Merge pull request #187 from PyPSA/retrofit-gas-pipelines-fneum
Retrofit gas pipelines - iteration 2
This commit is contained in:
commit
87ee8d2e69
57
Snakefile
57
Snakefile
@ -78,16 +78,61 @@ rule build_simplified_population_layouts:
|
||||
benchmark: "benchmarks/build_clustered_population_layouts/s{simpl}"
|
||||
script: "scripts/build_clustered_population_layouts.py"
|
||||
|
||||
|
||||
if config["sector"]["gas_network"]:
|
||||
|
||||
datafiles = [
|
||||
"IGGIELGN_LNGs.geojson",
|
||||
"IGGIELGN_BorderPoints.geojson",
|
||||
"IGGIELGN_Productions.geojson",
|
||||
"IGGIELGN_PipeSegments.geojson",
|
||||
]
|
||||
|
||||
|
||||
rule retrieve_gas_infrastructure_data:
|
||||
output: expand("data/gas_network/scigrid-gas/data/{files}", files=datafiles)
|
||||
script: 'scripts/retrieve_gas_infrastructure_data.py'
|
||||
|
||||
|
||||
rule build_gas_network:
|
||||
input:
|
||||
gas_network="data/gas_network/gas_network_dataset.csv",
|
||||
country_shapes=pypsaeur("resources/country_shapes.geojson"),
|
||||
gas_network="data/gas_network/scigrid-gas/data/IGGIELGN_PipeSegments.geojson"
|
||||
output:
|
||||
cleaned_gas_network="resources/gas_network.csv"
|
||||
resources: mem_mb=4000
|
||||
script: "scripts/build_gas_network.py"
|
||||
|
||||
|
||||
rule build_gas_input_locations:
|
||||
input:
|
||||
lng="data/gas_network/scigrid-gas/data/IGGIELGN_LNGs.geojson",
|
||||
entry="data/gas_network/scigrid-gas/data/IGGIELGN_BorderPoints.geojson",
|
||||
production="data/gas_network/scigrid-gas/data/IGGIELGN_Productions.geojson",
|
||||
planned_lng="data/gas_network/planned_LNGs.csv",
|
||||
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson"),
|
||||
regions_offshore=pypsaeur('resources/regions_offshore_elec_s{simpl}_{clusters}.geojson')
|
||||
output:
|
||||
gas_input_nodes="resources/gas_input_locations_s{simpl}_{clusters}.geojson",
|
||||
gas_input_nodes_simplified="resources/gas_input_locations_s{simpl}_{clusters}_simplified.csv"
|
||||
resources: mem_mb=2000,
|
||||
script: "scripts/build_gas_input_locations.py"
|
||||
|
||||
|
||||
rule cluster_gas_network:
|
||||
input:
|
||||
cleaned_gas_network="resources/gas_network.csv",
|
||||
regions_onshore=pypsaeur("resources/regions_onshore_elec_s{simpl}_{clusters}.geojson"),
|
||||
regions_offshore=pypsaeur("resources/regions_offshore_elec_s{simpl}_{clusters}.geojson")
|
||||
output:
|
||||
clustered_gas_network="resources/gas_network_elec_s{simpl}_{clusters}.csv"
|
||||
resources: mem_mb=10000
|
||||
script: "scripts/build_gas_network.py"
|
||||
resources: mem_mb=4000
|
||||
script: "scripts/cluster_gas_network.py"
|
||||
|
||||
|
||||
gas_infrastructure = {**rules.cluster_gas_network.output, **rules.build_gas_input_locations.output}
|
||||
else:
|
||||
gas_infrastructure = {}
|
||||
|
||||
|
||||
rule build_heat_demands:
|
||||
input:
|
||||
@ -354,7 +399,6 @@ rule prepare_sector_network:
|
||||
energy_totals_name='resources/energy_totals.csv',
|
||||
co2_totals_name='resources/co2_totals.csv',
|
||||
transport_name='resources/transport_data.csv',
|
||||
clustered_gas_network="resources/gas_network_elec_s{simpl}_{clusters}.csv",
|
||||
traffic_data_KFZ="data/emobility/KFZ__count",
|
||||
traffic_data_Pkw="data/emobility/Pkw__count",
|
||||
biomass_potentials='resources/biomass_potentials_s{simpl}_{clusters}.csv',
|
||||
@ -387,7 +431,8 @@ rule prepare_sector_network:
|
||||
solar_thermal_urban="resources/solar_thermal_urban_elec_s{simpl}_{clusters}.nc",
|
||||
solar_thermal_rural="resources/solar_thermal_rural_elec_s{simpl}_{clusters}.nc",
|
||||
**build_retro_cost_output,
|
||||
**build_biomass_transport_costs_output
|
||||
**build_biomass_transport_costs_output,
|
||||
**gas_infrastructure
|
||||
output: RDIR + '/prenetworks/elec_s{simpl}_{clusters}_lv{lv}_{opts}_{sector_opts}_{planning_horizons}.nc'
|
||||
threads: 1
|
||||
resources: mem_mb=2000
|
||||
|
@ -243,12 +243,14 @@ sector:
|
||||
electricity_distribution_grid: false
|
||||
electricity_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv
|
||||
electricity_grid_connection: true # only applies to onshore wind and utility PV
|
||||
H2_network: true
|
||||
gas_network: true
|
||||
H2_retrofit: true # if set to True existing gas pipes can be retrofitted to H2 pipes
|
||||
# according to hydrogen backbone strategy (April, 2020) p.15
|
||||
# https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf
|
||||
# 60% of original natural gas capacity could be used in cost-optimal case as H2 capacity
|
||||
H2_retrofit_capacity_per_CH4: 0.6 # ratio for H2 capacity per original CH4 capacity of retrofitted pipelines
|
||||
gas_network_connectivity_upgrade: 3 # https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation
|
||||
gas_distribution_grid: true
|
||||
gas_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv
|
||||
biomass_transport: false # biomass transport between nodes
|
||||
@ -449,6 +451,7 @@ plotting:
|
||||
gas boilers: '#db6a25'
|
||||
gas boiler marginal: '#db6a25'
|
||||
gas: '#e05b09'
|
||||
fossil gas: '#e05b09'
|
||||
natural gas: '#e05b09'
|
||||
CCGT: '#a85522'
|
||||
CCGT marginal: '#a85522'
|
||||
@ -457,7 +460,7 @@ plotting:
|
||||
gas for industry: '#853403'
|
||||
gas for industry CC: '#692e0a'
|
||||
gas pipeline: '#ebbca0'
|
||||
Gas pipeline: '#ebbca0'
|
||||
gas pipeline new: '#a87c62'
|
||||
# oil
|
||||
oil: '#c9c9c9'
|
||||
oil boiler: '#adadad'
|
||||
@ -547,6 +550,7 @@ plotting:
|
||||
H2 storage: '#bf13a0'
|
||||
land transport fuel cell: '#6b3161'
|
||||
H2 pipeline: '#f081dc'
|
||||
H2 pipeline retrofitted: '#ba99b5'
|
||||
H2 Fuel Cell: '#c251ae'
|
||||
H2 Electrolysis: '#ff29d9'
|
||||
# syngas
|
||||
|
File diff suppressed because one or more lines are too long
8
data/gas_network/planned_LNGs.csv
Normal file
8
data/gas_network/planned_LNGs.csv
Normal file
@ -0,0 +1,8 @@
|
||||
name,geometry,max_cap_store2pipe_M_m3_per_d,source
|
||||
Wilhelmshaven,"POINT(8.133 53.516)",27.4,https://www.gem.wiki/Wilhelmshaven_LNG_Terminal
|
||||
Brunsbüttel,"POINT(8.976 53.914)",19.2,https://www.gem.wiki/Brunsb%C3%BCttel_LNG_Terminal
|
||||
Stade,"POINT(9.510 53.652)",32.9,https://www.gem.wiki/Stade_LNG_Terminal
|
||||
Alexandroupolis,"POINT(25.843 40.775)",16.7,https://www.gem.wiki/Alexandroupolis_LNG_Terminal
|
||||
Shannon,"POINT(-9.442 52.581)",22.5,https://www.gem.wiki/Shannon_LNG_Terminal
|
||||
Gothenburg,"POINT(11.948 57.702)",1.4,https://www.gem.wiki/Gothenburg_LNG_Terminal
|
||||
Cork,"POINT(-8.323 51.831)",11.0,https://www.gem.wiki/Cork_LNG_Terminal
|
|
@ -8,6 +8,52 @@ Future release
|
||||
.. note::
|
||||
This unreleased version currently may require the master branches of PyPSA, PyPSA-Eur, and the technology-data repository.
|
||||
|
||||
This release includes the addition of the European gas transmission network and
|
||||
incorporates retrofitting options to hydrogen.
|
||||
|
||||
**Gas Transmission Network**
|
||||
|
||||
* New rule ``retrieve_gas_infrastructure_data`` that downloads and extracts the
|
||||
SciGRID_gas `IGGIELGN <https://zenodo.org/record/4767098>`_ dataset from zenodo.
|
||||
It includes data on the transmission routes, pipe diameters, capacities, pressure,
|
||||
and whether the pipeline is bidirectional and carries H-Gas or L-Gas.
|
||||
|
||||
* New rule ``build_gas_network`` processes and cleans the pipeline data from SciGRID_gas.
|
||||
Missing or uncertain pipeline capacities can be inferred by diameter.
|
||||
|
||||
* New rule ``build_gas_input_locations`` compiles the LNG import capacities
|
||||
(including planned projects from gem.wiki), pipeline entry capacities and
|
||||
local production capacities for each region of the model. These are the
|
||||
regions where fossil gas can eventually enter the model.
|
||||
|
||||
* New rule ``cluster_gas_network`` that clusters the gas transmission network
|
||||
data to the model resolution. Cross-regional pipeline capacities are aggregated
|
||||
(while pressure and diameter compability is ignored), intra-regional pipelines
|
||||
are dropped. Lengths are recalculated based on the regions' centroids.
|
||||
|
||||
* With the option ``sector: gas_network:``, the existing gas network is
|
||||
added with a lossless transport model. A length-weighted `k-edge augmentation
|
||||
algorithm
|
||||
<https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation>`_
|
||||
can be run to add new candidate gas pipelines such that all regions of the
|
||||
model can be connected to the gas network. The number of candidates can be
|
||||
controlled via the setting ``sector: gas_network_connectivity_upgrade:``. When
|
||||
the gas network is activated, all the gas demands are regionally disaggregated
|
||||
as well.
|
||||
|
||||
* New constraint allows retrofitting of gas pipelines to hydrogen pipelines.
