formatting latex math
This commit is contained in:
parent
c3d2213402
commit
87c444c898
@ -201,7 +201,7 @@ Hydrogen is also used for transport applications (see :ref:`Transportation`), wh
|
||||
Hydrogen supply
|
||||
=============================
|
||||
|
||||
Today, most of the H2 consumed globally is produced from natural gas by steam methane reforming (SMR)
|
||||
Today, most of the H $_2$ consumed globally is produced from natural gas by steam methane reforming (SMR)
|
||||
|
||||
$$
|
||||
CH_4 + H_2O → CO + 3H_2
|
||||
@ -214,7 +214,7 @@ CO + H_2O → CO_2 + H_2
|
||||
$$
|
||||
|
||||
SMR is included `here <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L245>`_.
|
||||
PyPSA-Eur-Sec allows this route of H2 production with and without [carbon capture (CC)] (see :ref:`Carbon dioxide capture, usage and sequestration (CCU/S)`). These routes are often referred to as blue and grey hydrogen. Here, methane input can be both of fossil or synthetic origin.
|
||||
PyPSA-Eur-Sec allows this route of H $_2$ production with and without [carbon capture (CC)] (see :ref:`Carbon dioxide capture, usage and sequestration (CCU/S)`). These routes are often referred to as blue and grey hydrogen. Here, methane input can be both of fossil or synthetic origin.
|
||||
|
||||
Green hydrogen can be produced by electrolysis to split water into hydrogen and oxygen
|
||||
|
||||
@ -224,12 +224,12 @@ $$
|
||||
|
||||
For the electrolysis, alkaline electrolysers are chosen since they have lower cost and higher cumulative installed capacity than polymer electrolyte membrane (PEM) electrolysers. The techno-economic assumptions are taken from the technology-data repository. Waste heat from electrolysis is not leveraged in the model.
|
||||
|
||||
*Transport*
|
||||
**Transport**
|
||||
|
||||
Hydrogen is transported by pipelines. H2 pipelines are endogenously generated, either via a greenfield H2 network, or by `retrofitting natural gas pipelines <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L262>`_). Retrofitting is implemented in such a way that for every unit of decommissioned gas pipeline, a share (60% is used in the study by `Neumann et al. <https://arxiv.org/abs/2207.05816>`_) of its nominal capacity (exogenously determined in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L266>`_.) is available for hydrogen transport. When the gas network is not resolved, this input denotes the potential for gas pipelines repurposed into hydrogen pipelines.
|
||||
Hydrogen is transported by pipelines. H $_2$ pipelines are endogenously generated, either via a greenfield H $_2$ network, or by `retrofitting natural gas pipelines <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L262>`_). Retrofitting is implemented in such a way that for every unit of decommissioned gas pipeline, a share (60% is used in the study by `Neumann et al. <https://arxiv.org/abs/2207.05816>`_) of its nominal capacity (exogenously determined in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L266>`_.) is available for hydrogen transport. When the gas network is not resolved, this input denotes the potential for gas pipelines repurposed into hydrogen pipelines.
|
||||
New pipelines can be built additionally on all routes where there currently is a gas or electricity network connection. These new pipelines will be built where no sufficient retrofitting options are available. The capacities of new and repurposed pipelines are a result of the optimisation.
|
||||
|
||||
*Storage*
|
||||
**Storage**
|
||||
|
||||
Hydrogen can be stored in overground steel tanks or `underground salt caverns <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L250>`_. For the latter, energy storage capacities in every country are limited to the potential estimation for onshore salt caverns within `50 km <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L251>`_ of shore to avoid environmental issues associated with brine solution disposal. Underground storage potentials for hydrogen in European salt caverns is acquired from `Caglayan et al. <https://doi.org/10.1016/j.ijhydene.2019.12.161>`_
|
||||
|
||||
@ -316,13 +316,13 @@ The model can only use biogas by first upgrading it to natural gas quality [see
|
||||
Oil-based products demand
|
||||
========================
|
||||
Naphtha is used as a feedstock in the chemicals industry (see :ref:`Chemicals Industry`). Furthermore, kerosene is used as transport fuel in the aviation sector (see :ref:`Aviation`). Non-electrified agriculture machinery also consumes gasoline.
