Use powerplantmatching IRENASTAT for add_existing_baseyear

This commit is contained in:
Koen van Greevenbroek 2024-04-11 06:41:59 +00:00
parent 5ecd56d53c
commit 859212b21f
11 changed files with 20 additions and 250 deletions

View File

@ -72,7 +72,6 @@ enable:
retrieve_sector_databundle: true
retrieve_cost_data: true
build_cutout: false
retrieve_irena: false
retrieve_cutout: true
build_natura_raster: false
retrieve_natura_raster: true

View File

@ -1,34 +0,0 @@
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
Albania,,,,,,,,,,,,,,,,,,,,,,,
Austria,,,,,,,,,,,,,,,,,,,,,,,
Belgium,,,,,,,,,,31.5,196.5,196.5,381.0,707.7,707.7,712.0,712.2,877.2,1185.9,1555.5,2261.8,2261.8,2261.8
Bosnia Herzg,,,,,,,,,,,,,,,,,,,,,,,
Bulgaria,,,,,,,,,,,,,,,,,,,,,,,
Croatia,,,,,,,,,,,,,,,,,,,,,,,
Czechia,,,,,,,,,,,,,,,,,,,,,,,
Denmark,49.95,49.95,213.95,423.35,423.35,423.35,423.35,423.35,423.35,660.85,867.85,871.45,921.85,1271.05,1271.05,1271.05,1271.05,1263.8,1700.8,1700.8,1700.8,2305.6,2305.6
Estonia,,,,,,,,,,,,,,,,,,,,,,,
Finland,,,,,,,,,24.0,24.0,26.3,26.3,26.3,26.3,26.3,32.0,32.0,72.7,72.7,73.0,73.0,73.0,73.0
France,,,,,,,,,,,,,,,,,,2.0,2.0,2.0,2.0,2.0,482.0
Germany,,,,,,,,,,35.0,80.0,188.0,268.0,508.0,994.0,3283.0,4132.0,5406.0,6393.0,7555.0,7787.0,7787.0,8129.0
Greece,,,,,,,,,,,,,,,,,,,,,,,
Hungary,,,,,,,,,,,,,,,,,,,,,,,
Ireland,,,,,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2,25.2
Italy,,,,,,,,,,,,,,,,,,,,,,,30.0
Latvia,,,,,,,,,,,,,,,,,,,,,,,
Lithuania,,,,,,,,,,,,,,,,,,,,,,,
Luxembourg,,,,,,,,,,,,,,,,,,,,,,,
Montenegro,,,,,,,,,,,,,,,,,,,,,,,
Netherlands,,,,,,,108.0,108.0,228.0,228.0,228.0,228.0,228.0,228.0,228.0,357.0,957.0,957.0,957.0,957.0,2459.5,2459.5,2571.0
North Macedonia,,,,,,,,,,,,,,,,,,,,,,,
Norway,,,,,,,,,,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,2.3,6.3,66.3
Poland,,,,,,,,,,,,,,,,,,,,,,,
Portugal,,,,,,,,,,,,1.86,2.0,2.0,2.0,2.0,,,,,25.0,25.0,25.0
Romania,,,,,,,,,,,,,,,,,,,,,,,
Serbia,,,,,,,,,,,,,,,,,,,,,,,
Slovakia,,,,,,,,,,,,,,,,,,,,,,,
Slovenia,,,,,,,,,,,,,,,,,,,,,,,
Spain,,,,,,,,,,,,,,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0
Sweden,13.0,22.0,22.0,22.0,22.0,22.0,22.0,131.0,133.0,163.0,163.0,163.0,163.0,212.0,213.0,213.0,203.0,203.0,203.0,203.0,203.0,193.0,193.0
Switzerland,,,,,,,,,,,,,,,,,,,,,,,
UK,4.0,4.0,4.0,64.0,124.0,214.0,304.0,394.0,596.2,951.0,1341.0,1838.0,2995.0,3696.0,4501.0,5093.0,5293.0,6988.0,8181.0,9888.0,10383.0,11255.0,13928.0
1 Country/area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
2 Albania
3 Austria
4 Belgium 31.5 196.5 196.5 381.0 707.7 707.7 712.0 712.2 877.2 1185.9 1555.5 2261.8 2261.8 2261.8
5 Bosnia Herzg
6 Bulgaria
7 Croatia
8 Czechia
9 Denmark 49.95 49.95 213.95 423.35 423.35 423.35 423.35 423.35 423.35 660.85 867.85 871.45 921.85 1271.05 1271.05 1271.05 1271.05 1263.8 1700.8 1700.8 1700.8 2305.6 2305.6
10 Estonia
11 Finland 24.0 24.0 26.3 26.3 26.3 26.3 26.3 32.0 32.0 72.7 72.7 73.0 73.0 73.0 73.0
12 France 2.0 2.0 2.0 2.0 2.0 482.0
13 Germany 35.0 80.0 188.0 268.0 508.0 994.0 3283.0 4132.0 5406.0 6393.0 7555.0 7787.0 7787.0 8129.0
14 Greece
15 Hungary
16 Ireland 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2
17 Italy 30.0
18 Latvia
19 Lithuania
20 Luxembourg
21 Montenegro
22 Netherlands 108.0 108.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 357.0 957.0 957.0 957.0 957.0 2459.5 2459.5 2571.0
23 North Macedonia
24 Norway 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 6.3 66.3
25 Poland
26 Portugal 1.86 2.0 2.0 2.0 2.0 25.0 25.0 25.0
27 Romania
28 Serbia
29 Slovakia
30 Slovenia
31 Spain 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
32 Sweden 13.0 22.0 22.0 22.0 22.0 22.0 22.0 131.0 133.0 163.0 163.0 163.0 163.0 212.0 213.0 213.0 203.0 203.0 203.0 203.0 203.0 193.0 193.0
33 Switzerland
34 UK 4.0 4.0 4.0 64.0 124.0 214.0 304.0 394.0 596.2 951.0 1341.0 1838.0 2995.0 3696.0 4501.0 5093.0 5293.0 6988.0 8181.0 9888.0 10383.0 11255.0 13928.0