|
||||
This option is activated via the setting ``sector: H2_retrofit:``. For every
|
||||
unit of gas pipeline capacity dismantled, ``sector:
|
||||
H2_retrofit_capacity_per_CH4`` units are made available as hydrogen pipeline
|
||||
capacity in the corresponding corridor. These repurposed hydrogen pipelines
|
||||
have lower costs than new hydrogen pipelines. Both new and repurposed pipelines
|
||||
can be built simultaneously.
|
||||
|
||||
* New hydrogen pipelines can now be built where there are already power or gas
|
||||
transmission routes. Previously, only the electricity transmission routes were
|
||||
considered.
|
||||
|
||||
|
||||
PyPSA-Eur-Sec 0.6.0 (4 October 2021)
|
||||
====================================
|
||||
|
||||
|
@ -41,8 +41,10 @@ locations of industry from `HotMaps database <https://gitlab.com/hotmaps/industr
|
||||
|
||||
Hydrogen network: nodal.
|
||||
|
||||
Methane network: single node for Europe, since future demand is so
|
||||
low and no bottlenecks are expected.
|
||||
Methane network: single node for Europe, since future demand is so low and no
|
||||
bottlenecks are expected. Optionally, if for example retrofitting from fossil
|
||||
gas to hydrogen is to be considered, the methane grid can be nodally resolved
|
||||
based on SciGRID_gas data.
|
||||
|
||||
Solid biomass: choice between single node for Europe and nodal where biomass
|
||||
potential is regionally disaggregated (currently given per country,
|
||||
|
@ -151,7 +151,7 @@ Hydrogen demand
|
||||
|
||||
Stationary fuel cell CHP.
|
||||
|
||||
Transport applications.
|
||||
Transport applications (heavy-duty road vehicles, liquid H2 in shipping).
|
||||
|
||||
Industry (ammonia, precursor to hydrocarbons for chemicals and iron/steel).
|
||||
|
||||
|
@ -175,7 +175,7 @@ def convert_nuts2_to_regions(bio_nuts2, regions):
|
||||
# calculate area of nuts2 regions
|
||||
bio_nuts2["area_nuts2"] = area(bio_nuts2)
|
||||
|
||||
overlay = gpd.overlay(regions, bio_nuts2)
|
||||
overlay = gpd.overlay(regions, bio_nuts2, keep_geom_type=True)
|
||||
|
||||
# calculate share of nuts2 area inside region
|
||||
overlay["share"] = area(overlay) / overlay["area_nuts2"]
|
||||
|
105
scripts/build_gas_input_locations.py
Normal file
105
scripts/build_gas_input_locations.py
Normal file
@ -0,0 +1,105 @@
|
||||
"""
|
||||
Build import locations for fossil gas from entry-points, LNG terminals and production sites.
|
||||
"""
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import pandas as pd
|
||||
import geopandas as gpd
|
||||
from shapely import wkt
|
||||
|
||||
from cluster_gas_network import load_bus_regions
|
||||
|
||||
|
||||
def read_scigrid_gas(fn):
|
||||
df = gpd.read_file(fn)
|
||||
df = pd.concat([df, df.param.apply(pd.Series)], axis=1)
|
||||
df.drop(["param", "uncertainty", "method"], axis=1, inplace=True)
|
||||
return df
|
||||
|
||||
|
||||
def build_gas_input_locations(lng_fn, planned_lng_fn, entry_fn, prod_fn, countries):
|
||||
|
||||
# LNG terminals
|
||||
lng = read_scigrid_gas(lng_fn)
|
||||
planned_lng = pd.read_csv(planned_lng_fn)
|
||||
planned_lng.geometry = planned_lng.geometry.apply(wkt.loads)
|
||||
planned_lng = gpd.GeoDataFrame(planned_lng, crs=4326)
|
||||
lng = lng.append(planned_lng, ignore_index=True)
|
||||
|
||||
# Entry points from outside the model scope
|
||||
entry = read_scigrid_gas(entry_fn)
|
||||
entry["from_country"] = entry.from_country.str.rstrip()
|
||||
entry = entry.loc[
|
||||
~(entry.from_country.isin(countries) & entry.to_country.isin(countries)) & # only take non-EU entries
|
||||
~entry.name.str.contains("Tegelen") | # malformed datapoint
|
||||
(entry.from_country == "NO") # entries from NO to GB
|
||||
]
|
||||
|
||||
# production sites inside the model scope
|
||||
prod = read_scigrid_gas(prod_fn)
|
||||
prod = prod.loc[
|
||||
(prod.geometry.y > 35) &
|
||||
(prod.geometry.x < 30) &
|
||||
(prod.country_code != "DE")
|
||||
]
|
||||
|
||||
conversion_factor = 437.5 # MCM/day to MWh/h
|
||||
lng["p_nom"] = lng["max_cap_store2pipe_M_m3_per_d"] * conversion_factor
|
||||
entry["p_nom"] = entry["max_cap_from_to_M_m3_per_d"] * conversion_factor
|
||||
prod["p_nom"] = prod["max_supply_M_m3_per_d"] * conversion_factor
|
||||
|
||||
lng["type"] = "lng"
|
||||
entry["type"] = "pipeline"
|
||||
prod["type"] = "production"
|
||||
|
||||
sel = ["geometry", "p_nom", "type"]
|
||||
|
||||
return pd.concat([prod[sel], entry[sel], lng[sel]], ignore_index=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'build_gas_import_locations',
|
||||
simpl='',
|
||||
clusters='37',
|
||||
)
|
||||
|
||||
logging.basicConfig(level=snakemake.config['logging_level'])
|
||||
|
||||
regions = load_bus_regions(
|
||||
snakemake.input.regions_onshore,
|
||||
snakemake.input.regions_offshore
|
||||
)
|
||||
|
||||
# add a buffer to eastern countries because some
|
||||
# entry points are still in Russian or Ukrainian territory.
|
||||
buffer = 9000 # meters
|
||||
eastern_countries = ['FI', 'EE', 'LT', 'LV', 'PL', 'SK', 'HU', 'RO']
|
||||
add_buffer_b = regions.index.str[:2].isin(eastern_countries)
|
||||
regions.loc[add_buffer_b] = regions[add_buffer_b].to_crs(3035).buffer(buffer).to_crs(4326)
|
||||
|
||||
countries = regions.index.str[:2].unique().str.replace("GB", "UK")
|
||||
|
||||
gas_input_locations = build_gas_input_locations(
|
||||
snakemake.input.lng,
|
||||
snakemake.input.planned_lng,
|
||||
snakemake.input.entry,
|
||||
snakemake.input.production,
|
||||
countries
|
||||
)
|
||||
|
||||
gas_input_nodes = gpd.sjoin(gas_input_locations, regions, how='left')
|
||||
|
||||
gas_input_nodes.rename(columns={"index_right": "bus"}, inplace=True)
|
||||
|
||||
gas_input_nodes.to_file(snakemake.output.gas_input_nodes, driver='GeoJSON')
|
||||
|
||||
gas_input_nodes_s = gas_input_nodes.groupby(["bus", "type"])["p_nom"].sum().unstack()
|
||||
gas_input_nodes_s.columns.name = "p_nom"
|
||||
|
||||
gas_input_nodes_s.to_csv(snakemake.output.gas_input_nodes_simplified)
|
310
scripts/build_gas_network.py
Executable file → Normal file
310
scripts/build_gas_network.py
Executable file → Normal file
@ -1,188 +1,16 @@
|
||||
"""
|
||||
Builds clustered natural gas network based on data from:
|
||||
|
||||
[1] the SciGRID Gas project
|
||||
(https://www.gas.scigrid.de/)
|
||||
|
||||
[2] ENTSOG capacity map
|
||||
(https://www.entsog.eu/sites/default/files/2019-10/Capacities%20for%20Transmission%20Capacity%20Map%20RTS008_NS%20-%20DWH_final.xlsx)
|
||||
"""
|
||||
"""Preprocess gas network based on data from bthe SciGRID Gas project (https://www.gas.scigrid.de/)."""
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import re
|
||||
import json
|
||||
|
||||
import pandas as pd
|
||||
import geopandas as gpd
|
||||
import numpy as np
|
||||
|
||||
from shapely.geometry import Point
|
||||
from pypsa.geo import haversine_pts
|
||||
|
||||
|
||||
def concat_gdf(gdf_list, crs='EPSG:4326'):
|
||||
"""Convert to gepandas dataframe with given Coordinate Reference System (crs)."""
|
||||
return gpd.GeoDataFrame(pd.concat(gdf_list),crs=crs)
|
||||
|
||||
|
||||
def string2list(string, with_None=True):
|
||||
"""Convert string format to a list."""
|
||||
p = re.compile('(?<!\\\\)\'')
|
||||
string = p.sub('\"', string)
|
||||
|
||||
if with_None:
|
||||
p2 = re.compile('None')
|
||||
string = p2.sub('\"None\"', string)
|
||||
|
||||
return json.loads(string)
|
||||
|
||||
|
||||
def load_gas_network(df_path):
|
||||
"""Load and format gas network data."""
|
||||
|
||||
df = pd.read_csv(df_path, sep=',')
|
||||
|
||||
df.long = df.long.apply(string2list)
|
||||
df.lat = df.lat.apply(string2list)
|
||||
df.node_id = df.node_id.apply(string2list)
|
||||
|
||||
# pipes which can be used in both directions
|
||||
both_direct_df = df[df.is_bothDirection == 1].reset_index(drop=True)
|
||||
both_direct_df.node_id = both_direct_df.node_id.apply(lambda x: [x[1], x[0]])
|
||||
both_direct_df.long = both_direct_df.long.apply(lambda x: [x[1], x[0]])
|
||||
both_direct_df.lat = both_direct_df.lat.apply(lambda x: [x[1], x[0]])
|
||||
|
||||
df_singledirect = pd.concat([df, both_direct_df]).reset_index(drop=True)
|
||||
df_singledirect.drop('is_bothDirection', axis=1)
|
||||
|
||||
# create shapely geometry points
|
||||
df['point1'] = df.apply(lambda x: Point((x['long'][0], x['lat'][0])), axis=1)
|
||||
df['point2'] = df.apply(lambda x: Point((x['long'][1], x['lat'][1])), axis=1)
|
||||
df['point1_name'] = df.node_id.str[0]
|
||||
df['point2_name'] = df.node_id.str[1]
|
||||
|
||||
part1 = df[['point1', 'point1_name']]
|
||||
part2 = df[['point2', 'point2_name']]
|
||||
part1.columns = ['geometry', 'name']
|
||||
part2.columns = ['geometry', 'name']
|
||||
points = [part1, part2]
|
||||
points = concat_gdf(points)
|
||||
points = points.drop_duplicates()
|
||||
points.reset_index(drop=True, inplace=True)
|
||||
|
||||
return df, points
|
||||
|
||||
|
||||
def load_bus_regions(onshore_path, offshore_path):
|
||||
"""Load pypsa-eur on- and offshore regions and concat."""
