Merge branch 'master' into dac-location-consistency
This commit is contained in:
commit
8251323696
@ -6,3 +6,4 @@
|
||||
5d1ef8a64055a039aa4a0834d2d26fe7752fe9a0
|
||||
92080b1cd2ca5f123158571481722767b99c2b27
|
||||
13769f90af4500948b0376d57df4cceaa13e78b5
|
||||
9865a970893d9e515786f33c629b14f71645bf1e
|
||||
|
@ -22,7 +22,22 @@ Rule ``plot_summary``
|
||||
|
||||
.. _map_plot:
|
||||
|
||||
Rule ``plot_network``
|
||||
========================
|
||||
Rule ``plot_power_network``
|
||||
===========================
|
||||
|
||||
.. automodule:: plot_network
|
||||
.. automodule:: plot_power_network
|
||||
|
||||
Rule ``plot_power_network_perfect``
|
||||
===================================
|
||||
|
||||
.. automodule:: plot_power_network_perfect
|
||||
|
||||
Rule ``plot_hydrogen_network``
|
||||
==============================
|
||||
|
||||
.. automodule:: plot_hydrogen_network
|
||||
|
||||
Rule ``plot_gas_network``
|
||||
=========================
|
||||
|
||||
.. automodule:: plot_gas_network
|
||||
|
@ -28,6 +28,26 @@ Upcoming Release
|
||||
|
||||
* Cluster residential and services heat buses by default. Can be disabled with ``cluster_heat_buses: false``.
|
||||
|
||||
* Bugfix: Do not reduce district heat share when building population-weighted
|
||||
energy statistics. Previously the district heating share was being multiplied
|
||||
by the population weighting, reducing the DH share with multiple nodes.
|
||||
|
||||
* Move building of daily heat profile to its own rule
|
||||
:mod:`build_hourly_heat_demand` from :mod:`prepare_sector_network`.
|
||||
|
||||
* In :mod:`build_energy_totals`, district heating shares are now reported in a
|
||||
separate file.
|
||||
|
||||
* Move calculation of district heating share to its own rule
|
||||
:mod:`build_district_heat_share`.
|
||||
|
||||
* Move building of distribution of existing heating to own rule
|
||||
:mod:`build_existing_heating_distribution`. This makes the distribution of
|
||||
existing heating to urban/rural, residential/services and spatially more
|
||||
transparent.
|
||||
|
||||
* Bugfix: Correctly read out number of solver threads from configuration file.
|
||||
|
||||
* Air-sourced heat pumps can now also be built in rural areas. Previously, only
|
||||
ground-sourced heat pumps were considered for this category.
|
||||
|
||||
@ -39,6 +59,9 @@ Upcoming Release
|
||||
|
||||
* The order of buses (bus0, bus1, ...) for DAC components has changed to meet the convention of the other components. Therefore, `bus0` refers to the electricity bus (input), `bus1` to the heat bus (input), 'bus2' to the CO2 atmosphere bus (input), and `bus3` to the CO2 storage bus (output).
|
||||
|
||||
* The rule ``plot_network`` has been split into separate rules for plotting
|
||||
electricity, hydrogen and gas networks.
|
||||
|
||||
|
||||
PyPSA-Eur 0.9.0 (5th January 2024)
|
||||
==================================
|
||||
|
@ -20,6 +20,12 @@ Rule ``add_existing_baseyear``
|
||||
|
||||
.. automodule:: add_existing_baseyear
|
||||
|
||||
Rule ``build_existing_heating_distribution``
|
||||
==============================================================================
|
||||
|
||||
.. automodule:: build_existing_heating_distribution
|
||||
|
||||
|
||||
Rule ``build_ammonia_production``
|
||||
==============================================================================
|
||||
|
||||
@ -60,10 +66,20 @@ Rule ``build_gas_network``
|
||||
|
||||
.. automodule:: build_gas_network
|
||||
|
||||
Rule ``build_heat_demand``
|
||||
Rule ``build_daily_heat_demand``
|
||||
==============================================================================
|
||||
|
||||
.. automodule:: build_heat_demand
|
||||
.. automodule:: build_daily_heat_demand
|
||||
|
||||
Rule ``build_hourly_heat_demand``
|
||||
==============================================================================
|
||||
|
||||
.. automodule:: build_hourly_heat_demand
|
||||
|
||||
Rule ``build_district_heat_share``
|
||||
==============================================================================
|
||||
|
||||
.. automodule:: build_district_heat_share
|
||||
|
||||