View File

@ -1,34 +0,0 @@
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
Albania,,,,,,,,,,,,,,,,,,,,,,,
Austria,50.0,67.0,109.0,322.0,581.0,825.22,968.27,991.16,991.97,1000.99,1015.83,1105.97,1337.15,1674.54,2110.28,2488.73,2730.0,2886.7,3132.71,3224.12,3225.98,3407.81,3735.81
Belgium,14.0,26.0,31.0,67.0,96.0,167.0,212.0,276.0,324.0,576.5,715.5,872.5,985.9,1061.3,1225.0,1469.3,1621.6,1902.2,2119.0,2308.0,2410.9,2686.6,2989.6
Bosnia Herzg,,,,,,,,,,,,0.3,0.3,0.3,0.3,0.3,0.3,0.3,51.0,87.0,87.0,135.0,135.0
Bulgaria,,,,,1.0,8.0,27.0,30.0,114.0,333.0,488.0,541.0,677.0,683.0,699.0,699.0,699.0,698.39,698.92,703.12,702.8,704.38,704.38
Croatia,,,,,6.0,6.0,17.0,17.0,17.0,70.0,79.0,130.0,180.0,254.0,339.0,418.0,483.0,576.1,586.3,646.3,801.3,986.9,1042.9
Czechia,2.0,,6.4,10.6,16.5,22.0,43.5,113.8,150.0,193.0,213.0,213.0,258.0,262.0,278.0,281.0,282.0,308.21,316.2,339.41,339.42,339.41,339.41
Denmark,2340.07,2447.2,2680.58,2696.57,2700.36,2704.49,2712.35,2700.86,2739.52,2821.24,2933.98,3080.53,3240.09,3547.87,3615.35,3805.92,3974.09,4225.15,4421.86,4409.74,4566.23,4715.24,4782.24
Estonia,,,1.0,3.0,7.0,31.0,31.0,50.0,77.0,104.0,108.0,180.0,266.0,248.0,275.0,300.0,310.0,311.8,310.0,316.0,317.0,315.0,315.0
Finland,38.0,39.0,43.0,52.0,82.0,82.0,86.0,110.0,119.0,123.0,170.7,172.7,230.7,420.7,600.7,973.0,1533.0,1971.3,1968.3,2211.0,2513.0,3184.0,5541.0
France,38.0,66.0,138.0,218.0,358.0,690.0,1412.0,2223.0,3403.0,4582.0,5912.0,6758.02,7607.5,8155.96,9201.42,10298.18,11566.56,13497.35,14898.14,16424.85,17512.0,18737.98,20637.98
Germany,6095.0,8754.0,12001.0,14381.0,16419.0,18248.0,20474.0,22116.0,22794.0,25697.0,26823.0,28524.0,30711.0,32969.0,37620.0,41297.0,45303.0,50174.0,52328.0,53187.0,54414.0,56046.0,58165.0
Greece,226.0,270.0,287.0,371.0,470.0,491.0,749.0,846.0,1022.0,1171.0,1298.0,1640.0,1753.0,1809.0,1978.0,2091.0,2370.0,2624.0,2877.5,3589.0,4119.25,4649.13,4879.13
Hungary,,1.0,1.0,3.0,3.0,17.0,33.0,61.0,134.0,203.0,293.0,331.0,325.0,329.0,329.0,329.0,329.0,329.0,329.0,323.0,323.0,324.0,324.0
Ireland,116.5,122.9,134.8,210.3,311.2,468.1,651.3,715.3,917.1,1226.1,1365.2,1559.4,1679.15,1898.1,2258.05,2425.95,2776.45,3293.95,3648.65,4101.25,4281.5,4313.84,4593.84
Italy,363.0,664.0,780.0,874.0,1127.0,1635.0,1902.0,2702.0,3525.0,4879.0,5794.0,6918.0,8102.0,8542.0,8683.0,9137.0,9384.0,9736.58,10230.25,10679.46,10870.62,11253.73,11749.73
Latvia,2.0,2.0,22.0,26.0,26.0,26.0,26.0,26.0,28.0,29.0,30.0,36.0,59.0,65.89,68.92,68.17,69.91,77.11,78.17,78.07,78.07,77.13,136.13
Lithuania,,,,,1.0,1.0,31.0,47.0,54.0,98.0,133.0,202.0,275.0,279.0,288.0,436.0,509.0,518.0,533.0,534.0,540.0,671.0,814.0
Luxembourg,14.0,13.9,13.9,20.5,34.9,34.9,34.9,34.9,42.92,42.93,43.73,44.53,58.33,58.33,58.34,63.79,119.69,119.69,122.89,135.79,152.74,136.44,165.44
Montenegro,,,,,,,,,,,,,,,,,,72.0,72.0,118.0,118.0,118.0,118.0
Netherlands,447.0,486.0,672.0,905.0,1075.0,1224.0,1453.0,1641.0,1921.0,1994.0,2009.0,2088.0,2205.0,2485.0,2637.0,3033.84,3300.12,3245.0,3436.11,3527.16,4188.38,5309.87,6176.0