|
||||
|
||||
bus_regions_offshore = gpd.read_file(offshore_path)
|
||||
bus_regions_onshore = gpd.read_file(onshore_path)
|
||||
bus_regions = concat_gdf([bus_regions_offshore, bus_regions_onshore])
|
||||
bus_regions = bus_regions.dissolve(by='name', aggfunc='sum')
|
||||
bus_regions = bus_regions.reset_index()
|
||||
|
||||
return bus_regions
|
||||
|
||||
|
||||
def points2buses(input_points, bus_regions):
|
||||
"""Map gas network points to network buses depending on bus region."""
|
||||
|
||||
points = input_points.copy()
|
||||
points['bus'] = None
|
||||
buses_list = set(bus_regions.name)
|
||||
for bus in buses_list:
|
||||
mask = bus_regions[bus_regions.name == bus]
|
||||
index = gpd.clip(points, mask).index
|
||||
points.loc[index, 'bus'] = bus
|
||||
|
||||
return points
|
||||
|
||||
|
||||
def build_gas_network_topology(df, points2buses):
|
||||
"""Create gas network between pypsa buses.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df : pd.DataFrame
|
||||
gas network data
|
||||
points2buses_map : pd.DataFrame
|
||||
mapping of gas network points to pypsa buses
|
||||
|
||||
Returns
|
||||
-------
|
||||
gas_connections : pd.DataFrame
|
||||
gas network connecting pypsa buses
|
||||
"""
|
||||
|
||||
tmp_df = points2buses[['bus', 'name']]
|
||||
|
||||
tmp_df.columns = ['buses_start', 'name']
|
||||
gas_connections = df.merge(tmp_df, left_on='point1_name', right_on='name')
|
||||
|
||||
tmp_df.columns = ['buses_destination', 'name']
|
||||
gas_connections = gas_connections.merge(tmp_df, left_on='point2_name', right_on='name')
|
||||
|
||||
# drop all pipes connecting the same bus
|
||||
gas_connections = gas_connections[gas_connections.buses_start != gas_connections.buses_destination]
|
||||
gas_connections.reset_index(drop=True, inplace=True)
|
||||
gas_connections.drop(['point1', 'point2'], axis=1, inplace=True)
|
||||
|
||||
return gas_connections
|
||||
|
||||
|
||||
def check_missing(nodes, gas_connections):
|
||||
"""Check which nodes are not connected to the gas network."""
|
||||
|
||||
start_buses = gas_connections.buses_start.dropna().unique()
|
||||
end_buses = gas_connections.buses_destination.dropna().unique()
|
||||
|
||||
missing_start = nodes[[bus not in start_buses for bus in nodes]]
|
||||
missing_end = nodes[[bus not in end_buses for bus in nodes]]
|
||||
|
||||
logger.info(f"- The following buses are missing in gas network data as a start bus:"
|
||||
f"\n {', '.join(map(str, missing_start))} \n"
|
||||
f"- The following buses are missing in gas network data as an end bus:"
|
||||
f"\n {', '.join(map(str, missing_end))} \n"
|
||||
f"- The following buses are missing completely:"
|
||||
f"\n {', '.join(map(str, missing_start.intersection(missing_end)))}")
|
||||
|
||||
|
||||
def clean_dataset(nodes, gas_connections):
|
||||
"""Convert units and save only necessary data."""
|
||||
|
||||
check_missing(nodes, gas_connections)
|
||||
|
||||
determine_pipe_capacity(gas_connections)
|
||||
|
||||
cols = [
|
||||
'is_bothDirection',
|
||||
'capacity_recalculated',
|
||||
'buses_start',
|
||||
'buses_destination',
|
||||
'id',
|
||||
'length_km'
|
||||
]
|
||||
clean_pipes = gas_connections[cols].dropna()
|
||||
|
||||
|
||||
# convert GW -> MW
|
||||
clean_pipes.loc[:, 'capacity_recalculated'] *= 1e3
|
||||
|
||||
# rename columns
|
||||
to_rename = {
|
||||
'capacity_recalculated': 'pipe_capacity_MW',
|
||||
'buses_start': 'bus0',
|
||||
'buses_destination': 'bus1'
|
||||
}
|
||||
clean_pipes.rename(columns=to_rename, inplace=True)
|
||||
|
||||
return clean_pipes
|
||||
|
||||
|
||||
def diameter2capacity(pipe_diameter_mm):
|
||||
"""Calculate pipe capacity based on diameter.
|
||||
def diameter_to_capacity(pipe_diameter_mm):
|
||||
"""Calculate pipe capacity in MW based on diameter in mm.
|
||||
|
||||
20 inch (500 mm) 50 bar -> 1.5 GW CH4 pipe capacity (LHV)
|
||||
24 inch (600 mm) 50 bar -> 5 GW CH4 pipe capacity (LHV)
|
||||
@ -193,69 +21,115 @@ def diameter2capacity(pipe_diameter_mm):
|
||||
"""
|
||||
|
||||
# slopes definitions
|
||||
m0 = (5 - 1.5) / (600 - 500)
|
||||
m1 = (11.25 - 5) / (900 - 600)
|
||||
m2 = (21.7 - 11.25) / (1200 - 900)
|
||||
m0 = (1500 - 0) / (500 - 0)
|
||||
m1 = (5000 - 1500) / (600 - 500)
|
||||
m2 = (11250 - 5000) / (900 - 600)
|
||||
m3 = (21700 - 11250) / (1200 - 900)
|
||||
|
||||
# intercept
|
||||
a0 = -16
|
||||
a1 = -7.5
|
||||
a2 = -20.1
|
||||
a0 = 0
|
||||
a1 = -16000
|
||||
a2 = -7500
|
||||
a3 = -20100
|
||||
|
||||
if pipe_diameter_mm < 500:
|
||||
return np.nan
|
||||
elif pipe_diameter_mm < 600:
|
||||
return a0 + m0 * pipe_diameter_mm
|
||||
elif pipe_diameter_mm < 900:
|
||||
elif pipe_diameter_mm < 600:
|
||||
return a1 + m1 * pipe_diameter_mm
|
||||
else:
|
||||
elif pipe_diameter_mm < 900:
|
||||
return a2 + m2 * pipe_diameter_mm
|
||||
else:
|
||||
return a3 + m3 * pipe_diameter_mm
|
||||
|
||||
|
||||
def determine_pipe_capacity(gas_network):
|
||||
"""Check pipe capacity depending on diameter and pressure."""
|
||||
def load_dataset(fn):
|
||||
df = gpd.read_file(fn)
|
||||
param = df.param.apply(pd.Series)
|
||||
method = df.method.apply(pd.Series)[["diameter_mm", "max_cap_M_m3_per_d"]]
|
||||
method.columns = method.columns + "_method"
|
||||
df = pd.concat([df, param, method], axis=1)
|
||||
to_drop = ["param", "uncertainty", "method", "tags"]
|
||||
to_drop = df.columns.intersection(to_drop)
|
||||
df.drop(to_drop, axis=1, inplace=True)
|
||||
return df
|
||||
|
||||
gas_network["capacity_recalculated"] = gas_network.diameter_mm.apply(diameter2capacity)
|
||||
|
||||
# if pipe capacity smaller than 1.5 GW take original pipe capacity
|
||||
low_cap = gas_network.Capacity_GWh_h < 1.5
|
||||
gas_network.loc[low_cap, "capacity_recalculated"] = gas_network.loc[low_cap, "capacity_recalculated"].fillna(gas_network.loc[low_cap, "Capacity_GWh_h"])
|
||||
def prepare_dataset(
|
||||
df,
|
||||
length_factor=1.5,
|
||||
correction_threshold_length=4,
|
||||
correction_threshold_p_nom=8,
|
||||
bidirectional_below=10
|
||||
):
|
||||
|
||||
# for pipes without diameter assume 500 mm diameter
|
||||
gas_network["capacity_recalculated"].fillna(1.5, inplace=True)
|
||||
# extract start and end from LineString
|
||||
df["point0"] = df.geometry.apply(lambda x: Point(x.coords[0]))
|
||||
df["point1"] = df.geometry.apply(lambda x: Point(x.coords[-1]))
|
||||
|
||||
# for nord stream take orginal data
|
||||
nord_stream = gas_network[gas_network.max_pressure_bar==220].index
|
||||
gas_network.loc[nord_stream, "capacity_recalculated"] = gas_network.loc[nord_stream, "Capacity_GWh_h"]
|
||||
conversion_factor = 437.5 # MCM/day to MWh/h
|
||||
df["p_nom"] = df.max_cap_M_m3_per_d * conversion_factor
|
||||
|
||||
# for inferred diameters, assume 500 mm rather than 900 mm (more conservative)
|
||||
df.loc[df.diameter_mm_method != 'raw', "diameter_mm"] = 500.