Rule ``build_industrial_distribution_key``
|
||||
==============================================================================
|
||||
|
@ -123,7 +123,7 @@ rule cluster_gas_network:
|
||||
"../scripts/cluster_gas_network.py"
|
||||
|
||||
|
||||
rule build_heat_demands:
|
||||
rule build_daily_heat_demand:
|
||||
params:
|
||||
snapshots={k: config["snapshots"][k] for k in ["start", "end", "inclusive"]},
|
||||
input:
|
||||
@ -131,18 +131,39 @@ rule build_heat_demands:
|
||||
regions_onshore=RESOURCES + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
cutout="cutouts/" + CDIR + config["atlite"]["default_cutout"] + ".nc",
|
||||
output:
|
||||
heat_demand=RESOURCES + "heat_demand_{scope}_elec_s{simpl}_{clusters}.nc",
|
||||
heat_demand=RESOURCES + "daily_heat_demand_{scope}_elec_s{simpl}_{clusters}.nc",
|
||||
resources:
|
||||
mem_mb=20000,
|
||||
threads: 8
|
||||
log:
|
||||
LOGS + "build_heat_demands_{scope}_{simpl}_{clusters}.loc",
|
||||
LOGS + "build_daily_heat_demand_{scope}_{simpl}_{clusters}.loc",
|
||||
benchmark:
|
||||
BENCHMARKS + "build_heat_demands/{scope}_s{simpl}_{clusters}"
|
||||
BENCHMARKS + "build_daily_heat_demand/{scope}_s{simpl}_{clusters}"
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_heat_demand.py"
|
||||
"../scripts/build_daily_heat_demand.py"
|
||||
|
||||
|
||||
rule build_hourly_heat_demand:
|
||||
params:
|
||||
snapshots={k: config["snapshots"][k] for k in ["start", "end", "inclusive"]},
|
||||
input:
|
||||
heat_profile="data/heat_load_profile_BDEW.csv",
|
||||
heat_demand=RESOURCES + "daily_heat_demand_{scope}_elec_s{simpl}_{clusters}.nc",
|
||||
output:
|
||||
heat_demand=RESOURCES + "hourly_heat_demand_{scope}_elec_s{simpl}_{clusters}.nc",
|
||||
resources:
|
||||
mem_mb=2000,
|
||||
threads: 8
|
||||
log:
|
||||
LOGS + "build_hourly_heat_demand_{scope}_{simpl}_{clusters}.loc",
|
||||
benchmark:
|
||||
BENCHMARKS + "build_hourly_heat_demand/{scope}_s{simpl}_{clusters}"
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_hourly_heat_demand.py"
|
||||
|
||||
|
||||
rule build_temperature_profiles:
|
||||
@ -235,6 +256,7 @@ rule build_energy_totals:
|
||||
energy_name=RESOURCES + "energy_totals.csv",
|
||||
co2_name=RESOURCES + "co2_totals.csv",
|
||||
transport_name=RESOURCES + "transport_data.csv",
|
||||
district_heat_share=RESOURCES + "district_heat_share.csv",
|
||||
threads: 16
|
||||
resources:
|
||||
mem_mb=10000,
|
||||
@ -688,6 +710,26 @@ rule build_transport_demand:
|
||||
"../scripts/build_transport_demand.py"
|
||||
|
||||
|
||||
rule build_district_heat_share:
|
||||
params:
|
||||
sector=config["sector"],
|
||||
input:
|
||||
district_heat_share=RESOURCES + "district_heat_share.csv",
|
||||
clustered_pop_layout=RESOURCES + "pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
output:
|
||||
district_heat_share=RESOURCES
|
||||
+ "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=1000,
|
||||
log:
|
||||
LOGS + "build_district_heat_share_s{simpl}_{clusters}_{planning_horizons}.log",
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_district_heat_share.py"
|
||||
|
||||
|
||||
rule prepare_sector_network:
|
||||
params:
|
||||
co2_budget=config["co2_budget"],
|
||||
@ -727,7 +769,6 @@ rule prepare_sector_network:
|
||||
if config["foresight"] == "overnight"
|
||||
else RESOURCES
|
||||
+ "biomass_potentials_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
heat_profile="data/heat_load_profile_BDEW.csv",
|
||||
costs="data/costs_{}.csv".format(config["costs"]["year"])
|
||||
if config["foresight"] == "overnight"
|
||||
else "data/costs_{planning_horizons}.csv",
|
||||
@ -740,9 +781,10 @@ rule prepare_sector_network:
|
||||
simplified_pop_layout=RESOURCES + "pop_layout_elec_s{simpl}.csv",
|
||||
industrial_demand=RESOURCES
|
||||
+ "industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
heat_demand_urban=RESOURCES + "heat_demand_urban_elec_s{simpl}_{clusters}.nc",
|
||||
heat_demand_rural=RESOURCES + "heat_demand_rural_elec_s{simpl}_{clusters}.nc",
|
||||
heat_demand_total=RESOURCES + "heat_demand_total_elec_s{simpl}_{clusters}.nc",
|
||||
hourly_heat_demand_total=RESOURCES
|
||||