North Macedonia,,,,,,,,,,,,,,,37.0,37.0,37.0,37.0,37.0,37.0,37.0,37.0,37.0
Norway,13.0,13.0,97.0,97.0,152.0,265.0,284.0,348.0,395.0,420.7,422.7,509.7,702.7,815.7,856.7,864.7,880.7,1204.7,1707.7,2911.7,4027.7,5042.7,5067.7
Poland,4.0,19.0,32.0,35.0,40.0,121.0,172.0,306.0,526.0,709.0,1108.0,1800.0,2564.0,3429.0,3836.0,4886.0,5747.0,5759.36,5766.08,5837.76,6298.25,6967.34,7987.34
Portugal,83.0,125.0,190.0,268.0,553.0,1064.0,1681.0,2201.0,2857.0,3326.0,3796.0,4254.35,4409.55,4607.95,4854.56,4934.84,5124.1,5124.1,5172.36,5222.75,5097.26,5402.33,5430.33
Romania,,,,,,1.0,1.0,3.0,5.0,15.0,389.0,988.0,1822.0,2773.0,3244.0,3130.0,3025.0,3029.8,3032.26,3037.52,3012.53,3014.96,3014.96
Serbia,,,,,,,,,,,,,0.5,0.5,0.5,10.4,17.0,25.0,227.0,398.0,398.0,398.0,398.0
Slovakia,,,,3.0,3.0,5.0,5.0,5.0,5.0,3.0,3.0,3.0,3.0,5.0,3.0,3.0,3.0,4.0,3.0,4.0,4.0,4.0,4.0
Slovenia,,,,,,,,,,,,,2.0,2.0,3.0,3.0,3.0,3.3,3.3,3.3,3.3,3.33,3.33
Spain,2206.0,3397.0,4891.0,5945.0,8317.0,9918.0,11722.0,14820.0,16555.0,19176.0,20693.0,21529.0,22789.0,22953.0,22920.0,22938.0,22985.0,23119.48,23400.06,25585.08,26814.19,27902.65,29302.84
Sweden,196.0,273.0,335.0,395.0,453.0,500.0,563.0,692.0,956.0,1312.0,1854.0,2601.0,3443.0,3982.0,4875.0,5606.0,6232.0,6408.0,7097.0,8478.0,9773.0,11923.0,14364.0
Switzerland,3.0,5.0,5.0,5.0,9.0,12.0,12.0,12.0,14.0,18.0,42.0,46.0,49.0,60.0,60.0,60.0,75.0,75.0,75.0,75.0,87.0,87.0,87.0
UK,431.0,490.0,531.0,678.0,809.0,1351.0,1651.0,2083.0,2849.8,3468.0,4080.0,4758.0,6035.0,7586.0,8573.0,9212.0,10833.0,12597.0,13425.0,13999.0,14075.0,14492.0,14832.0
1 Country/area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
2 Albania
3 Austria 50.0 67.0 109.0 322.0 581.0 825.22 968.27 991.16 991.97 1000.99 1015.83 1105.97 1337.15 1674.54 2110.28 2488.73 2730.0 2886.7 3132.71 3224.12 3225.98 3407.81 3735.81
4 Belgium 14.0 26.0 31.0 67.0 96.0 167.0 212.0 276.0 324.0 576.5 715.5 872.5 985.9 1061.3 1225.0 1469.3 1621.6 1902.2 2119.0 2308.0 2410.9 2686.6 2989.6
5 Bosnia Herzg 0.3 0.3 0.3 0.3 0.3 0.3 0.3 51.0 87.0 87.0 135.0 135.0
6 Bulgaria 1.0 8.0 27.0 30.0 114.0 333.0 488.0 541.0 677.0 683.0 699.0 699.0 699.0 698.39 698.92 703.12 702.8 704.38 704.38
7 Croatia 6.0 6.0 17.0 17.0 17.0 70.0 79.0 130.0 180.0 254.0 339.0 418.0 483.0 576.1 586.3 646.3 801.3 986.9 1042.9
8 Czechia 2.0 6.4 10.6 16.5 22.0 43.5 113.8 150.0 193.0 213.0 213.0 258.0 262.0 278.0 281.0 282.0 308.21 316.2 339.41 339.42 339.41 339.41
9 Denmark 2340.07 2447.2 2680.58 2696.57 2700.36 2704.49 2712.35 2700.86 2739.52 2821.24 2933.98 3080.53 3240.09 3547.87 3615.35 3805.92 3974.09 4225.15 4421.86 4409.74 4566.23 4715.24 4782.24
10 Estonia 1.0 3.0 7.0 31.0 31.0 50.0 77.0 104.0 108.0 180.0 266.0 248.0 275.0 300.0 310.0 311.8 310.0 316.0 317.0 315.0 315.0
11 Finland 38.0 39.0 43.0 52.0 82.0 82.0 86.0 110.0 119.0 123.0 170.7 172.7 230.7 420.7 600.7 973.0 1533.0 1971.3 1968.3 2211.0 2513.0 3184.0 5541.0
12 France 38.0 66.0 138.0 218.0 358.0 690.0 1412.0 2223.0 3403.0 4582.0 5912.0 6758.02 7607.5 8155.96 9201.42 10298.18 11566.56 13497.35 14898.14 16424.85 17512.0 18737.98 20637.98