|
||||
|
||||
keep = ["name", "diameter_mm", "is_H_gas", "is_bothDirection",
|
||||
"length_km", "p_nom", "max_pressure_bar",
|
||||
"start_year", "point0", "point1", "geometry"]
|
||||
to_rename = {
|
||||
"is_bothDirection": "bidirectional",
|
||||
"is_H_gas": "H_gas",
|
||||
"start_year": "build_year",
|
||||
"length_km": "length",
|
||||
}
|
||||
df = df[keep].rename(columns=to_rename)
|
||||
|
||||
df.bidirectional = df.bidirectional.astype(bool)
|
||||
df.H_gas = df.H_gas.astype(bool)
|
||||
|
||||
# short lines below 10 km are assumed to be bidirectional
|
||||
short_lines = df["length"] < bidirectional_below
|
||||
df.loc[short_lines, "bidirectional"] = True
|
||||
|
||||
# correct all capacities that deviate correction_threshold factor
|
||||
# to diameter-based capacities, unless they are NordStream pipelines
|
||||
# also all capacities below 0.5 GW are now diameter-based capacities
|
||||
df["p_nom_diameter"] = df.diameter_mm.apply(diameter_to_capacity)
|
||||
ratio = df.p_nom / df.p_nom_diameter
|
||||
not_nordstream = df.max_pressure_bar < 220
|
||||
df.p_nom.update(df.p_nom_diameter.where(
|
||||
(df.p_nom <= 500) |
|
||||
((ratio > correction_threshold_p_nom) & not_nordstream) |
|
||||
((ratio < 1 / correction_threshold_p_nom) & not_nordstream)
|
||||
))
|
||||
|
||||
# lines which have way too discrepant line lengths
|
||||
# get assigned haversine length * length factor
|
||||
df["length_haversine"] = df.apply(
|
||||
lambda p: length_factor * haversine_pts(
|
||||
[p.point0.x, p.point0.y],
|
||||
[p.point1.x, p.point1.y]
|
||||
), axis=1
|
||||
)
|
||||
ratio = df.eval("length / length_haversine")
|
||||
df["length"].update(df.length_haversine.where(
|
||||
(df["length"] < 20) |
|
||||
(ratio > correction_threshold_length) |
|
||||
(ratio < 1 / correction_threshold_length)
|
||||
))
|
||||
|
||||
return df
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('build_gas_network',
|
||||
network='elec', simpl='', clusters='37',
|
||||
lv='1.0', opts='', planning_horizons='2020',
|
||||
sector_opts='168H-T-H-B-I')
|
||||
snakemake = mock_snakemake('build_gas_network')
|
||||
|
||||
logging.basicConfig(level=snakemake.config['logging_level'])
|
||||
|
||||
# import gas network data
|
||||
gas_network, points = load_gas_network(snakemake.input.gas_network)
|
||||
gas_network = load_dataset(snakemake.input.gas_network)
|
||||
|
||||
# get clustered bus regions
|
||||
bus_regions = load_bus_regions(
|
||||
snakemake.input.regions_onshore,
|
||||
snakemake.input.regions_offshore
|
||||
)
|
||||
nodes = pd.Index(bus_regions.name.unique())
|
||||
gas_network = prepare_dataset(gas_network)
|
||||
|
||||
# map gas network points to network buses
|
||||
points2buses_map = points2buses(points, bus_regions)
|
||||
|
||||
# create gas network between pypsa nodes
|
||||
gas_connections = build_gas_network_topology(gas_network, points2buses_map)
|
||||
|
||||
gas_connections = clean_dataset(nodes, gas_connections)
|
||||
|
||||
gas_connections.to_csv(snakemake.output.clustered_gas_network)
|
||||
gas_network.to_csv(snakemake.output.cleaned_gas_network)
|
@ -3,7 +3,11 @@
|
||||
import uuid
|
||||
import pandas as pd
|
||||
import geopandas as gpd
|
||||
|
||||
from itertools import product
|
||||
from distutils.version import StrictVersion
|
||||
|
||||
gpd_version = StrictVersion(gpd.__version__)
|
||||
|
||||
|
||||
def locate_missing_industrial_sites(df):
|
||||
@ -69,7 +73,8 @@ def prepare_hotmaps_database(regions):
|
||||
|
||||
gdf = gpd.GeoDataFrame(df, geometry='coordinates', crs="EPSG:4326")
|
||||
|
||||
gdf = gpd.sjoin(gdf, regions, how="inner", op='within')
|
||||
kws = dict(op="within") if gpd_version < '0.10' else dict(predicate="within")
|
||||
gdf = gpd.sjoin(gdf, regions, how="inner", **kws)
|
||||
|
||||
gdf.rename(columns={"index_right": "bus"}, inplace=True)
|
||||
gdf["country"] = gdf.bus.str[:2]
|
||||
|
124
scripts/cluster_gas_network.py
Executable file
124
scripts/cluster_gas_network.py
Executable file
@ -0,0 +1,124 @@
|
||||
"""Cluster gas network."""
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import pandas as pd
|
||||
import geopandas as gpd
|
||||
|
||||
from shapely import wkt
|
||||
from pypsa.geo import haversine_pts
|
||||
from distutils.version import StrictVersion
|
||||
|
||||
gpd_version = StrictVersion(gpd.__version__)
|
||||
|
||||
def concat_gdf(gdf_list, crs='EPSG:4326'):
|
||||
"""Concatenate multiple geopandas dataframes with common coordinate reference system (crs)."""
|
||||
return gpd.GeoDataFrame(pd.concat(gdf_list), crs=crs)
|
||||
|
||||
|
||||
def load_bus_regions(onshore_path, offshore_path):
|
||||
"""Load pypsa-eur on- and offshore regions and concat."""
|
||||
|
||||
bus_regions_offshore = gpd.read_file(offshore_path)
|
||||
bus_regions_onshore = gpd.read_file(onshore_path)
|
||||
bus_regions = concat_gdf([bus_regions_offshore, bus_regions_onshore])
|
||||
bus_regions = bus_regions.dissolve(by='name', aggfunc='sum')
|
||||
|
||||
return bus_regions
|
||||
|
||||
|
||||
def build_clustered_gas_network(df, bus_regions, length_factor=1.25):
|
||||
|
||||
for i in [0,1]:
|
||||
|
||||
gdf = gpd.GeoDataFrame(geometry=df[f"point{i}"], crs="EPSG:4326")
|
||||
|
||||
kws = dict(op="within") if gpd_version < '0.10' else dict(predicate="within")
|
||||
bus_mapping = gpd.sjoin(gdf, bus_regions, how="left", **kws).index_right
|
||||
bus_mapping = bus_mapping.groupby(bus_mapping.index).first()
|
||||
|
||||
df[f"bus{i}"] = bus_mapping
|
||||
|
||||
df[f"point{i}"] = df[f"bus{i}"].map(bus_regions.to_crs(3035).centroid.to_crs(4326))
|
||||
|
||||
# drop pipes where not both buses are inside regions
|
||||
df = df.loc[~df.bus0.isna() & ~df.bus1.isna()]
|
||||
|
||||
# drop pipes within the same region
|
||||
df = df.loc[df.bus1 != df.bus0]
|
||||
|
||||
# recalculate lengths as center to center * length factor
|
||||
df["length"] = df.apply(
|
||||
lambda p: length_factor * haversine_pts(
|
||||
[p.point0.x, p.point0.y],
|
||||
[p.point1.x, p.point1.y]
|
||||
), axis=1
|
||||
)
|
||||
|
||||
# tidy and create new numbered index
|
||||
df.drop(["point0", "point1"], axis=1, inplace=True)
|
||||
df.reset_index(drop=True, inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def reindex_pipes(df):
|
||||
|
||||
def make_index(x):
|
||||
connector = " <-> " if x.bidirectional else " -> "
|
||||
return "gas pipeline " + x.bus0 + connector + x.bus1
|
||||
|
||||
df.index = df.apply(make_index, axis=1)
|
||||
|
||||
df["p_min_pu"] = df.bidirectional.apply(lambda bi: -1 if bi else 0)
|
||||
df.drop("bidirectional", axis=1, inplace=True)
|
||||
|
||||
df.sort_index(axis=1, inplace=True)
|
||||
|
||||
|
||||
def aggregate_parallel_pipes(df):
|
||||
|
||||
strategies = {
|
||||
'bus0': 'first',
|
||||
'bus1': 'first',
|
||||
"p_nom": 'sum',
|
||||
"p_nom_diameter": 'sum',
|
||||
"max_pressure_bar": "mean",
|
||||
"build_year": "mean",
|
||||
"diameter_mm": "mean",
|
||||
"length": 'mean',
|
||||
'name': ' '.join,
|
||||
"p_min_pu": 'min',
|
||||
}
|
||||
return df.groupby(df.index).agg(strategies)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake(
|
||||
'cluster_gas_network',
|
||||
simpl='',
|
||||
clusters='37'
|
||||
)
|
||||
|
||||
logging.basicConfig(level=snakemake.config['logging_level'])
|
||||
|
||||
fn = snakemake.input.cleaned_gas_network
|
||||
df = pd.read_csv(fn, index_col=0)
|
||||
for col in ["point0", "point1"]:
|
||||
df[col] = df[col].apply(wkt.loads)
|
||||
|
||||
bus_regions = load_bus_regions(
|
||||
snakemake.input.regions_onshore,
|
||||
snakemake.input.regions_offshore
|
||||
)
|
||||
|
||||
gas_network = build_clustered_gas_network(df, bus_regions)
|
||||
|
||||
reindex_pipes(gas_network)
|
||||
gas_network = aggregate_parallel_pipes(gas_network)
|
||||
|
||||
gas_network.to_csv(snakemake.output.clustered_gas_network)
|
@ -89,3 +89,15 @@ def mock_snakemake(rulename, **wildcards):
|
||||
|
||||
os.chdir(script_dir)
|
||||
return snakemake
|
||||
|
||||
# from pypsa-eur/_helpers.py
|
||||
def progress_retrieve(url, file):
|
||||
import urllib
|
||||
from progressbar import ProgressBar
|
||||
|
||||
pbar = ProgressBar(0, 100)
|
||||
|
||||
def dlProgress(count, blockSize, totalSize):
|
||||
pbar.update( int(count * blockSize * 100 / totalSize) )
|
||||
|
||||
urllib.request.urlretrieve(url, file, reporthook=dlProgress)
|
@ -236,8 +236,6 @@ def plot_h2_map(network):
|
||||
linewidth_factor = 1e4
|
||||
# MW below which not drawn
|
||||
line_lower_threshold = 1e3
|
||||
bus_color = "m"
|
||||
link_color = "c"
|
||||
|
||||
# Drop non-electric buses so they don't clutter the plot
|
||||
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
||||
@ -251,19 +249,34 @@ def plot_h2_map(network):
|
||||
|
||||
n.links.drop(n.links.index[~n.links.carrier.str.contains("H2 pipeline")], inplace=True)
|
||||
|
||||
link_widths = n.links.p_nom_opt / linewidth_factor
|
||||
link_widths[n.links.p_nom_opt < line_lower_threshold] = 0.
|
||||
link_color = n.links.carrier.map({"H2 pipeline":"red",
|
||||
"H2 pipeline retrofitted": "blue"})
|
||||
h2_new = n.links.loc[n.links.carrier=="H2 pipeline", "p_nom_opt"]
|
||||
|
||||
h2_retro = n.links.loc[n.links.carrier=='H2 pipeline retrofitted']
|
||||
|
||||
positive_order = h2_retro.bus0 < h2_retro.bus1
|
||||
h2_retro_p = h2_retro[positive_order]
|
||||
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
||||
h2_retro_n = h2_retro[~positive_order].rename(columns=swap_buses)
|
||||
h2_retro = pd.concat([h2_retro_p, h2_retro_n])
|
||||
|
||||
h2_retro.index = h2_retro.apply(
|
||||
lambda x: f"H2 pipeline {x.bus0.replace(' H2', '')} -> {x.bus1.replace(' H2', '')}",
|
||||
axis=1
|
||||
)
|
||||
|
||||
h2_retro = h2_retro["p_nom_opt"]
|
||||
|
||||
link_widths_total = (h2_new + h2_retro) / linewidth_factor
|
||||
link_widths_total = link_widths_total.groupby(level=0).sum().reindex(n.links.index).fillna(0.)
|
||||
link_widths_total[n.links.p_nom_opt < line_lower_threshold] = 0.