+ "hourly_heat_demand_total_elec_s{simpl}_{clusters}.nc",
|
||||
district_heat_share=RESOURCES
|
||||
+ "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
temp_soil_total=RESOURCES + "temp_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_rural=RESOURCES + "temp_soil_rural_elec_s{simpl}_{clusters}.nc",
|
||||
temp_soil_urban=RESOURCES + "temp_soil_urban_elec_s{simpl}_{clusters}.nc",
|
||||
|
@ -11,7 +11,6 @@ localrules:
|
||||
prepare_sector_networks,
|
||||
solve_elec_networks,
|
||||
solve_sector_networks,
|
||||
plot_networks,
|
||||
|
||||
|
||||
rule cluster_networks:
|
||||
@ -69,15 +68,6 @@ rule solve_sector_networks_perfect:
|
||||
),
|
||||
|
||||
|
||||
rule plot_networks:
|
||||
input:
|
||||
expand(
|
||||
RESULTS
|
||||
+ "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}-costs-all_{planning_horizons}.pdf",
|
||||
**config["scenario"]
|
||||
),
|
||||
|
||||
|
||||
rule validate_elec_networks:
|
||||
input:
|
||||
expand(
|
||||
|
@ -1,4 +1,4 @@
|
||||
# SPDX-FileCopyrightText: : 2023 The PyPSA-Eur Authors
|
||||
# SPDX-FileCopyrightText: : 2023-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
@ -9,9 +9,27 @@ localrules:
|
||||
|
||||
if config["foresight"] != "perfect":
|
||||
|
||||
rule plot_network:
|
||||
rule plot_power_network_clustered:
|
||||
params:
|
||||
plotting=config["plotting"],
|
||||
input:
|
||||
network=RESOURCES + "networks/elec_s{simpl}_{clusters}.nc",
|
||||
regions_onshore=RESOURCES
|
||||
+ "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
output:
|
||||
map=RESULTS + "maps/power-network-s{simpl}-{clusters}.pdf",
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=4000,
|
||||
benchmark:
|
||||
BENCHMARKS + "plot_power_network_clustered/elec_s{simpl}_{clusters}"
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/plot_power_network_clustered.py"
|
||||
|
||||
rule plot_power_network:
|
||||
params:
|
||||
foresight=config["foresight"],
|
||||
plotting=config["plotting"],
|
||||
input:
|
||||
network=RESULTS
|
||||
@ -20,27 +38,70 @@ if config["foresight"] != "perfect":
|
||||
output:
|
||||
map=RESULTS
|
||||
+ "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}-costs-all_{planning_horizons}.pdf",
|
||||
today=RESULTS
|
||||
+ "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-today.pdf",
|
||||
threads: 2
|
||||
resources:
|
||||
mem_mb=10000,
|
||||
benchmark:
|
||||
(
|
||||
BENCHMARKS
|
||||
+ "plot_network/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
+ "plot_power_network/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
)
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/plot_network.py"
|
||||
"../scripts/plot_power_network.py"
|
||||
|
||||
rule plot_hydrogen_network:
|
||||
params:
|
||||
plotting=config["plotting"],
|
||||
input:
|
||||
network=RESULTS
|
||||
+ "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
regions=RESOURCES + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
output:
|
||||
map=RESULTS
|
||||
+ "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}-h2_network_{planning_horizons}.pdf",
|
||||
threads: 2
|
||||
resources:
|
||||
mem_mb=10000,
|
||||
benchmark:
|
||||
(
|
||||
BENCHMARKS
|
||||
+ "plot_hydrogen_network/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
)
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/plot_hydrogen_network.py"
|
||||
|
||||
rule plot_gas_network:
|
||||
params:
|
||||
plotting=config["plotting"],
|
||||
input:
|
||||
network=RESULTS
|
||||
+ "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
regions=RESOURCES + "regions_onshore_elec_s{simpl}_{clusters}.geojson",
|
||||
output:
|
||||
map=RESULTS
|
||||
+ "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}-ch4_network_{planning_horizons}.pdf",
|
||||
threads: 2
|
||||
resources:
|
||||
mem_mb=10000,
|
||||
benchmark:
|
||||
(
|
||||
BENCHMARKS
|
||||
+ "plot_gas_network/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}"
|
||||
)
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/plot_gas_network.py"
|
||||
|
||||
|
||||
if config["foresight"] == "perfect":
|
||||
|
||||
rule plot_network:
|
||||
rule plot_power_network_perfect:
|
||||
params:
|
||||
foresight=config["foresight"],