|
||||
Land transport [(see :ref:`Land transport`) that is not electrified or converted into using H2-fuel cells also consumes oil-based products. While there is regional distribution of demand, the carrier is copperplated in the model, which means that transport costs and constraints are neglected.
|
||||
Land transport [(see :ref:`Land transport`) that is not electrified or converted into using H $_2$-fuel cells also consumes oil-based products. While there is regional distribution of demand, the carrier is copperplated in the model, which means that transport costs and constraints are neglected.
|
||||
|
||||
.. _Oil-based products supply:
|
||||
|
||||
Oil-based products supply
|
||||
========================
|
||||
Oil-based products can be either of fossil origin or synthetically produced by combining H2 (see :ref:`Hydrogen supply`) and captured CO$_2$ (see :ref:`Carbon dioxide capture, usage and sequestration (CCU/S)`) in Fischer-Tropsch plants
|
||||
Oil-based products can be either of fossil origin or synthetically produced by combining H $_2$ (see :ref:`Hydrogen supply`) and captured CO $_2$ (see :ref:`Carbon dioxide capture, usage and sequestration (CCU/S)`) in Fischer-Tropsch plants
|
||||
|
||||
$$
|
||||
𝑛CO+(2𝑛+1)H_2 → C_{n}H_{2n + 2} +𝑛H_2O
|
||||
@ -450,15 +450,15 @@ $$
|
||||
|
||||
The Haber-Bosch process is not explicitly represented in the model, such that demand for ammonia enters the model as a demand for hydrogen ( $6.5 MWh_{H_2}$ / t $_{NH_3}$ ) and electricity ( $1.17 MWh_{el}$ /t $_{NH_3}$ ) (see `Wang et. al <https://doi.org/10.1016/j.joule.2018.04.017>`_). Today, natural gas dominates in Europe as the source for the hydrogen used in the Haber-Bosch process, but the model can choose among the various hydrogen supply options described in the hydrogen section (see :ref:`Hydrogen supply`)
|
||||
|
||||
The total production and specific energy consumption of chlorine and methanol is taken from a `DECHEMA report <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`_. According to this source, the production of chlorine amounts to 9.58 MtCl/a, which is assumed to require electricity at 3.6 MWhel/t of chlorine and yield hydrogen at 0.937 MWhH2/t of chlorine in the chloralkali process. The production of methanol adds up to 1.5 MtMeOH/a, requiring electricity at 0.167 MWhel/t of methanol and methane at 10.25 MWhCH4/t of methanol.
|
||||
The total production and specific energy consumption of chlorine and methanol is taken from a `DECHEMA report <https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf>`_. According to this source, the production of chlorine amounts to 9.58 MtCl/a, which is assumed to require electricity at 3.6 MWh $_{el}$/t of chlorine and yield hydrogen at 0.937 MWh $_{H_2}$/t of chlorine in the chloralkali process. The production of methanol adds up to 1.5 MtMeOH/a, requiring electricity at 0.167 MWh $_{el}$/t of methanol and methane at 10.25 MWhCH4/t of methanol.
|
||||
|
||||
|
||||
The production of ammonia, methanol, and chlorine production is deducted from the JRC IDEES basic chemicals, leaving the production totals of high-value chemicals. For this, we assume that the liquid hydrocarbon feedstock comes from synthetic or fossil- origin naphtha (14 MWhnaphtha/t of HVC, similar to `Lechtenböhmer et al <https://doi.org/10.1016/j.energy.2016.07.110>`_), ignoring the methanol-to-olefin route. Furthermore, we assume the following transformations of the energy-consuming processes in the production of plastics: the final energy consumption in steam processing is converted to methane since requires temperature above 500 °C (4.1 MWhCH4 /t of HVC, see `Rehfeldt et al. <https://doi.org/10.1007/s12053-017-9571-y>`_); and the remaining processes are electrified using the current efficiency of microwave for high-enthalpy heat processing, electric furnaces, electric process cooling and electric generic processes (2.85 MWhel/t of HVC).