13 Germany 6095.0 8754.0 12001.0 14381.0 16419.0 18248.0 20474.0 22116.0 22794.0 25697.0 26823.0 28524.0 30711.0 32969.0 37620.0 41297.0 45303.0 50174.0 52328.0 53187.0 54414.0 56046.0 58165.0
14 Greece 226.0 270.0 287.0 371.0 470.0 491.0 749.0 846.0 1022.0 1171.0 1298.0 1640.0 1753.0 1809.0 1978.0 2091.0 2370.0 2624.0 2877.5 3589.0 4119.25 4649.13 4879.13
15 Hungary 1.0 1.0 3.0 3.0 17.0 33.0 61.0 134.0 203.0 293.0 331.0 325.0 329.0 329.0 329.0 329.0 329.0 329.0 323.0 323.0 324.0 324.0
16 Ireland 116.5 122.9 134.8 210.3 311.2 468.1 651.3 715.3 917.1 1226.1 1365.2 1559.4 1679.15 1898.1 2258.05 2425.95 2776.45 3293.95 3648.65 4101.25 4281.5 4313.84 4593.84
17 Italy 363.0 664.0 780.0 874.0 1127.0 1635.0 1902.0 2702.0 3525.0 4879.0 5794.0 6918.0 8102.0 8542.0 8683.0 9137.0 9384.0 9736.58 10230.25 10679.46 10870.62 11253.73 11749.73
18 Latvia 2.0 2.0 22.0 26.0 26.0 26.0 26.0 26.0 28.0 29.0 30.0 36.0 59.0 65.89 68.92 68.17 69.91 77.11 78.17 78.07 78.07 77.13 136.13
19 Lithuania 1.0 1.0 31.0 47.0 54.0 98.0 133.0 202.0 275.0 279.0 288.0 436.0 509.0 518.0 533.0 534.0 540.0 671.0 814.0
20 Luxembourg 14.0 13.9 13.9 20.5 34.9 34.9 34.9 34.9 42.92 42.93 43.73 44.53 58.33 58.33 58.34 63.79 119.69 119.69 122.89 135.79 152.74 136.44 165.44
21 Montenegro 72.0 72.0 118.0 118.0 118.0 118.0
22 Netherlands 447.0 486.0 672.0 905.0 1075.0 1224.0 1453.0 1641.0 1921.0 1994.0 2009.0 2088.0 2205.0 2485.0 2637.0 3033.84 3300.12 3245.0 3436.11 3527.16 4188.38 5309.87 6176.0
23 North Macedonia 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0
24 Norway 13.0 13.0 97.0 97.0 152.0 265.0 284.0 348.0 395.0 420.7 422.7 509.7 702.7 815.7 856.7 864.7 880.7 1204.7 1707.7 2911.7 4027.7 5042.7 5067.7
25 Poland 4.0 19.0 32.0 35.0 40.0 121.0 172.0 306.0 526.0 709.0 1108.0 1800.0 2564.0 3429.0 3836.0 4886.0 5747.0 5759.36 5766.08 5837.76 6298.25 6967.34 7987.34
26 Portugal 83.0 125.0 190.0 268.0 553.0 1064.0 1681.0 2201.0 2857.0 3326.0 3796.0 4254.35 4409.55 4607.95 4854.56 4934.84 5124.1 5124.1 5172.36 5222.75 5097.26 5402.33 5430.33
27 Romania 1.0 1.0 3.0 5.0 15.0 389.0 988.0 1822.0 2773.0 3244.0 3130.0 3025.0 3029.8 3032.26 3037.52 3012.53 3014.96 3014.96
28 Serbia 0.5 0.5 0.5 10.4 17.0 25.0 227.0 398.0 398.0 398.0 398.0
29 Slovakia 3.0 3.0 5.0 5.0 5.0 5.0 3.0 3.0 3.0 3.0 5.0 3.0 3.0 3.0 4.0 3.0 4.0 4.0 4.0 4.0
30 Slovenia 2.0 2.0 3.0 3.0 3.0 3.3 3.3 3.3 3.3 3.33 3.33
31 Spain 2206.0 3397.0 4891.0 5945.0 8317.0 9918.0 11722.0 14820.0 16555.0 19176.0 20693.0 21529.0 22789.0 22953.0 22920.0 22938.0 22985.0 23119.48 23400.06 25585.08 26814.19 27902.65 29302.84
32 Sweden 196.0 273.0 335.0 395.0 453.0 500.0 563.0 692.0 956.0 1312.0 1854.0 2601.0 3443.0 3982.0 4875.0 5606.0 6232.0 6408.0 7097.0 8478.0 9773.0 11923.0 14364.0
33 Switzerland 3.0 5.0 5.0 5.0 9.0 12.0 12.0 12.0 14.0 18.0 42.0 46.0 49.0 60.0 60.0 60.0 75.0 75.0 75.0 75.0 87.0 87.0 87.0
34 UK 431.0 490.0 531.0 678.0 809.0 1351.0 1651.0 2083.0 2849.8 3468.0 4080.0 4758.0 6035.0 7586.0 8573.0 9212.0 10833.0 12597.0 13425.0 13999.0 14075.0 14492.0 14832.0