|
||||
plotting=config["plotting"],
|
||||
input:
|
||||
network=RESULTS
|
||||
@ -62,7 +123,7 @@ if config["foresight"] == "perfect":
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/plot_network.py"
|
||||
"../scripts/plot_power_network_perfect.py"
|
||||
|
||||
|
||||
rule copy_config:
|
||||
@ -89,6 +150,10 @@ rule make_summary:
|
||||
scenario=config["scenario"],
|
||||
RDIR=RDIR,
|
||||
input:
|
||||
expand(
|
||||
RESULTS + "maps/power-network-s{simpl}-{clusters}.pdf",
|
||||
**config["scenario"]
|
||||
),
|
||||
networks=expand(
|
||||
RESULTS
|
||||
+ "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
|
||||
@ -97,11 +162,29 @@ rule make_summary:
|
||||
costs="data/costs_{}.csv".format(config["costs"]["year"])
|
||||
if config["foresight"] == "overnight"
|
||||
else "data/costs_{}.csv".format(config["scenario"]["planning_horizons"][0]),
|
||||
plots=expand(
|
||||
ac_plot=expand(
|
||||
RESULTS + "maps/power-network-s{simpl}-{clusters}.pdf",
|
||||
**config["scenario"]
|
||||
),
|
||||
costs_plot=expand(
|
||||
RESULTS
|
||||
+ "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}-costs-all_{planning_horizons}.pdf",
|
||||
**config["scenario"]
|
||||
),
|
||||
h2_plot=expand(
|
||||
RESULTS
|
||||
+ "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}-h2_network_{planning_horizons}.pdf"
|
||||
if config["sector"]["H2_network"]
|
||||
else [],
|
||||
**config["scenario"]
|
||||
),
|
||||
ch4_plot=expand(
|
||||
RESULTS
|
||||
+ "maps/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}-ch4_network_{planning_horizons}.pdf"
|
||||
if config["sector"]["gas_network"]
|
||||
else [],
|
||||
**config["scenario"]
|
||||
),
|
||||
output:
|
||||
nodal_costs=RESULTS + "csvs/nodal_costs.csv",
|
||||
nodal_capacities=RESULTS + "csvs/nodal_capacities.csv",
|
||||
|
@ -1,8 +1,42 @@
|
||||
# SPDX-FileCopyrightText: : 2023 The PyPSA-Eur Authors
|
||||
# SPDX-FileCopyrightText: : 2023-4 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
|
||||
rule build_existing_heating_distribution:
|
||||
params:
|
||||
baseyear=config["scenario"]["planning_horizons"][0],
|
||||
sector=config["sector"],
|
||||
existing_capacities=config["existing_capacities"],
|
||||
input:
|
||||
existing_heating="data/existing_infrastructure/existing_heating_raw.csv",
|
||||
clustered_pop_layout=RESOURCES + "pop_layout_elec_s{simpl}_{clusters}.csv",
|
||||
clustered_pop_energy_layout=RESOURCES
|
||||
+ "pop_weighted_energy_totals_s{simpl}_{clusters}.csv",
|
||||
district_heat_share=RESOURCES
|
||||
+ "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
output:
|
||||
existing_heating_distribution=RESOURCES
|
||||
+ "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
wildcard_constraints:
|
||||
planning_horizons=config["scenario"]["planning_horizons"][0], #only applies to baseyear
|
||||
threads: 1
|
||||
resources:
|
||||
mem_mb=2000,
|
||||
log:
|
||||
LOGS
|
||||
+ "build_existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.log",
|
||||
benchmark:
|
||||
(
|
||||
BENCHMARKS
|
||||
+ "build_existing_heating_distribution/elec_s{simpl}_{clusters}_{planning_horizons}"
|
||||
)
|
||||
conda:
|
||||
"../envs/environment.yaml"
|
||||
script:
|
||||
"../scripts/build_existing_heating_distribution.py"
|
||||
|
||||
|
||||
rule add_existing_baseyear:
|
||||
params:
|
||||
baseyear=config["scenario"]["planning_horizons"][0],
|
||||
@ -19,7 +53,8 @@ rule add_existing_baseyear:
|
||||
costs="data/costs_{}.csv".format(config["scenario"]["planning_horizons"][0]),
|
||||
cop_soil_total=RESOURCES + "cop_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_total=RESOURCES + "cop_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
existing_heating="data/existing_infrastructure/existing_heating_raw.csv",
|
||||
existing_heating_distribution=RESOURCES
|
||||
+ "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
existing_solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
|
||||
existing_onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
|
||||
existing_offwind="data/existing_infrastructure/offwind_capacity_IRENA.csv",
|
||||
|
@ -17,6 +17,8 @@ rule add_existing_baseyear:
|
||||
costs="data/costs_{}.csv".format(config["scenario"]["planning_horizons"][0]),
|
||||
cop_soil_total=RESOURCES + "cop_soil_total_elec_s{simpl}_{clusters}.nc",
|
||||
cop_air_total=RESOURCES + "cop_air_total_elec_s{simpl}_{clusters}.nc",
|
||||
existing_heating_distribution=RESOURCES
|
||||
+ "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv",
|
||||
existing_heating="data/existing_infrastructure/existing_heating_raw.csv",
|
||||
existing_solar="data/existing_infrastructure/solar_capacity_IRENA.csv",
|
||||
existing_onwind="data/existing_infrastructure/onwind_capacity_IRENA.csv",
|
||||
|
@ -409,97 +409,18 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
# file: "WP2_DataAnnex_1_BuildingTechs_ForPublication_201603.xls" -> "existing_heating_raw.csv".
|
||||
# TODO start from original file
|
||||
|
||||
# retrieve existing heating capacities
|
||||
techs = [
|
||||
"gas boiler",
|
||||
"oil boiler",
|
||||
"resistive heater",
|
||||
"air heat pump",
|
||||
"ground heat pump",
|
||||
]
|
||||
df = pd.read_csv(snakemake.input.existing_heating, index_col=0, header=0)
|
||||
|
||||
# data for Albania, Montenegro and Macedonia not included in database
|
||||
df.loc["Albania"] = np.nan
|
||||
df.loc["Montenegro"] = np.nan
|
||||
df.loc["Macedonia"] = np.nan
|
||||
|
||||
df.fillna(0.0, inplace=True)
|
||||
|
||||
# convert GW to MW
|
||||
df *= 1e3
|
||||
|
||||
df.index = cc.convert(df.index, to="iso2")
|
||||
|
||||
# coal and oil boilers are assimilated to oil boilers
|
||||
df["oil boiler"] = df["oil boiler"] + df["coal boiler"]
|
||||
df.drop(["coal boiler"], axis=1, inplace=True)
|
||||
|
||||
# distribute technologies to nodes by population
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
|
||||
nodal_df = df.loc[pop_layout.ct]
|
||||
nodal_df.index = pop_layout.index
|
||||
nodal_df = nodal_df.multiply(pop_layout.fraction, axis=0)
|
||||
|
||||
# split existing capacities between residential and services
|
||||
# proportional to energy demand
|
||||
p_set_sum = n.loads_t.p_set.sum()
|
||||
ratio_residential = pd.Series(
|
||||
[
|
||||
(
|
||||
p_set_sum[f"{node} residential rural heat"]
|
||||
/ (
|
||||
p_set_sum[f"{node} residential rural heat"]
|
||||
+ p_set_sum[f"{node} services rural heat"]
|
||||
)
|
||||
)
|
||||
# if rural heating demand for one of the nodes doesn't exist,
|
||||
# then columns were dropped before and heating demand share should be 0.0
|
||||
if all(
|
||||
f"{node} {service} rural heat" in p_set_sum.index
|
||||
for service in ["residential", "services"]
|
||||
)
|
||||
else 0.0
|
||||
for node in nodal_df.index
|
||||
],
|
||||
index=nodal_df.index,
|
||||
existing_heating = pd.read_csv(
|
||||
snakemake.input.existing_heating_distribution, header=[0, 1], index_col=0
|
||||
)
|
||||
|
||||
for tech in techs:
|
||||
nodal_df["residential " + tech] = nodal_df[tech] * ratio_residential
|
||||
nodal_df["services " + tech] = nodal_df[tech] * (1 - ratio_residential)
|
||||
techs = existing_heating.columns.get_level_values(1).unique()
|
||||
|
||||
names = [
|
||||
"residential rural",
|
||||
"services rural",
|
||||
"residential urban decentral",
|
||||
"services urban decentral",
|
||||
"urban central",
|
||||
]
|
||||
|
||||
nodes = {}
|
||||
p_nom = {}
|
||||
for name in names:
|
||||
for name in existing_heating.columns.get_level_values(0).unique():
|
||||
name_type = "central" if name == "urban central" else "decentral"
|
||||
nodes[name] = pd.Index(
|
||||
[
|
||||
n.buses.at[index, "location"]
|
||||
for index in n.buses.index[
|
||||
n.buses.index.str.contains(name)
|
||||
& n.buses.index.str.contains("heat")
|
||||
]
|
||||
]
|
||||
)
|
||||
heat_pump_type = "air" if "urban" in name else "ground"
|
||||
heat_type = "residential" if "residential" in name else "services"
|
||||
|
||||
if name == "urban central":
|
||||
p_nom[name] = nodal_df["air heat pump"][nodes[name]]
|
||||
else:
|
||||
p_nom[name] = nodal_df[f"{heat_type} {heat_pump_type} heat pump"][
|
||||
nodes[name]
|
||||
]
|
||||
nodes = pd.Index(n.buses.location[n.buses.index.str.contains(f"{name} heat")])
|
||||
|
||||
heat_pump_type = "air" if "urban" in name else "ground"
|
||||
|
||||
# Add heat pumps
|
||||
costs_name = f"decentral {heat_pump_type}-sourced heat pump"
|
||||
@ -507,7 +428,7 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
cop = {"air": ashp_cop, "ground": gshp_cop}
|
||||
|
||||
if time_dep_hp_cop:
|
||||
efficiency = cop[heat_pump_type][nodes[name]]
|
||||
efficiency = cop[heat_pump_type][nodes]
|
||||
else:
|
||||
efficiency = costs.at[costs_name, "efficiency"]
|
||||
|
||||
@ -520,27 +441,28 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
nodes,
|
||||
suffix=f" {name} {heat_pump_type} heat pump-{grouping_year}",
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus0=nodes,
|
||||
bus1=nodes + " " + name + " heat",
|
||||
carrier=f"{name} {heat_pump_type} heat pump",
|
||||
efficiency=efficiency,
|
||||
capital_cost=costs.at[costs_name, "efficiency"]
|
||||
* costs.at[costs_name, "fixed"],
|
||||