|
||||
|
||||
retro = n.links.p_nom_opt.where(n.links.carrier=='H2 pipeline retrofitted', other=0.)
|
||||
link_widths_retro = retro / linewidth_factor
|
||||
link_widths_retro[n.links.p_nom_opt < line_lower_threshold] = 0.
|
||||
|
||||
n.links.bus0 = n.links.bus0.str.replace(" H2", "")
|
||||
n.links.bus1 = n.links.bus1.str.replace(" H2", "")
|
||||
|
||||
print(link_widths.sort_values())
|
||||
|
||||
print(n.links[["bus0", "bus1"]])
|
||||
|
||||
fig, ax = plt.subplots(
|
||||
figsize=(7, 6),
|
||||
subplot_kw={"projection": ccrs.PlateCarree()}
|
||||
@ -271,18 +284,28 @@ def plot_h2_map(network):
|
||||
|
||||
n.plot(
|
||||
bus_sizes=bus_sizes,
|
||||
bus_colors={"H2 Electrolysis": bus_color,
|
||||
"H2 Fuel Cell": "slateblue"},
|
||||
link_colors=link_color,
|
||||
link_widths=link_widths,
|
||||
bus_colors=snakemake.config['plotting']['tech_colors'],
|
||||
link_colors='#a2f0f2',
|
||||
link_widths=link_widths_total,
|
||||
branch_components=["Link"],
|
||||
ax=ax, **map_opts
|
||||
ax=ax,
|
||||
**map_opts
|
||||
)
|
||||
|
||||
n.plot(
|
||||
geomap=False,
|
||||
bus_sizes=0,
|
||||
link_colors='#72d3d6',
|
||||
link_widths=link_widths_retro,
|
||||
branch_components=["Link"],
|
||||
ax=ax,
|
||||
**map_opts
|
||||
)
|
||||
|
||||
handles = make_legend_circles_for(
|
||||
[50000, 10000],
|
||||
scale=bus_size_factor,
|
||||
facecolor=bus_color
|
||||
facecolor='grey'
|
||||
)
|
||||
|
||||
labels = ["{} GW".format(s) for s in (50, 10)]
|
||||
@ -303,7 +326,7 @@ def plot_h2_map(network):
|
||||
labels = []
|
||||
|
||||
for s in (50, 10):
|
||||
handles.append(plt.Line2D([0], [0], color="black",
|
||||
handles.append(plt.Line2D([0], [0], color="grey",
|
||||
linewidth=s * 1e3 / linewidth_factor))
|
||||
labels.append("{} GW".format(s))
|
||||
|
||||
@ -321,7 +344,6 @@ def plot_h2_map(network):
|
||||
|
||||
fig.savefig(
|
||||
snakemake.output.map.replace("-costs-all","-h2_network"),
|
||||
transparent=True,
|
||||
bbox_inches="tight"
|
||||
)
|
||||
|
||||
@ -330,261 +352,129 @@ def plot_ch4_map(network):
|
||||
|
||||
n = network.copy()
|
||||
|
||||
supply_energy = get_nodal_balance().droplevel([0,1]).sort_index()
|
||||
|
||||
if "Gas pipeline" not in n.links.carrier.unique():
|
||||
if "gas pipeline" not in n.links.carrier.unique():
|
||||
return
|
||||
|
||||
assign_location(n)
|
||||
|
||||
bus_size_factor = 1e7
|
||||
bus_size_factor = 6e7
|
||||
linewidth_factor = 1e4
|
||||
# MW below which not drawn
|
||||
line_lower_threshold = 5e3
|
||||
bus_color = "maroon"
|
||||
link_color = "lightcoral"
|
||||
line_lower_threshold = 500
|
||||
|
||||
# Drop non-electric buses so they don't clutter the plot
|
||||
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
||||
|
||||
elec = n.generators[n.generators.carrier=="gas"].index
|
||||
fossil_gas_i = n.generators[n.generators.carrier=="gas"].index
|
||||
fossil_gas = n.generators_t.p.loc[:,fossil_gas_i].mul(n.snapshot_weightings.generators, axis=0).sum().groupby(n.generators.loc[fossil_gas_i,"bus"]).sum() / bus_size_factor
|
||||
fossil_gas.rename(index=lambda x: x.replace(" gas", ""), inplace=True)
|
||||
fossil_gas = fossil_gas.reindex(n.buses.index).fillna(0)
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
fossil_gas.index = pd.MultiIndex.from_product([fossil_gas.index, ["fossil gas"]])
|
||||
|
||||
methanation_i = n.links[n.links.carrier.isin(["helmeth", "Sabatier"])].index
|
||||
|
||||
bus_sizes = n.generators_t.p.loc[:,elec].mul(n.snapshot_weightings, axis=0).sum().groupby(n.generators.loc[elec,"bus"]).sum() / bus_size_factor
|
||||
bus_sizes.rename(index=lambda x: x.replace(" gas", ""), inplace=True)
|
||||
bus_sizes = bus_sizes.reindex(n.buses.index).fillna(0)
|
||||
bus_sizes.index = pd.MultiIndex.from_product(
|
||||
[bus_sizes.index, ["fossil gas"]])
|
||||
|
||||
methanation = abs(n.links_t.p1.loc[:,methanation_i].mul(n.snapshot_weightings, axis=0)).sum().groupby(n.links.loc[methanation_i,"bus1"]).sum() / bus_size_factor
|
||||
methanation = abs(n.links_t.p1.loc[:,methanation_i].mul(n.snapshot_weightings.generators, axis=0)).sum().groupby(n.links.loc[methanation_i,"bus1"]).sum() / bus_size_factor
|
||||
methanation = methanation.groupby(methanation.index).sum().rename(index=lambda x: x.replace(" gas", ""))
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
methanation.index = pd.MultiIndex.from_product(
|
||||
[methanation.index, ["methanation"]])
|
||||
methanation.index = pd.MultiIndex.from_product([methanation.index, ["methanation"]])
|
||||
|
||||
biogas_i = n.stores[n.stores.carrier=="biogas"].index
|
||||
biogas = n.stores_t.p.loc[:,biogas_i].mul(n.snapshot_weightings, axis=0).sum().groupby(n.stores.loc[biogas_i,"bus"]).sum() / bus_size_factor
|
||||
biogas = n.stores_t.p.loc[:,biogas_i].mul(n.snapshot_weightings.generators, axis=0).sum().groupby(n.stores.loc[biogas_i,"bus"]).sum() / bus_size_factor
|
||||
biogas = biogas.groupby(biogas.index).sum().rename(index=lambda x: x.replace(" biogas", ""))
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
biogas.index = pd.MultiIndex.from_product(
|
||||
[biogas.index, ["biogas"]])
|
||||
biogas.index = pd.MultiIndex.from_product([biogas.index, ["biogas"]])
|
||||
|
||||
bus_sizes = pd.concat([bus_sizes, methanation, biogas])
|
||||
bus_sizes = pd.concat([fossil_gas, methanation, biogas])
|
||||
bus_sizes.sort_index(inplace=True)
|
||||
|
||||
n.links.drop(n.links.index[n.links.carrier != "Gas pipeline"], inplace=True)
|
||||
to_remove = n.links.index[~n.links.carrier.str.contains("gas pipeline")]
|
||||
n.links.drop(to_remove, inplace=True)
|
||||
|
||||
link_widths = n.links.p_nom_opt / linewidth_factor
|
||||
link_widths[n.links.p_nom_opt < line_lower_threshold] = 0.
|
||||
|
||||
link_widths_orig = n.links.p_nom / linewidth_factor
|
||||
link_widths_orig[n.links.p_nom < line_lower_threshold] = 0.