View File

@ -1,34 +0,0 @@
Country/area,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022
Albania,,0.1,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.3,0.4,0.56,0.68,0.76,0.87,1.05,1.0,1.0,1.0,14.0,21.0,23.0,28.6
Austria,5.0,7.0,9.0,23.0,27.0,18.49,19.61,21.42,27.0,45.56,85.27,169.88,333.09,620.78,779.76,931.56,1089.53,1262.01,1447.94,1694.4,2034.74,2773.91,3538.91
Belgium,,,1.0,1.0,1.0,2.0,2.0,20.0,62.0,386.0,1006.6,1978.6,2646.6,2901.6,3015.0,3131.6,3328.8,3620.6,4000.0,4636.6,5572.8,6012.4,6898.4
Bosnia Herzg,,,,0.1,0.2,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.35,1.34,7.17,8.17,14.12,16.0,18.15,22.35,34.89,56.51,107.47
Bulgaria,,,,,,,,0.03,0.1,2.0,25.0,154.0,921.99,1038.54,1028.92,1027.89,1029.89,1030.7,1033.06,1044.39,1100.21,1274.71,1948.36
Croatia,,,,,,,,,,0.3,0.3,0.3,4.0,19.0,33.0,47.8,55.8,60.0,67.7,84.8,108.5,138.3,182.3
Czechia,0.1,0.1,0.2,0.3,0.4,0.59,0.84,3.96,39.5,464.6,1727.0,1913.0,2022.0,2063.5,2067.4,2074.9,2067.9,2075.44,2081.05,2110.67,2171.96,2246.09,2627.09
Denmark,1.0,1.0,2.0,2.0,2.0,3.0,3.0,3.0,3.0,5.0,7.0,17.0,402.0,571.0,607.0,782.11,850.95,906.35,998.0,1080.0,1304.29,1704.04,3122.04
Estonia,,,,,,,,,,0.1,0.1,0.2,0.38,1.5,3.34,6.5,10.0,15.0,31.9,120.6,207.67,394.77,534.77
Finland,2.0,3.0,3.0,3.0,4.0,4.0,5.0,5.0,6.0,6.0,7.0,7.0,8.0,9.0,11.0,17.0,39.0,82.0,140.0,222.0,318.0,425.0,590.6
France,7.0,7.0,8.0,9.0,11.0,13.0,15.0,26.0,80.0,277.0,1044.0,3003.57,4358.75,5277.29,6034.42,7137.52,7702.08,8610.44,9638.88,10738.39,11812.2,14436.97,17036.97
Germany,114.0,195.0,260.0,435.0,1105.0,2056.0,2899.0,4170.0,6120.0,10564.0,18004.0,25914.0,34075.0,36708.0,37898.0,39222.0,40677.0,42291.0,45156.0,48912.0,53669.0,59371.0,66662.0
Greece,,1.0,1.0,1.0,1.0,1.0,5.0,9.0,12.0,46.0,202.0,612.0,1536.0,2579.0,2596.0,2604.0,2604.0,2605.53,2651.57,2833.79,3287.72,4277.42,5557.42
Hungary,,,,,,,,0.4,1.0,1.0,2.0,4.0,12.0,35.0,89.0,172.0,235.0,344.0,728.0,1400.0,2131.0,2968.0,2988.0
Ireland,,,,,,,,,,,,,,,,,,,,,,,
Italy,19.0,20.0,22.0,26.0,31.0,34.0,45.0,110.0,483.0,1264.0,3592.0,13131.0,16785.0,18185.0,18594.0,18901.0,19283.0,19682.29,20107.59,20865.28,21650.04,22594.26,25076.56
Latvia,,,,,,,,,,,,,,,,,0.69,0.69,1.96,3.3,5.1,7.16,56.16
Lithuania,,,,,,,,,0.1,0.1,0.1,0.3,7.0,68.0,69.0,69.0,70.0,70.08,72.0,73.0,80.0,84.0,397.0
Luxembourg,,0.16,1.59,14.17,23.56,23.58,23.7,23.93,24.56,26.36,29.45,40.67,74.65,95.02,109.93,116.27,121.9,128.1,130.62,159.74,186.64,277.16,319.16
Montenegro,,,,,,,,,,,,,,,,,,,,,2.57,2.57,22.2
Netherlands,13.0,21.0,26.0,46.0,50.0,51.0,53.0,54.0,59.0,69.0,90.0,149.0,287.0,650.0,1007.0,1526.26,2135.02,2910.89,4608.0,7226.0,11108.43,14910.69,18848.69
North Macedonia,,,,,,,,,,,,2.0,4.0,7.0,15.0,17.0,16.7,16.7,16.7,16.71,84.93,84.93,84.93
Norway,6.0,6.0,6.0,7.0,7.0,7.0,8.0,8.0,8.3,8.7,9.1,9.5,10.0,11.0,13.0,15.0,26.7,44.9,53.11,102.53,141.53,186.53,302.53
Poland,,,,,,,,,,,,1.11,1.3,2.39,27.15,107.78,187.25,287.09,561.98,1539.26,3954.96,7415.52,11166.52
Portugal,1.0,1.0,1.0,2.0,2.0,2.0,3.0,24.0,59.0,115.0,134.0,169.6,235.6,293.6,412.6,441.75,493.05,539.42,617.85,832.74,1010.07,1474.78,2364.78
Romania,,,,,,,,,0.1,0.1,0.1,1.0,41.0,761.0,1293.0,1326.0,1372.0,1374.13,1385.82,1397.71,1382.54,1393.92,1413.92
Serbia,,,,,,0.1,0.2,0.4,0.9,1.2,1.3,1.5,3.1,4.7,6.0,9.0,11.0,10.0,11.0,11.0,11.5,11.94,11.94
Slovakia,,,,,,,,,,,19.0,496.0,513.0,533.0,533.0,533.0,533.0,528.0,472.0,590.0,535.0,537.0,537.0
Slovenia,1.0,1.0,,,,0.05,0.19,0.59,1.0,4.0,12.0,57.0,142.0,187.0,223.0,238.0,233.0,246.8,246.8,277.88,369.78,461.16,632.16
Spain,1.0,3.0,6.0,10.0,19.0,37.0,113.0,476.0,3365.0,3403.0,3851.0,4260.0,4545.0,4665.0,4672.0,4677.0,4687.0,4696.0,4730.7,8772.02,10100.42,13678.4,18176.73
Sweden,3.0,3.0,3.0,4.0,4.0,4.0,5.0,6.0,8.0,9.0,11.0,12.0,24.0,43.0,60.0,104.0,153.0,231.0,411.0,698.0,1090.0,1587.0,2587.0
Switzerland,16.0,18.0,20.0,22.0,24.0,28.0,30.0,37.0,49.0,79.0,125.0,223.0,437.0,756.0,1061.0,1394.0,1664.0,1906.0,2173.0,2498.0,2973.0,3655.0,4339.92
UK,2.0,3.0,4.0,6.0,8.0,11.0,14.0,18.0,23.0,27.0,95.0,1000.0,1753.0,2937.0,5528.0,9601.0,11914.0,12760.0,13059.0,13345.0,13579.0,13965.0,14660.0