p_nom=p_nom[name] * ratio / costs.at[costs_name, "efficiency"],
|
||||
p_nom=existing_heating.loc[nodes, (name, f"{heat_pump_type} heat pump")]
|
||||
* ratio
|
||||
/ costs.at[costs_name, "efficiency"],
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name, "lifetime"],
|
||||
)
|
||||
|
||||
# add resistive heater, gas boilers and oil boilers
|
||||
# (50% capacities to rural buses, 50% to urban buses)
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
nodes,
|
||||
suffix=f" {name} resistive heater-{grouping_year}",
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus0=nodes,
|
||||
bus1=nodes + " " + name + " heat",
|
||||
carrier=name + " resistive heater",
|
||||
efficiency=costs.at[f"{name_type} resistive heater", "efficiency"],
|
||||
capital_cost=(
|
||||
@ -548,21 +470,20 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
* costs.at[f"{name_type} resistive heater", "fixed"]
|
||||
),
|
||||
p_nom=(
|
||||
0.5
|
||||
* nodal_df[f"{heat_type} resistive heater"][nodes[name]]
|
||||
existing_heating.loc[nodes, (name, "resistive heater")]
|
||||
* ratio
|
||||
/ costs.at[f"{name_type} resistive heater", "efficiency"]
|
||||
),
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[costs_name, "lifetime"],
|
||||
lifetime=costs.at[f"{name_type} resistive heater", "lifetime"],
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
nodes,
|
||||
suffix=f" {name} gas boiler-{grouping_year}",
|
||||
bus0=spatial.gas.nodes,
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus1=nodes + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " gas boiler",
|
||||
efficiency=costs.at[f"{name_type} gas boiler", "efficiency"],
|
||||
@ -572,8 +493,7 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
* costs.at[f"{name_type} gas boiler", "fixed"]
|
||||
),
|
||||
p_nom=(
|
||||
0.5
|
||||
* nodal_df[f"{heat_type} gas boiler"][nodes[name]]
|
||||
existing_heating.loc[nodes, (name, "gas boiler")]
|
||||
* ratio
|
||||
/ costs.at[f"{name_type} gas boiler", "efficiency"]
|
||||
),
|
||||
@ -583,20 +503,21 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
nodes,
|
||||
suffix=f" {name} oil boiler-{grouping_year}",
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=nodes[name] + " " + name + " heat",
|
||||
bus1=nodes + " " + name + " heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " oil boiler",
|
||||
efficiency=costs.at["decentral oil boiler", "efficiency"],
|
||||
efficiency2=costs.at["oil", "CO2 intensity"],
|
||||
capital_cost=costs.at["decentral oil boiler", "efficiency"]
|
||||
* costs.at["decentral oil boiler", "fixed"],
|
||||
p_nom=0.5
|
||||
* nodal_df[f"{heat_type} oil boiler"][nodes[name]]
|
||||
p_nom=(
|
||||
existing_heating.loc[nodes, (name, "oil boiler")]
|
||||
* ratio
|
||||
/ costs.at["decentral oil boiler", "efficiency"],
|
||||
/ costs.at["decentral oil boiler", "efficiency"]
|
||||
),
|
||||
build_year=int(grouping_year),
|
||||
lifetime=costs.at[f"{name_type} gas boiler", "lifetime"],
|
||||
)
|
||||
@ -624,6 +545,8 @@ def add_heating_capacities_installed_before_baseyear(
|
||||
|
||||
# drop assets which are at the end of their lifetime
|
||||
links_i = n.links[(n.links.build_year + n.links.lifetime <= baseyear)].index
|
||||
logger.info("Removing following links because at end of their lifetime:")
|
||||
logger.info(links_i)
|
||||
n.mremove("Link", links_i)
|
||||
|
||||
|
||||
|
@ -18,7 +18,8 @@ if __name__ == "__main__":
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_heat_demands",
|
||||
"build_daily_heat_demands",
|
||||
scope="total",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
81
scripts/build_district_heat_share.py
Normal file
81
scripts/build_district_heat_share.py
Normal file
@ -0,0 +1,81 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Build district heat shares at each node, depending on investment year.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import pandas as pd
|
||||
from prepare_sector_network import get
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_district_heat_share",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
planning_horizons="2050",
|
||||
)
|
||||
|
||||
investment_year = int(snakemake.wildcards.planning_horizons[-4:])
|
||||
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
|
||||
district_heat_share = pd.read_csv(snakemake.input.district_heat_share, index_col=0)[
|
||||
"district heat share"
|
||||
]
|
||||
|
||||
# make ct-based share nodal
|
||||
district_heat_share = district_heat_share.loc[pop_layout.ct]
|
||||
district_heat_share.index = pop_layout.index
|
||||
|
||||
# total urban population per country
|
||||
ct_urban = pop_layout.urban.groupby(pop_layout.ct).sum()
|
||||
|
||||
# distribution of urban population within a country
|
||||
pop_layout["urban_ct_fraction"] = pop_layout.urban / pop_layout.ct.map(ct_urban.get)
|
||||
|
||||
# fraction of node that is urban
|
||||
urban_fraction = pop_layout.urban / pop_layout[["rural", "urban"]].sum(axis=1)
|
||||
|
||||
# maximum potential of urban demand covered by district heating
|