|
||||
|
||||
link_color = n.links.carrier.map({"gas pipeline": "#f08080",
|
||||
"gas pipeline new": "#c46868"})
|
||||
|
||||
n.links.bus0 = n.links.bus0.str.replace(" gas", "")
|
||||
n.links.bus1 = n.links.bus1.str.replace(" gas", "")
|
||||
|
||||
print(link_widths.sort_values())
|
||||
tech_colors = snakemake.config['plotting']['tech_colors']
|
||||
|
||||
print(n.links[["bus0", "bus1"]])
|
||||
bus_colors = {
|
||||
"fossil gas": tech_colors["fossil gas"],
|
||||
"methanation": tech_colors["methanation"],
|
||||
"biogas": "seagreen"
|
||||
}
|
||||
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
|
||||
fig, ax = plt.subplots(figsize=(7,6), subplot_kw={"projection": ccrs.PlateCarree()})
|
||||
|
||||
fig.set_size_inches(7, 6)
|
||||
n.plot(
|
||||
bus_sizes=bus_sizes,
|
||||
bus_colors=bus_colors,
|
||||
link_colors='lightgrey',
|
||||
link_widths=link_widths_orig,
|
||||
branch_components=["Link"],
|
||||
ax=ax,
|
||||
**map_opts
|
||||
)
|
||||
|
||||
n.plot(bus_sizes=bus_sizes,
|
||||
bus_colors={"fossil gas": bus_color,
|
||||
"methanation": "steelblue",
|
||||
"biogas": "seagreen"},
|
||||
n.plot(
|
||||
geomap=False,
|
||||
ax=ax,
|
||||
bus_sizes=0.,
|
||||
link_colors=link_color,
|
||||
link_widths=link_widths,
|
||||
branch_components=["Link"],
|
||||
ax=ax, boundaries=(-10, 30, 34, 70))
|
||||
**map_opts
|
||||
)
|
||||
|
||||
handles = make_legend_circles_for(
|
||||
[200, 1000], scale=bus_size_factor, facecolor=bus_color)
|
||||
labels = ["{} MW".format(s) for s in (200, 1000)]
|
||||
l2 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.01, 1.01),
|
||||
[10e6, 100e6],
|
||||
scale=bus_size_factor,
|
||||
facecolor='grey'
|
||||
)
|
||||
labels = ["{} TWh".format(s) for s in (10, 100)]
|
||||
|
||||
l2 = ax.legend(
|
||||
handles, labels,
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(-0.03, 1.01),
|
||||
labelspacing=1.0,
|
||||
framealpha=1.,
|
||||
title='Biomass potential',
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax))
|
||||
frameon=False,
|
||||
title='gas generation',
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax)
|
||||
)
|
||||
|
||||
ax.add_artist(l2)
|
||||
|
||||
handles = []
|
||||
labels = []
|
||||
|
||||
for s in (50, 10):
|
||||
handles.append(plt.Line2D([0], [0], color=link_color,
|
||||
linewidth=s * 1e3 / linewidth_factor))
|
||||
handles.append(plt.Line2D([0], [0], color="grey", linewidth=s * 1e3 / linewidth_factor))
|
||||
labels.append("{} GW".format(s))
|
||||
l1_1 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.30, 1.01),
|
||||
framealpha=1,
|
||||
labelspacing=0.8, handletextpad=1.5,
|
||||
title='CH4 pipeline capacity')
|
||||
|
||||
l1_1 = ax.legend(
|
||||
handles, labels,
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.28, 1.01),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1.5,
|
||||
title='gas pipeline capacity'
|
||||
)
|
||||
|
||||
ax.add_artist(l1_1)
|
||||
|
||||
fig.savefig(snakemake.output.map.replace("-costs-all","-ch4_network"), transparent=True,
|
||||
bbox_inches="tight")
|
||||
fig.savefig(
|
||||
snakemake.output.map.replace("-costs-all","-ch4_network"),
|
||||
bbox_inches="tight"
|
||||
)
|
||||
|
||||
##################################################
|
||||
supply_energy.drop("Gas pipeline", level=1, inplace=True)
|
||||
supply_energy = supply_energy[abs(supply_energy)>5]
|
||||
supply_energy.rename(index=lambda x: x.replace(" gas",""), level=0, inplace=True)
|
||||
|
||||
|
||||
demand = supply_energy[supply_energy<0].groupby(level=[0,1]).sum()
|
||||
supply = supply_energy[supply_energy>0].groupby(level=[0,1]).sum()
|
||||
|
||||
#### DEMAND #######################################
|
||||
bus_size_factor = 2e7
|
||||
bus_sizes = abs(demand) / bus_size_factor
|
||||
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
|
||||
|
||||
fig.set_size_inches(7, 6)
|
||||
|
||||
n.plot(bus_sizes=bus_sizes,
|
||||
bus_colors={"CHP": "r",
|
||||
"OCGT": "wheat",
|
||||
"SMR": "darkkhaki",
|
||||
"SMR CC": "tan",
|
||||
"gas boiler": "orange",
|
||||
"gas for industry": "grey",
|
||||
'gas for industry CC': "lightgrey"},
|
||||
link_colors=link_color,
|
||||
link_widths=link_widths,
|
||||
branch_components=["Link"],
|
||||
ax=ax, boundaries=(-10, 30, 34, 70))
|
||||
|
||||
handles = make_legend_circles_for(
|
||||
[10e6, 20e6], scale=bus_size_factor, facecolor=bus_color)
|
||||
labels = ["{} TWh".format(s) for s in (10, 20)]
|
||||
l2 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.01, 1.01),
|
||||
labelspacing=1.0,
|
||||
framealpha=1.,
|
||||
title='CH4 demand',
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax))
|
||||
ax.add_artist(l2)
|
||||
|
||||
handles = []
|
||||
labels = []
|
||||
|
||||
for s in (50, 10):
|
||||
handles.append(plt.Line2D([0], [0], color=link_color,
|
||||
linewidth=s * 1e3 / linewidth_factor))
|
||||
labels.append("{} GW".format(s))
|
||||
l1_1 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.30, 1.01),
|
||||
framealpha=1,
|
||||
labelspacing=0.8, handletextpad=1.5,
|
||||
title='CH4 pipeline capacity')
|
||||
ax.add_artist(l1_1)
|
||||
|
||||
fig.savefig(snakemake.output.map.replace("-costs-all","-ch4_demand"), transparent=True,
|
||||
bbox_inches="tight")
|
||||
|
||||
|
||||
#### SUPPLY #######################################
|
||||
bus_size_factor = 2e7
|
||||
bus_sizes = supply / bus_size_factor
|
||||
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
|
||||
|
||||
fig.set_size_inches(7, 6)
|
||||
|
||||
n.plot(bus_sizes=bus_sizes,
|
||||
bus_colors={"gas": "maroon",
|
||||
"methanation": "steelblue",
|
||||
"helmeth": "slateblue",
|
||||
"biogas": "seagreen"},
|
||||
link_colors=link_color,
|
||||
link_widths=link_widths,
|
||||
branch_components=["Link"],
|
||||
ax=ax, boundaries=(-10, 30, 34, 70))
|
||||
|
||||
handles = make_legend_circles_for(
|
||||
[10e6, 20e6], scale=bus_size_factor, facecolor="black")
|
||||
labels = ["{} TWh".format(s) for s in (10, 20)]
|
||||
l2 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.01, 1.01),
|
||||
labelspacing=1.0,
|
||||
framealpha=1.,
|
||||
title='CH4 supply',
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax))
|
||||
ax.add_artist(l2)
|
||||
|
||||
handles = []
|
||||
labels = []
|
||||
|
||||
for s in (50, 10):
|
||||
handles.append(plt.Line2D([0], [0], color=link_color,
|
||||
linewidth=s * 1e3 / linewidth_factor))
|
||||
labels.append("{} GW".format(s))
|
||||
l1_1 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.30, 1.01),
|
||||
framealpha=1,
|
||||
labelspacing=0.8, handletextpad=1.5,
|
||||
title='CH4 pipeline capacity')
|
||||
ax.add_artist(l1_1)
|
||||
|
||||
fig.savefig(snakemake.output.map.replace("-costs-all","-ch4_supply"), transparent=True,
|
||||
bbox_inches="tight")
|
||||
|
||||
###########################################################################
|
||||
net = pd.concat([demand.groupby(level=0).sum().rename("demand"),
|
||||
supply.groupby(level=0).sum().rename("supply")], axis=1).sum(axis=1)
|
||||
mask = net>0
|
||||
net_importer = net.mask(mask).rename("net_importer")
|
||||
net_exporter = net.mask(~mask).rename("net_exporter")
|
||||
|
||||
bus_size_factor = 2e7
|
||||
linewidth_factor = 1e-1
|
||||
bus_sizes = pd.concat([abs(net_importer), net_exporter], axis=1).fillna(0).stack() / bus_size_factor
|
||||
|
||||
link_widths = abs(n.links_t.p0).max().loc[n.links.index] / n.links.p_nom_opt
|
||||
link_widths /= linewidth_factor
|
||||
|
||||
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()})
|
||||
|
||||
fig.set_size_inches(7, 6)
|
||||
|
||||
n.plot(bus_sizes=bus_sizes,
|
||||
bus_colors={"net_importer": "r",
|
||||
"net_exporter": "darkgreen",
|
||||
},
|
||||
link_colors="lightgrey",
|
||||
link_widths=link_widths,
|
||||
branch_components=["Link"],
|
||||
ax=ax, boundaries=(-10, 30, 34, 70))
|
||||
|
||||
handles = make_legend_circles_for(
|
||||
[10e6, 20e6], scale=bus_size_factor, facecolor="black")
|
||||
labels = ["{} TWh".format(s) for s in (10, 20)]
|
||||
l2 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.01, 1.01),
|
||||
labelspacing=1.0,
|
||||
framealpha=1.,
|
||||
title='Net Import/Export',
|
||||
handler_map=make_handler_map_to_scale_circles_as_in(ax))
|
||||
ax.add_artist(l2)
|
||||
|
||||
handles = []
|
||||
labels = []
|
||||
|
||||
for s in (0.5, 1):
|
||||
handles.append(plt.Line2D([0], [0], color="lightgrey",
|
||||
linewidth=s / linewidth_factor))
|
||||
labels.append("{} per unit".format(s))
|
||||
l1_1 = ax.legend(handles, labels,
|
||||
loc="upper left", bbox_to_anchor=(0.30, 1.01),
|
||||
framealpha=1,
|
||||
labelspacing=0.8, handletextpad=1.5,
|
||||
title='maximum used CH4 pipeline capacity')
|
||||
ax.add_artist(l1_1)
|
||||
|
||||
fig.savefig(snakemake.output.map.replace("-costs-all","-ch4_net_balance"), transparent=True,
|
||||
bbox_inches="tight")
|
||||
|
||||
def plot_map_without(network):
|
||||
|
||||
@ -785,51 +675,6 @@ def plot_series(network, carrier="AC", name="test"):
|
||||
transparent=True)
|
||||
|
||||
|
||||
def get_nodal_balance(carrier="gas"):
|
||||
|
||||
bus_map = (n.buses.carrier == carrier)
|
||||
bus_map.at[""] = False
|
||||
supply_energy = pd.Series(dtype="float64")
|
||||
|
||||
for c in n.iterate_components(n.one_port_components):
|
||||
|
||||
items = c.df.index[c.df.bus.map(bus_map).fillna(False)]
|
||||
|
||||
if len(items) == 0:
|
||||
continue
|
||||
|
||||
s = round(c.pnl.p.multiply(n.snapshot_weightings,axis=0).sum().multiply(c.df['sign']).loc[items]
|
||||
.groupby([c.df.bus, c.df.carrier]).sum())
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[carrier])
|
||||
|
||||
supply_energy = supply_energy.reindex(s.index.union(supply_energy.index))
|
||||
supply_energy.loc[s.index] = s
|
||||
|
||||
|
||||
for c in n.iterate_components(n.branch_components):
|
||||
|
||||
for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
|
||||
|
||||
items = c.df.index[c.df["bus" + str(end)].map(bus_map,na_action=False)]
|
||||
|
||||
if len(items) == 0:
|
||||
continue
|
||||
|
||||
s = ((-1)*c.pnl["p"+end][items].multiply(n.snapshot_weightings,axis=0).sum()
|
||||
.groupby([c.df.loc[items,'bus{}'.format(end)], c.df.loc[items,'carrier']]).sum())
|
||||
s.index = s.index
|
||||
s = pd.concat([s], keys=[c.list_name])
|
||||
s = pd.concat([s], keys=[carrier])
|
||||
|
||||
supply_energy = supply_energy.reindex(s.index.union(supply_energy.index))
|
||||
|
||||
supply_energy.loc[s.index] = s
|
||||
|
||||
supply_energy = supply_energy.rename(index=lambda x: rename_techs(x), level=3)
|
||||
return supply_energy
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
|
@ -8,6 +8,7 @@ import pytz
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import xarray as xr
|
||||
import networkx as nx
|
||||
|
||||
from itertools import product
|
||||
from scipy.stats import beta
|
||||
@ -16,6 +17,10 @@ from vresutils.costdata import annuity
|
||||
from build_energy_totals import build_eea_co2, build_eurostat_co2, build_co2_totals
|
||||
from helper import override_component_attrs
|
||||
|
||||
from networkx.algorithms.connectivity.edge_augmentation import k_edge_augmentation
|
||||
from networkx.algorithms import complement
|
||||
from pypsa.geo import haversine_pts
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -131,40 +136,6 @@ def get(item, investment_year=None):
|
||||
return item
|
||||
|
||||
|
||||
def create_network_topology(n, prefix, connector=" -> "):
|
||||
"""
|
||||
Create a network topology like the power transmission network.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : pypsa.Network
|
||||
prefix : str
|
||||
connector : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
pd.DataFrame with columns bus0, bus1 and length
|
||||
"""
|
||||
|
||||
ln_attrs = ["bus0", "bus1", "length"]
|
||||
lk_attrs = ["bus0", "bus1", "length", "underwater_fraction"]
|
||||
|
||||
candidates = pd.concat([
|
||||
n.lines[ln_attrs],
|
||||
n.links.loc[n.links.carrier == "DC", lk_attrs]
|
||||
]).fillna(0)
|
||||
|
||||
positive_order = candidates.bus0 < candidates.bus1
|
||||
candidates_p = candidates[positive_order]
|
||||
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
||||
candidates_n = candidates[~positive_order].rename(columns=swap_buses)
|
||||
candidates = pd.concat([candidates_p, candidates_n])
|
||||
|
||||
topo = candidates.groupby(["bus0", "bus1"], as_index=False).mean()
|
||||
topo.index = topo.apply(lambda c: prefix + c.bus0 + connector + c.bus1, axis=1)
|
||||
return topo
|
||||
|
||||
|
||||
def co2_emissions_year(countries, opts, year):
|
||||
"""
|
||||
Calculate CO2 emissions in one specific year (e.g. 1990 or 2018).