1 Country/area 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
2 Albania 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.56 0.68 0.76 0.87 1.05 1.0 1.0 1.0 14.0 21.0 23.0 28.6
3 Austria 5.0 7.0 9.0 23.0 27.0 18.49 19.61 21.42 27.0 45.56 85.27 169.88 333.09 620.78 779.76 931.56 1089.53 1262.01 1447.94 1694.4 2034.74 2773.91 3538.91
4 Belgium 1.0 1.0 1.0 2.0 2.0 20.0 62.0 386.0 1006.6 1978.6 2646.6 2901.6 3015.0 3131.6 3328.8 3620.6 4000.0 4636.6 5572.8 6012.4 6898.4
5 Bosnia Herzg 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.35 1.34 7.17 8.17 14.12 16.0 18.15 22.35 34.89 56.51 107.47
6 Bulgaria 0.03 0.1 2.0 25.0 154.0 921.99 1038.54 1028.92 1027.89 1029.89 1030.7 1033.06 1044.39 1100.21 1274.71 1948.36
7 Croatia 0.3 0.3 0.3 4.0 19.0 33.0 47.8 55.8 60.0 67.7 84.8 108.5 138.3 182.3
8 Czechia 0.1 0.1 0.2 0.3 0.4 0.59 0.84 3.96 39.5 464.6 1727.0 1913.0 2022.0 2063.5 2067.4 2074.9 2067.9 2075.44 2081.05 2110.67 2171.96 2246.09 2627.09
9 Denmark 1.0 1.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 5.0 7.0 17.0 402.0 571.0 607.0 782.11 850.95 906.35 998.0 1080.0 1304.29 1704.04 3122.04
10 Estonia 0.1 0.1 0.2 0.38 1.5 3.34 6.5 10.0 15.0 31.9 120.6 207.67 394.77 534.77
11 Finland 2.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 9.0 11.0 17.0 39.0 82.0 140.0 222.0 318.0 425.0 590.6
12 France 7.0 7.0 8.0 9.0 11.0 13.0 15.0 26.0 80.0 277.0 1044.0 3003.57 4358.75 5277.29 6034.42 7137.52 7702.08 8610.44 9638.88 10738.39 11812.2 14436.97 17036.97
13 Germany 114.0 195.0 260.0 435.0 1105.0 2056.0 2899.0 4170.0 6120.0 10564.0 18004.0 25914.0 34075.0 36708.0 37898.0 39222.0 40677.0 42291.0 45156.0 48912.0 53669.0 59371.0 66662.0
14 Greece 1.0 1.0 1.0 1.0 1.0 5.0 9.0 12.0 46.0 202.0 612.0 1536.0 2579.0 2596.0 2604.0 2604.0 2605.53 2651.57 2833.79 3287.72 4277.42 5557.42
15 Hungary 0.4 1.0 1.0 2.0 4.0 12.0 35.0 89.0 172.0 235.0 344.0 728.0 1400.0 2131.0 2968.0 2988.0
16 Ireland
17 Italy 19.0 20.0 22.0 26.0 31.0 34.0 45.0 110.0 483.0 1264.0 3592.0 13131.0 16785.0 18185.0 18594.0 18901.0 19283.0 19682.29 20107.59 20865.28 21650.04 22594.26 25076.56
18 Latvia 0.69 0.69 1.96 3.3 5.1 7.16 56.16
19 Lithuania 0.1 0.1 0.1 0.3 7.0 68.0 69.0 69.0 70.0 70.08 72.0 73.0 80.0 84.0 397.0
20 Luxembourg 0.16 1.59 14.17 23.56 23.58 23.7 23.93 24.56 26.36 29.45 40.67 74.65 95.02 109.93 116.27 121.9 128.1 130.62 159.74 186.64 277.16 319.16
21 Montenegro 2.57 2.57 22.2
22 Netherlands 13.0 21.0 26.0 46.0 50.0 51.0 53.0 54.0 59.0 69.0 90.0 149.0 287.0 650.0 1007.0 1526.26 2135.02 2910.89 4608.0 7226.0 11108.43 14910.69 18848.69
23 North Macedonia 2.0 4.0 7.0 15.0 17.0 16.7 16.7 16.7 16.71 84.93 84.93 84.93
24 Norway 6.0 6.0 6.0 7.0 7.0 7.0 8.0 8.0 8.3 8.7 9.1 9.5 10.0 11.0 13.0 15.0 26.7 44.9 53.11 102.53 141.53 186.53 302.53
25 Poland 1.11 1.3 2.39 27.15 107.78 187.25 287.09 561.98 1539.26 3954.96 7415.52 11166.52
26 Portugal 1.0 1.0 1.0 2.0 2.0 2.0 3.0 24.0 59.0 115.0 134.0 169.6 235.6 293.6 412.6 441.75 493.05 539.42 617.85 832.74 1010.07 1474.78 2364.78
27 Romania 0.1 0.1 0.1 1.0 41.0 761.0 1293.0 1326.0 1372.0 1374.13 1385.82 1397.71 1382.54 1393.92 1413.92
28 Serbia 0.1 0.2 0.4 0.9 1.2 1.3 1.5 3.1 4.7 6.0 9.0 11.0 10.0 11.0 11.0 11.5 11.94 11.94
29 Slovakia 19.0 496.0 513.0 533.0 533.0 533.0 533.0 528.0 472.0 590.0 535.0 537.0 537.0
30 Slovenia 1.0 1.0 0.05 0.19 0.59 1.0 4.0 12.0 57.0 142.0 187.0 223.0 238.0 233.0 246.8 246.8 277.88 369.78 461.16 632.16
31 Spain 1.0 3.0 6.0 10.0 19.0 37.0 113.0 476.0 3365.0 3403.0 3851.0 4260.0 4545.0 4665.0 4672.0 4677.0 4687.0 4696.0 4730.7 8772.02 10100.42 13678.4 18176.73
32 Sweden 3.0 3.0 3.0 4.0 4.0 4.0 5.0 6.0 8.0 9.0 11.0 12.0 24.0 43.0 60.0 104.0 153.0 231.0 411.0 698.0 1090.0 1587.0 2587.0
33 Switzerland 16.0 18.0 20.0 22.0 24.0 28.0 30.0 37.0 49.0 79.0 125.0 223.0 437.0 756.0 1061.0 1394.0 1664.0 1906.0 2173.0 2498.0 2973.0 3655.0 4339.92
34 UK 2.0 3.0 4.0 6.0 8.0 11.0 14.0 18.0 23.0 27.0 95.0 1000.0 1753.0 2937.0 5528.0 9601.0 11914.0 12760.0 13059.0 13345.0 13579.0 13965.0 14660.0