||||
central_fraction = snakemake.config["sector"]["district_heating"]["potential"]
|
||||
|
||||
# district heating share at each node
|
||||
dist_fraction_node = (
|
||||
district_heat_share * pop_layout["urban_ct_fraction"] / pop_layout["fraction"]
|
||||
)
|
||||
|
||||
# if district heating share larger than urban fraction -> set urban
|
||||
# fraction to district heating share
|
||||
urban_fraction = pd.concat([urban_fraction, dist_fraction_node], axis=1).max(axis=1)
|
||||
|
||||
# difference of max potential and today's share of district heating
|
||||
diff = (urban_fraction * central_fraction) - dist_fraction_node
|
||||
progress = get(
|
||||
snakemake.config["sector"]["district_heating"]["progress"], investment_year
|
||||
)
|
||||
dist_fraction_node += diff * progress
|
||||
logger.info(
|
||||
f"Increase district heating share by a progress factor of {progress:.2%} "
|
||||
f"resulting in new average share of {dist_fraction_node.mean():.2%}"
|
||||
)
|
||||
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"original district heat share": district_heat_share,
|
||||
"district fraction of node": dist_fraction_node,
|
||||
"urban fraction": urban_fraction,
|
||||
},
|
||||
dtype=float,
|
||||
)
|
||||
|
||||
df.to_csv(snakemake.output.district_heat_share)
|
@ -391,13 +391,6 @@ def build_idees(countries, year):
|
||||
# convert TWh/100km to kWh/km
|
||||
totals.loc["passenger car efficiency"] *= 10
|
||||
|
||||
# district heating share
|
||||
district_heat = totals.loc[
|
||||
["derived heat residential", "derived heat services"]
|
||||
].sum()
|
||||
total_heat = totals.loc[["thermal uses residential", "thermal uses services"]].sum()
|
||||
totals.loc["district heat share"] = district_heat.div(total_heat)
|
||||
|
||||
return totals.T
|
||||
|
||||
|
||||
@ -572,16 +565,36 @@ def build_energy_totals(countries, eurostat, swiss, idees):
|
||||
ratio = df.at["BA", "total residential"] / df.at["RS", "total residential"]
|
||||
df.loc["BA", missing] = ratio * df.loc["RS", missing]
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def build_district_heat_share(countries, idees):
|
||||
# district heating share
|
||||
district_heat = idees[["derived heat residential", "derived heat services"]].sum(
|
||||
axis=1
|
||||
)
|
||||
total_heat = idees[["thermal uses residential", "thermal uses services"]].sum(
|
||||
axis=1
|
||||
)
|
||||
|
||||
district_heat_share = district_heat / total_heat
|
||||
|
||||
district_heat_share = district_heat_share.reindex(countries)
|
||||
|
||||
# Missing district heating share
|
||||
dh_share = pd.read_csv(
|
||||
snakemake.input.district_heat_share, index_col=0, usecols=[0, 1]
|
||||
dh_share = (
|
||||
pd.read_csv(snakemake.input.district_heat_share, index_col=0, usecols=[0, 1])
|
||||
.div(100)
|
||||
.squeeze()
|
||||
)
|
||||
# make conservative assumption and take minimum from both data sets
|
||||
df["district heat share"] = pd.concat(
|
||||
[df["district heat share"], dh_share.reindex(index=df.index) / 100], axis=1
|
||||
district_heat_share = pd.concat(
|
||||
[district_heat_share, dh_share.reindex_like(district_heat_share)], axis=1
|
||||
).min(axis=1)
|
||||
|
||||
return df
|
||||
district_heat_share.name = "district heat share"
|
||||
|
||||
return district_heat_share
|
||||
|
||||
|
||||
def build_eea_co2(input_co2, year=1990, emissions_scope="CO2"):
|
||||
@ -750,6 +763,9 @@ if __name__ == "__main__":
|
||||
energy = build_energy_totals(countries, eurostat, swiss, idees)
|
||||
energy.to_csv(snakemake.output.energy_name)
|
||||
|
||||
district_heat_share = build_district_heat_share(countries, idees)
|
||||
district_heat_share.to_csv(snakemake.output.district_heat_share)
|
||||
|
||||
base_year_emissions = params["base_emissions_year"]
|
||||
emissions_scope = snakemake.params.energy["emissions"]
|
||||
eea_co2 = build_eea_co2(snakemake.input.co2, base_year_emissions, emissions_scope)
|
||||
|
122
scripts/build_existing_heating_distribution.py
Normal file
122
scripts/build_existing_heating_distribution.py
Normal file
@ -0,0 +1,122 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Builds table of existing heat generation capacities for initial planning
|
||||
horizon.
|
||||
"""
|
||||
import country_converter as coco
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
cc = coco.CountryConverter()
|
||||
|
||||
|
||||
def build_existing_heating():
|
||||
# retrieve existing heating capacities
|
||||
|
||||
existing_heating = pd.read_csv(
|
||||
snakemake.input.existing_heating, index_col=0, header=0
|
||||
)
|
||||
|
||||
# data for Albania, Montenegro and Macedonia not included in database
|
||||
existing_heating.loc["Albania"] = np.nan
|
||||
existing_heating.loc["Montenegro"] = np.nan
|
||||
existing_heating.loc["Macedonia"] = np.nan
|
||||
|
||||
existing_heating.fillna(0.0, inplace=True)
|
||||
|
||||
# convert GW to MW
|
||||
existing_heating *= 1e3
|
||||
|
||||
existing_heating.index = cc.convert(existing_heating.index, to="iso2")
|
||||
|
||||
# coal and oil boilers are assimilated to oil boilers
|