|
||||
@ -252,14 +223,21 @@ def add_lifetime_wind_solar(n, costs):
|
||||
n.generators.loc[gen_i, "lifetime"] = costs.at[carrier, 'lifetime']
|
||||
|
||||
|
||||
def create_network_topology(n, prefix, connector=" -> ", bidirectional=True):
|
||||
def haversine(p):
|
||||
coord0 = n.buses.loc[p.bus0, ['x', 'y']].values
|
||||
coord1 = n.buses.loc[p.bus1, ['x', 'y']].values
|
||||
return 1.5 * haversine_pts(coord0, coord1)
|
||||
|
||||
|
||||
def create_network_topology(n, prefix, carriers=["DC"], connector=" -> ", bidirectional=True):
|
||||
"""
|
||||
Create a network topology like the power transmission network.
|
||||
Create a network topology from transmission lines and link carrier selection.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : pypsa.Network
|
||||
prefix : str
|
||||
carriers : list-like
|
||||
connector : str
|
||||
bidirectional : bool, default True
|
||||
True: one link for each connection
|
||||
@ -267,7 +245,7 @@ def create_network_topology(n, prefix, connector=" -> ", bidirectional=True):
|
||||
|
||||
Returns
|
||||
-------
|
||||
pd.DataFrame with columns bus0, bus1 and length
|
||||
pd.DataFrame with columns bus0, bus1, length, underwater_fraction
|
||||
"""
|
||||
|
||||
ln_attrs = ["bus0", "bus1", "length"]
|
||||
@ -275,9 +253,13 @@ def create_network_topology(n, prefix, connector=" -> ", bidirectional=True):
|
||||
|
||||
candidates = pd.concat([
|
||||
n.lines[ln_attrs],
|
||||
n.links.loc[n.links.carrier == "DC", lk_attrs]
|
||||
n.links.loc[n.links.carrier.isin(carriers), lk_attrs]
|
||||
]).fillna(0)
|
||||
|
||||
# base network topology purely on location not carrier
|
||||
candidates["bus0"] = candidates.bus0.map(n.buses.location)
|
||||
candidates["bus1"] = candidates.bus1.map(n.buses.location)
|
||||
|
||||
positive_order = candidates.bus0 < candidates.bus1
|
||||
candidates_p = candidates[positive_order]
|
||||
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
||||
@ -561,17 +543,6 @@ def average_every_nhours(n, offset):
|
||||
logger.info(f'Resampling the network to {offset}')
|
||||
m = n.copy(with_time=False)
|
||||
|
||||
# TODO is this still needed?
|
||||
#fix copying of network attributes
|
||||
#copied from pypsa/io.py, should be in pypsa/components.py#Network.copy()
|
||||
allowed_types = (float, int, bool, str) + tuple(np.typeDict.values())
|
||||
attrs = dict((attr, getattr(n, attr))
|
||||
for attr in dir(n)
|
||||
if (not attr.startswith("__") and
|
||||
isinstance(getattr(n,attr), allowed_types)))
|
||||
for k,v in attrs.items():
|
||||
setattr(m,k,v)
|
||||
|
||||
snapshot_weightings = n.snapshot_weightings.resample(offset).sum()
|
||||
m.set_snapshots(snapshot_weightings.index)
|
||||
m.snapshot_weightings = snapshot_weightings
|
||||
@ -1033,8 +1004,8 @@ def add_electricity_grid_connection(n, costs):
|
||||
n.generators.loc[gens, "capital_cost"] += costs.at['electricity grid connection', 'fixed']
|
||||
|
||||
|
||||
def add_storage(n, costs):
|
||||
print("adding electricity and hydrogen storage")
|
||||
def add_storage_and_grids(n, costs):
|
||||
print("adding electricity and hydrogen storage as well as hydrogen and gas grids")
|
||||
|
||||
nodes = pop_layout.index
|
||||
|
||||
@ -1106,122 +1077,128 @@ def add_storage(n, costs):
|
||||
capital_cost=h2_capital_cost
|
||||
)
|
||||
|
||||
attrs = ["bus0", "bus1", "length"]
|
||||
h2_links = pd.DataFrame(columns=attrs)
|
||||
|
||||
candidates = pd.concat({"lines": n.lines[attrs],
|
||||
"links": n.links.loc[n.links.carrier == "DC", attrs]})
|
||||
|
||||
for candidate in candidates.index:
|
||||
buses = [candidates.at[candidate, "bus0"], candidates.at[candidate, "bus1"]]
|
||||
buses.sort()
|
||||
name = f"H2 pipeline {buses[0]} -> {buses[1]}"
|
||||
if name not in h2_links.index:
|
||||
h2_links.at[name, "bus0"] = buses[0]
|
||||
h2_links.at[name, "bus1"] = buses[1]
|
||||
h2_links.at[name, "length"] = candidates.at[candidate, "length"]
|
||||
|
||||
# TODO Add efficiency losses
|
||||
n.madd("Link",
|
||||
h2_links.index,
|
||||
bus0=h2_links.bus0.values + " H2",
|
||||
bus1=h2_links.bus1.values + " H2",
|
||||
p_min_pu=-1,
|
||||
p_nom_extendable=True,
|
||||
length=h2_links.length.values,
|
||||
capital_cost=costs.at['H2 (g) pipeline', 'fixed'] * h2_links.length.values,
|
||||
carrier="H2 pipeline",
|
||||
lifetime=costs.at['H2 (g) pipeline', 'lifetime']
|
||||
)
|
||||
|
||||
if options["gas_network"]:
|
||||
|
||||
logger.info("Add gas network")
|
||||
|
||||
cols = [
|
||||
"bus0",
|
||||
"bus1",
|
||||
"is_bothDirection",
|
||||
"pipe_capacity_MW",
|
||||
"id",
|
||||
"length_km"
|
||||
]
|
||||
gas_pipes = pd.read_csv(snakemake.input.clustered_gas_network, usecols=cols)
|
||||
|
||||
def make_index(x):
|
||||
connector = " <-> " if x.is_bothDirection else " -> "
|
||||
return "Gas pipeline " + x.bus0 + connector + x.bus1
|
||||
|
||||
gas_pipes.index = gas_pipes.apply(make_index, axis=1)
|
||||
|
||||
# group parallel pipes together
|
||||
strategies = {
|
||||
'bus0': 'first',
|
||||
'bus1': 'first',
|
||||
'is_bothDirection': 'first',
|
||||
"pipe_capacity_MW": 'sum',
|
||||
"length_km": 'sum',
|
||||
'id': ' '.join,
|
||||
}
|
||||
gas_pipes = gas_pipes.groupby(gas_pipes.index).agg(strategies)
|
||||
|
||||
gas_pipes["num_parallel"] = gas_pipes.index.value_counts()
|
||||
gas_pipes["p_min_pu"] = gas_pipes.apply(lambda x: -1 if x.is_bothDirection else 0, axis=1)
|
||||
fn = snakemake.input.clustered_gas_network
|
||||
gas_pipes = pd.read_csv(fn, index_col=0)
|
||||
|
||||
if options["H2_retrofit"]:
|
||||
gas_pipes["p_nom_max"] = gas_pipes.gas_pipes.pipe_capacity_MW
|
||||
gas_pipes["p_nom_max"] = gas_pipes.p_nom
|
||||
gas_pipes["p_nom_min"] = 0.
|
||||
gas_pipes["capital_cost"] = 0.
|
||||
else:
|
||||
gas_pipes["p_nom_max"] = np.inf
|
||||
gas_pipes["p_nom_min"] = gas_pipes.gas_pipes.pipe_capacity_MW
|
||||
gas_pipes["capital_cost"] = gas_pipes.length_km * costs.at['CH4 (g) pipeline', 'fixed']
|
||||
gas_pipes["p_nom_min"] = gas_pipes.p_nom
|
||||
gas_pipes["capital_cost"] = gas_pipes.length * costs.at['CH4 (g) pipeline', 'fixed']
|
||||
|
||||
n.madd("Link",
|
||||
gas_pipes.index,
|
||||
bus0=gas_pipes.bus0 + " gas",
|
||||
bus1=gas_pipes.bus1 + " gas",
|
||||
p_min_pu=gas_pipes.p_min_pu,
|
||||
p_nom=gas_pipes.pipe_capacity_MW,
|
||||
p_nom=gas_pipes.p_nom,
|
||||
p_nom_extendable=True,
|
||||
p_nom_max=gas_pipes.p_nom_max,
|
||||
p_nom_min=gas_pipes.p_nom_min,
|
||||
length=gas_pipes.length_km,
|
||||
length=gas_pipes.length,
|
||||
capital_cost=gas_pipes.capital_cost,
|
||||
type=gas_pipes.num_parallel,
|
||||
tags=gas_pipes.id,
|
||||
carrier="Gas pipeline",
|
||||
lifetime=50
|
||||
tags=gas_pipes.name,
|
||||
carrier="gas pipeline",
|
||||
lifetime=costs.at['CH4 (g) pipeline', 'lifetime']
|
||||
)