View File

@ -5,7 +5,6 @@ retrieve_databundle,bool,"{true, false}","Switch to retrieve databundle from zen
retrieve_sector_databundle,bool,"{true, false}","Switch to retrieve sector databundle from zenodo via the rule :mod:`retrieve_sector_databundle` or whether to keep a custom databundle located in the corresponding folder."
retrieve_cost_data,bool,"{true, false}","Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_."
build_cutout,bool,"{true, false}","Switch to enable the building of cutouts via the rule :mod:`build_cutout`."
retrieve_irena,bool,"{true, false}",Switch to enable the retrieval of ``existing_capacities`` from IRENASTAT with :mod:`retrieve_irena`.
retrieve_cutout,bool,"{true, false}","Switch to enable the retrieval of cutouts from zenodo with :mod:`retrieve_cutout`."
build_natura_raster,bool,"{true, false}","Switch to enable the creation of the raster ``natura.tiff`` via the rule :mod:`build_natura_raster`."
retrieve_natura_raster,bool,"{true, false}","Switch to enable the retrieval of ``natura.tiff`` from zenodo with :mod:`retrieve_natura_raster`."

1 Unit Values Description
5 retrieve_sector_databundle bool {true, false} Switch to retrieve sector databundle from zenodo via the rule :mod:`retrieve_sector_databundle` or whether to keep a custom databundle located in the corresponding folder.
6 retrieve_cost_data bool {true, false} Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_.
7 build_cutout bool {true, false} Switch to enable the building of cutouts via the rule :mod:`build_cutout`.
retrieve_irena bool {true, false} Switch to enable the retrieval of ``existing_capacities`` from IRENASTAT with :mod:`retrieve_irena`.
8 retrieve_cutout bool {true, false} Switch to enable the retrieval of cutouts from zenodo with :mod:`retrieve_cutout`.
9 build_natura_raster bool {true, false} Switch to enable the creation of the raster ``natura.tiff`` via the rule :mod:`build_natura_raster`.
10 retrieve_natura_raster bool {true, false} Switch to enable the retrieval of ``natura.tiff`` from zenodo with :mod:`retrieve_natura_raster`.

View File

@ -118,11 +118,6 @@ This rule downloads techno-economic assumptions from the `technology-data reposi
- ``resources/costs.csv``
Rule ``retrieve_irena``
================================
.. automodule:: retrieve_irena
Rule ``retrieve_ship_raster``
================================

View File

@ -42,24 +42,6 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle",
"../scripts/retrieve_databundle.py"
if config["enable"].get("retrieve_irena"):
rule retrieve_irena:
output:
offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
log:
"logs/retrieve_irena.log",
resources:
mem_mb=1000,
retries: 2
conda:
"../envs/retrieve.yaml"
script:
"../scripts/retrieve_irena.py"
if config["enable"]["retrieve"] and config["enable"].get("retrieve_cutout", True):
rule retrieve_cutout:

View File

@ -26,9 +26,6 @@ rule add_existing_baseyear:
existing_heating_distribution=resources(
"existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
),
existing_solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
existing_onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
existing_offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
output:
RESULTS
+ "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",

View File

@ -25,9 +25,6 @@ rule add_existing_baseyear:
"existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
),
existing_heating="data/existing_infrastructure/existing_heating_raw.csv",
existing_solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
existing_onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
existing_offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
output:
RESULTS
+ "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",

View File

@ -13,6 +13,7 @@ from types import SimpleNamespace
import country_converter as coco
import numpy as np
import pandas as pd
import powerplantmatching as pm
import pypsa
import xarray as xr
from _helpers import (
@ -60,14 +61,22 @@ def add_existing_renewables(df_agg, costs):
Append existing renewables to the df_agg pd.DataFrame with the conventional
power plants.
"""
carriers = {"solar": "solar", "onwind": "onwind", "offwind": "offwind-ac"}
tech_map = {"solar": "PV", "onwind": "Onshore", "offwind": "Offshore"}
for tech in ["solar", "onwind", "offwind"]:
carrier = carriers[tech]
countries = snakemake.config["countries"]
irena = pm.data.IRENASTAT().powerplant.convert_country_to_alpha2()
irena = irena.query("Country in @countries")
irena = irena.groupby(["Technology", "Country", "Year"]).Capacity.sum()
df = pd.read_csv(snakemake.input[f"existing_{tech}"], index_col=0).fillna(0.0)
irena = irena.unstack().reset_index()
for carrier, tech in tech_map.items():
df = (
irena[irena.Technology.str.contains(tech)]
.drop(columns=["Technology"])
.set_index("Country")
)
df.columns = df.columns.astype(int)
df.index = cc.convert(df.index, to="iso2")
# calculate yearly differences
df.insert(loc=0, value=0.0, column="1999")
@ -97,14 +106,16 @@ def add_existing_renewables(df_agg, costs):
for year in nodal_df.columns:
for node in nodal_df.index:
name = f"{node}-{tech}-{year}"
name = f"{node}-{carrier}-{year}"
capacity = nodal_df.loc[node, year]
if capacity > 0.0:
df_agg.at[name, "Fueltype"] = tech
df_agg.at[name, "Fueltype"] = carrier
df_agg.at[name, "Capacity"] = capacity
df_agg.at[name, "DateIn"] = year
df_agg.at[name, "lifetime"] = costs.at[tech, "lifetime"]
df_agg.at[name, "DateOut"] = year + costs.at[tech, "lifetime"] - 1
df_agg.at[name, "lifetime"] = costs.at[carrier, "lifetime"]
df_agg.at[name, "DateOut"] = (
year + costs.at[carrier, "lifetime"] - 1
)
df_agg.at[name, "cluster_bus"] = node

View File

@ -1,108 +0,0 @@
# -*- coding: utf-8 -*-
# Copyright 2023 Thomas Gilon (Climact)
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
This rule downloads the existing capacities from `IRENASTAT <https://www.irena.org/Data/Downloads/IRENASTAT>`_ and extracts it in the ``data/existing_capacities`` sub-directory.
**Relevant Settings**
.. code:: yaml
enable:
retrieve_irena:
.. seealso::
Documentation of the configuration file ``config.yaml`` at
:ref:`enable_cf`
**Outputs**
- ``data/existing_capacities``: existing capacities for offwind, onwind and solar
"""
import logging
import pandas as pd
from _helpers import configure_logging, set_scenario_config
logger = logging.getLogger(__name__)
REGIONS = [
"Albania",
"Austria",
"Belgium",
"Bosnia and Herzegovina",
"Bulgaria",
"Croatia",
"Czechia",
"Denmark",
"Estonia",
"Finland",
"France",
"Germany",
"Greece",
"Hungary",
"Ireland",
"Italy",
"Latvia",
"Lithuania",
"Luxembourg",
"Montenegro",
# "Netherlands",
"Netherlands (Kingdom of the)",
"North Macedonia",
"Norway",
"Poland",
"Portugal",
"Romania",
"Serbia",
"Slovakia",
"Slovenia",
"Spain",
"Sweden",
"Switzerland",
# "United Kingdom",
"United Kingdom of Great Britain and Northern Ireland (the)",
]
REGIONS_DICT = {
"Bosnia and Herzegovina": "Bosnia Herzg",
"Netherlands (Kingdom of the)": "Netherlands",
"United Kingdom of Great Britain and Northern Ireland (the)": "UK",
}
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake("retrieve_irena")
configure_logging(snakemake)
set_scenario_config(snakemake)
irena_raw = pd.read_csv(
"https://pxweb.irena.org:443/sq/99e64b12-fe03-4a7b-92ea-a22cc3713b92",
skiprows=2,
index_col=[0, 1, 3],
encoding="latin-1",
)
var = "Installed electricity capacity (MW)"
irena = irena_raw[var].unstack(level=2).reset_index(level=1).replace(0, "")
irena = irena[irena.index.isin(REGIONS)]
irena.rename(index=REGIONS_DICT, inplace=True)
df_offwind = irena[irena.Technology.str.contains("Offshore")].drop(
columns=["Technology"]
)
df_onwind = irena[irena.Technology.str.contains("Onshore")].drop(
columns=["Technology"]
)
df_pv = irena[irena.Technology.str.contains("Solar")].drop(columns=["Technology"])
df_offwind.to_csv(snakemake.output["offwind"])
df_onwind.to_csv(snakemake.output["onwind"])
df_pv.to_csv(snakemake.output["solar"])