limit_max_growth,,,
|
|
|
|
-- factor,p.u.,float,The maximum growth factor of a carrier (e.g. 1.3 allows 30% larger than max historic growth)
|
|
|
|
-- enable,--,"{true, false}",Add option to limit the maximum growth of a carrier
|
|
|
|
-- max_growth,,,
|
|
|
|
-- factor,p.u.,float,The maximum growth factor of a carrier (e.g. 1.3 allows 30% larger than max historic growth)
|
|
|
|
-- -- {carrier},GW,float,The historic maximum growth of a carrier
|
|
|
|
-- max_growth,,,
|
|
|
|
-- max_relative_growth,,,
|
|
|
|
-- -- {carrier},GW,float,The historic maximum growth of a carrier
|
|
|
|
-- -- {carrier},p.u.,float,The historic maximum relative growth of a carrier
|
|
|
|
-- max_relative_growth,,,
|
|
|
|
,,,
|
|
|
|
-- -- {carrier},p.u.,float,The historic maximum relative growth of a carrier
|
|
|
|
enhanced_geothermal,,,
|
|
|
|
,,,
|
|
|
|
-- enable,--,"{true, false}",Add option to include Enhanced Geothermal Systems
|
|
|
|
enhanced_geothermal,,,
|
|
|
|
-- flexible,--,"{true, false}",Add option for flexible operation (see Ricks et al. 2024)
|
|
|
|
-- enable,--,"{true, false}",Add option to include Enhanced Geothermal Systems
|
|
|
|
-- max_hours,--,int,The maximum hours the reservoir can be charged under flexible operation
|
|
|
|
-- flexible,--,"{true, false}",Add option for flexible operation (see Ricks et al. 2024)
|
|
|
|
-- max_boost,--,float,The maximum boost in power output under flexible operation
|
|
|
|
-- max_hours,--,int,The maximum hours the reservoir can be charged under flexible operation
|
|
|
|
-- var_cf,--,"{true, false}",Add option for variable capacity factor (see Ricks et al. 2024)
|
|
|
|
-- max_boost,--,float,The maximum boost in power output under flexible operation
|
|
|
|
-- sustainability_factor,--,float,Share of sourced heat that is replenished by the earth's core (see details in `build_egs_potentials.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_egs_potentials.py>`_)
|
|
|
|
-- var_cf,--,"{true, false}",Add option for variable capacity factor (see Ricks et al. 2024)
|
|
|
|
|
|
|
|
-- sustainability_factor,--,float,Share of sourced heat that is replenished by the earth's core (see details in `build_egs_potentials.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_egs_potentials.py>`_)
|
|
|
|