|
||||
|
||||
# remove fossil generators at all connected nodes
|
||||
# TODO what should be assumed here? rather located at LNG terminals?
|
||||
missing = nodes.difference(pd.concat([gas_pipes.bus0, gas_pipes.bus1]).unique())
|
||||
remove_i = n.generators[(n.generators.carrier=="gas")
|
||||
& (~n.generators.bus.str.replace(" gas","").isin(missing))].index
|
||||
# remove fossil generators where there is neither
|
||||
# production, LNG terminal, nor entry-point beyond system scope
|
||||
|
||||
fn = snakemake.input.gas_input_nodes_simplified
|
||||
gas_input_nodes = pd.read_csv(fn, index_col=0)
|
||||
|
||||
unique = gas_input_nodes.index.unique()
|
||||
gas_i = n.generators.carrier == 'gas'
|
||||
internal_i = ~n.generators.bus.map(n.buses.location).isin(unique)
|
||||
|
||||
remove_i = n.generators[gas_i & internal_i].index
|
||||
n.generators.drop(remove_i, inplace=True)
|
||||
|
||||
p_nom = gas_input_nodes.sum(axis=1).rename(lambda x: x + " gas")
|
||||
n.generators.loc[gas_i, "p_nom_extendable"] = False
|
||||
n.generators.loc[gas_i, "p_nom"] = p_nom
|
||||
|
||||
# add candidates for new gas pipelines to achieve full connectivity
|
||||
|
||||
G = nx.Graph()
|
||||
|
||||
gas_buses = n.buses.loc[n.buses.carrier=='gas', 'location']
|
||||
G.add_nodes_from(np.unique(gas_buses.values))
|
||||
|
||||
sel = gas_pipes.p_nom > 1500
|
||||
attrs = ["bus0", "bus1", "length"]
|
||||
G.add_weighted_edges_from(gas_pipes.loc[sel, attrs].values)
|
||||
|
||||
# find all complement edges
|
||||
complement_edges = pd.DataFrame(complement(G).edges, columns=["bus0", "bus1"])
|
||||
complement_edges["length"] = complement_edges.apply(haversine, axis=1)
|
||||
|
||||
# apply k_edge_augmentation weighted by length of complement edges
|
||||
k_edge = options.get("gas_network_connectivity_upgrade", 3)
|
||||
augmentation = k_edge_augmentation(G, k_edge, avail=complement_edges.values)
|
||||
new_gas_pipes = pd.DataFrame(augmentation, columns=["bus0", "bus1"])
|
||||
new_gas_pipes["length"] = new_gas_pipes.apply(haversine, axis=1)
|
||||
|
||||
new_gas_pipes.index = new_gas_pipes.apply(
|
||||
lambda x: f"gas pipeline new {x.bus0} <-> {x.bus1}", axis=1)
|
||||
|
||||
n.madd("Link",
|
||||
new_gas_pipes.index,
|
||||
bus0=new_gas_pipes.bus0 + " gas",
|
||||
bus1=new_gas_pipes.bus1 + " gas",
|
||||
p_min_pu=-1, # new gas pipes are bidirectional
|
||||
p_nom_extendable=True,
|
||||
length=new_gas_pipes.length,
|
||||
capital_cost=new_gas_pipes.length * costs.at['CH4 (g) pipeline', 'fixed'],
|
||||
carrier="gas pipeline new",
|
||||
lifetime=costs.at['CH4 (g) pipeline', 'lifetime']
|
||||
)
|
||||
|
||||
# retroftting existing CH4 pipes to H2 pipes
|
||||
if options["gas_network"] and options["H2_retrofit"]:
|
||||
|
||||
gas_pipe_i = n.links[n.links.carrier == "Gas pipeline"].index
|
||||
gas_pipe_i = n.links[n.links.carrier == "gas pipeline"].index
|
||||
n.links.loc[gas_pipe_i, "p_nom_extendable"] = True
|
||||
h2_pipes = gas_pipes.rename(index=lambda x:
|
||||
x.replace("Gas pipeline", "H2 pipeline retrofitted"))
|
||||
x.replace("gas pipeline", "H2 pipeline retrofitted"))
|
||||
|
||||
n.madd("Link",
|
||||
h2_pipes.index,
|
||||
bus0=h2_pipes.bus0 + " H2",
|
||||
bus1=h2_pipes.bus1 + " H2",
|
||||
p_min_pu=-1., # allow that all H2 pipelines can be used in other direction
|
||||
p_nom_max=h2_pipes.pipe_capacity_MW * options["H2_retrofit_capacity_per_CH4"],
|
||||
p_min_pu=-1., # allow that all H2 retrofit pipelines can be used in both directions
|
||||
p_nom_max=h2_pipes.p_nom * options["H2_retrofit_capacity_per_CH4"],
|
||||
p_nom_extendable=True,
|
||||
length=h2_pipes.length_km,
|
||||
capital_cost=costs.at['H2 (g) pipeline repurposed', 'fixed'] * h2_pipes.length_km,
|
||||
type=gas_pipes.num_parallel,
|
||||
tags=h2_pipes.id,
|
||||
length=h2_pipes.length,
|
||||
capital_cost=costs.at['H2 (g) pipeline repurposed', 'fixed'] * h2_pipes.length,
|
||||
tags=h2_pipes.name,
|
||||
carrier="H2 pipeline retrofitted",
|
||||
lifetime=50
|
||||
lifetime=costs.at['H2 (g) pipeline repurposed', 'lifetime']
|
||||
)
|
||||
|
||||
if options.get("H2_network", True):
|
||||
|
||||
h2_pipes = create_network_topology(n, "H2 pipeline ", carriers=["DC", "gas pipeline"])
|
||||
|
||||
# TODO Add efficiency losses
|
||||
n.madd("Link",
|
||||
h2_pipes.index,
|
||||
bus0=h2_pipes.bus0.values + " H2",
|
||||
bus1=h2_pipes.bus1.values + " H2",
|
||||
p_min_pu=-1,
|
||||
p_nom_extendable=True,
|
||||
length=h2_pipes.length.values,
|
||||
capital_cost=costs.at['H2 (g) pipeline', 'fixed'] * h2_pipes.length.values,
|
||||
carrier="H2 pipeline",
|
||||
lifetime=costs.at['H2 (g) pipeline', 'lifetime']
|
||||
)
|
||||
|
||||
n.add("Carrier", "battery")
|
||||
@ -1963,14 +1940,6 @@ def add_industry(n, costs):
|
||||
# 1e6 to convert TWh to MWh
|
||||
industrial_demand = pd.read_csv(snakemake.input.industrial_demand, index_col=0) * 1e6
|
||||
|
||||
methane_demand = industrial_demand.loc[nodes, "methane"].div(8760).rename(index=lambda x: x + " gas for industry")
|
||||
|
||||
# need to aggregate methane demand if gas not nodally resolved
|
||||
if not options["gas_network"]:
|
||||
methane_demand = methane_demand.sum()
|
||||
|
||||
solid_biomass_by_country = industrial_demand["solid biomass"].groupby(pop_layout.ct).sum()
|
||||
|
||||
n.madd("Bus",
|
||||
spatial.biomass.industry,
|
||||
location=spatial.biomass.locations,
|
||||
@ -2018,11 +1987,18 @@ def add_industry(n, costs):
|
||||
location=spatial.gas.locations,
|
||||
carrier="gas for industry")
|
||||
|
||||
gas_demand = industrial_demand.loc[nodes, "methane"] / 8760.
|
||||
|
||||
if options["gas_network"]:
|
||||
spatial_gas_demand = gas_demand.rename(index=lambda x: x + " gas for industry")
|
||||
else:
|
||||
spatial_gas_demand = gas_demand.sum()
|
||||
|
||||
n.madd("Load",
|
||||
spatial.gas.industry,
|
||||
bus=spatial.gas.industry,
|
||||
carrier="gas for industry",
|
||||
p_set=methane_demand
|
||||
p_set=spatial_gas_demand
|
||||
)
|
||||
|
||||
n.madd("Link",
|
||||
@ -2463,7 +2439,7 @@ if __name__ == "__main__":
|
||||
|
||||
add_generation(n, costs)
|
||||
|
||||
add_storage(n, costs)
|
||||
add_storage_and_grids(n, costs)
|
||||
|
||||
# TODO merge with opts cost adjustment below
|
||||
for o in opts:
|
||||
|
36
scripts/retrieve_gas_infrastructure_data.py
Normal file
36
scripts/retrieve_gas_infrastructure_data.py
Normal file
@ -0,0 +1,36 @@
|
||||
"""
|
||||
Retrieve gas infrastructure data from https://zenodo.org/record/4767098/files/IGGIELGN.zip
|
||||
"""
|
||||
|
||||
import logging
|
||||
from helper import progress_retrieve
|
||||
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if 'snakemake' not in globals():
|
||||
from helper import mock_snakemake
|
||||
snakemake = mock_snakemake('retrieve_gas_network_data')
|
||||
rootpath = '..'
|
||||
else:
|
||||
rootpath = '.'
|
||||
|
||||
url = "https://zenodo.org/record/4767098/files/IGGIELGN.zip"
|
||||
|
||||
# Save locations
|
||||
zip_fn = Path(f"{rootpath}/IGGIELGN.zip")
|
||||
to_fn = Path(f"{rootpath}/data/gas_network/scigrid-gas")
|
||||
|
||||
logger.info(f"Downloading databundle from '{url}'.")
|
||||
progress_retrieve(url, zip_fn)
|
||||
|
||||
logger.info(f"Extracting databundle.")
|
||||
zipfile.ZipFile(zip_fn).extractall(to_fn)
|
||||
|
||||
zip_fn.unlink()
|
||||
|
||||
logger.info(f"Gas infrastructure data available in '{to_fn}'.")
|
@ -189,7 +189,7 @@ def add_chp_constraints(n):
|
||||
def add_pipe_retrofit_constraint(n):
|
||||
"""Add constraint for retrofitting existing CH4 pipelines to H2 pipelines."""
|
||||
|
||||
gas_pipes_i = n.links[n.links.carrier=="Gas pipeline"].index
|
||||
gas_pipes_i = n.links[n.links.carrier=="gas pipeline"].index
|
||||
h2_retrofitted_i = n.links[n.links.carrier=='H2 pipeline retrofitted'].index
|
||||
|
||||
if h2_retrofitted_i.empty or gas_pipes_i.empty: return
|
||||
@ -201,7 +201,7 @@ def add_pipe_retrofit_constraint(n):
|
||||
CH4_per_H2 = 1 / n.config["sector"]["H2_retrofit_capacity_per_CH4"]
|
||||
|
||||
lhs = linexpr(
|
||||
(CH4_per_H2, link_p_nom.loc[h2_retrofitted_i].rename(index=lambda x: x.replace("H2 pipeline retrofitted", "Gas pipeline"))),
|
||||
(CH4_per_H2, link_p_nom.loc[h2_retrofitted_i].rename(index=lambda x: x.replace("H2 pipeline retrofitted", "gas pipeline"))),
|
||||
(1, link_p_nom.loc[gas_pipes_i])
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user