|
||||
The production of ammonia, methanol, and chlorine production is deducted from the JRC IDEES basic chemicals, leaving the production totals of high-value chemicals. For this, we assume that the liquid hydrocarbon feedstock comes from synthetic or fossil- origin naphtha (14 MWhnaphtha/t of HVC, similar to `Lechtenböhmer et al <https://doi.org/10.1016/j.energy.2016.07.110>`_), ignoring the methanol-to-olefin route. Furthermore, we assume the following transformations of the energy-consuming processes in the production of plastics: the final energy consumption in steam processing is converted to methane since requires temperature above 500 °C (4.1 MWhCH4 /t of HVC, see `Rehfeldt et al. <https://doi.org/10.1007/s12053-017-9571-y>`_); and the remaining processes are electrified using the current efficiency of microwave for high-enthalpy heat processing, electric furnaces, electric process cooling and electric generic processes (2.85 MWh $_{el}$/t of HVC).
|
||||
|
||||
The process emissions from feedstock in the chemical industry are as high as 0.369 t$_{CO_2}$/t of ethylene equivalent. We consider process emissions for all the material output, which is a conservative approach since it assumes that all plastic-embedded CO $_2$ will eventually be released into the atmosphere. However, plastic disposal in landfilling will avoid, or at least delay, associated CO $_2$ emissions.
|
||||
|
||||
|
||||
Circular economy practices drastically reduce the amount of primary feedstock needed for the production of plastics in the model (see `Kullmann et al. <https://doi.org/10.1016/j.energy.2022.124660>`_, `Meys et al. (2021) <https://doi.org/10.1126/science.abg9853>`_, `Meys et al. (2020) <https://doi.org/10/gmxv6z>`_, `Gu et al. <https://doi.org/10/gf8n9w>`_) and consequently, also the energy demands and level of process emission (LINK TO PROCESS EMISSIONS FIGURE). We assume that 30% of plastics are mechanically recycled requiring 0.547 MWhel/t of HVC (`Meys et al. (2020) <https://doi.org/10/gmxv6z>`_), 15% of plastics are chemically recycled requiring 6.9 MWhel/t of HVC based on pyrolysis and electric steam cracking (see `Materials Economics <https://materialeconomics.com/publications/industrial-transformation-2050>`_ report, and 10% of plastics are reused (equivalent to reduction in demand). The remaining 45% need to be produced from primary feedstock. In comparison, Material Economics presents a scenario with circular economy scenario with 27% primary production, 18% mechanical recycling, 28% chemical recycling, and 27% reuse. Another new-processes scenario has 33% primary production, 14% mechanical recycling, 40% chemical recycling, and 13% reuse.
|
||||
Circular economy practices drastically reduce the amount of primary feedstock needed for the production of plastics in the model (see `Kullmann et al. <https://doi.org/10.1016/j.energy.2022.124660>`_, `Meys et al. (2021) <https://doi.org/10.1126/science.abg9853>`_, `Meys et al. (2020) <https://doi.org/10/gmxv6z>`_, `Gu et al. <https://doi.org/10/gf8n9w>`_) and consequently, also the energy demands and level of process emission (LINK TO PROCESS EMISSIONS FIGURE). We assume that 30% of plastics are mechanically recycled requiring 0.547 MWh $_{el}$/t of HVC (`Meys et al. (2020) <https://doi.org/10/gmxv6z>`_), 15% of plastics are chemically recycled requiring 6.9 MWh $_{el}$/t of HVC based on pyrolysis and electric steam cracking (see `Materials Economics <https://materialeconomics.com/publications/industrial-transformation-2050>`_ report, and 10% of plastics are reused (equivalent to reduction in demand). The remaining 45% need to be produced from primary feedstock. In comparison, Material Economics presents a scenario with circular economy scenario with 27% primary production, 18% mechanical recycling, 28% chemical recycling, and 27% reuse. Another new-processes scenario has 33% primary production, 14% mechanical recycling, 40% chemical recycling, and 13% reuse.
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user