||||
existing_heating["oil boiler"] = (
|
||||
existing_heating["oil boiler"] + existing_heating["coal boiler"]
|
||||
)
|
||||
existing_heating.drop(["coal boiler"], axis=1, inplace=True)
|
||||
|
||||
# distribute technologies to nodes by population
|
||||
pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)
|
||||
|
||||
nodal_heating = existing_heating.loc[pop_layout.ct]
|
||||
nodal_heating.index = pop_layout.index
|
||||
nodal_heating = nodal_heating.multiply(pop_layout.fraction, axis=0)
|
||||
|
||||
district_heat_info = pd.read_csv(snakemake.input.district_heat_share, index_col=0)
|
||||
dist_fraction = district_heat_info["district fraction of node"]
|
||||
urban_fraction = district_heat_info["urban fraction"]
|
||||
|
||||
energy_layout = pd.read_csv(
|
||||
snakemake.input.clustered_pop_energy_layout, index_col=0
|
||||
)
|
||||
|
||||
uses = ["space", "water"]
|
||||
sectors = ["residential", "services"]
|
||||
|
||||
nodal_sectoral_totals = pd.DataFrame(dtype=float)
|
||||
|
||||
for sector in sectors:
|
||||
nodal_sectoral_totals[sector] = energy_layout[
|
||||
[f"total {sector} {use}" for use in uses]
|
||||
].sum(axis=1)
|
||||
|
||||
nodal_sectoral_fraction = nodal_sectoral_totals.div(
|
||||
nodal_sectoral_totals.sum(axis=1), axis=0
|
||||
)
|
||||
|
||||
nodal_heat_name_fraction = pd.DataFrame(dtype=float)
|
||||
|
||||
nodal_heat_name_fraction["urban central"] = dist_fraction
|
||||
|
||||
for sector in sectors:
|
||||
nodal_heat_name_fraction[f"{sector} rural"] = nodal_sectoral_fraction[
|
||||
sector
|
||||
] * (1 - urban_fraction)
|
||||
nodal_heat_name_fraction[f"{sector} urban decentral"] = nodal_sectoral_fraction[
|
||||
sector
|
||||
] * (urban_fraction - dist_fraction)
|
||||
|
||||
nodal_heat_name_tech = pd.concat(
|
||||
{
|
||||
name: nodal_heating.multiply(nodal_heat_name_fraction[name], axis=0)
|
||||
for name in nodal_heat_name_fraction.columns
|
||||
},
|
||||
axis=1,
|
||||
names=["heat name", "technology"],
|
||||
)
|
||||
|
||||
# move all ground HPs to rural, all air to urban
|
||||
|
||||
for sector in sectors:
|
||||
nodal_heat_name_tech[(f"{sector} rural", "ground heat pump")] += (
|
||||
nodal_heat_name_tech[("urban central", "ground heat pump")]
|
||||
* nodal_sectoral_fraction[sector]
|
||||
+ nodal_heat_name_tech[(f"{sector} urban decentral", "ground heat pump")]
|
||||
)
|
||||
nodal_heat_name_tech[(f"{sector} urban decentral", "ground heat pump")] = 0.0
|
||||
|
||||
nodal_heat_name_tech[
|
||||
(f"{sector} urban decentral", "air heat pump")
|
||||
] += nodal_heat_name_tech[(f"{sector} rural", "air heat pump")]
|
||||
nodal_heat_name_tech[(f"{sector} rural", "air heat pump")] = 0.0
|
||||
|
||||
nodal_heat_name_tech[("urban central", "ground heat pump")] = 0.0
|
||||
|
||||
nodal_heat_name_tech.to_csv(snakemake.output.existing_heating_distribution)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_existing_heating_distribution",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
planning_horizons=2050,
|
||||
)
|
||||
|
||||
build_existing_heating()
|
63
scripts/build_hourly_heat_demand.py
Normal file
63
scripts/build_hourly_heat_demand.py
Normal file
@ -0,0 +1,63 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Build hourly heat demand time series from daily ones.
|
||||
"""
|
||||
|
||||
from itertools import product
|
||||
|
||||
import pandas as pd
|
||||
import xarray as xr
|
||||
from _helpers import generate_periodic_profiles
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"build_hourly_heat_demands",
|
||||
scope="total",
|
||||
simpl="",
|
||||
clusters=48,
|
||||
)
|
||||
|
||||
snapshots = pd.date_range(freq="h", **snakemake.params.snapshots)
|
||||
|
||||
daily_space_heat_demand = (
|
||||
xr.open_dataarray(snakemake.input.heat_demand)
|
||||
.to_pandas()
|
||||
.reindex(index=snapshots, method="ffill")
|
||||
)
|
||||
|
||||
intraday_profiles = pd.read_csv(snakemake.input.heat_profile, index_col=0)
|
||||
|
||||
sectors = ["residential", "services"]
|
||||
uses = ["water", "space"]
|
||||
|
||||
heat_demand = {}
|
||||
for sector, use in product(sectors, uses):
|
||||
weekday = list(intraday_profiles[f"{sector} {use} weekday"])
|
||||
weekend = list(intraday_profiles[f"{sector} {use} weekend"])
|
||||
weekly_profile = weekday * 5 + weekend * 2
|
||||
intraday_year_profile = generate_periodic_profiles(
|
||||
daily_space_heat_demand.index.tz_localize("UTC"),
|
||||
nodes=daily_space_heat_demand.columns,
|
||||
weekly_profile=weekly_profile,
|
||||
)
|
||||
|
||||
if use == "space":
|
||||
heat_demand[f"{sector} {use}"] = (
|
||||
daily_space_heat_demand * intraday_year_profile
|
||||
)
|
||||
else:
|
||||
heat_demand[f"{sector} {use}"] = intraday_year_profile
|
||||
|
||||
heat_demand = pd.concat(heat_demand, axis=1, names=["sector use", "node"])
|
||||
|
||||
heat_demand.index.name = "snapshots"
|
||||
|
||||
ds = heat_demand.stack().to_xarray()
|
||||
|
||||
ds.to_netcdf(snakemake.output.heat_demand)
|
252
scripts/plot_gas_network.py
Normal file
252
scripts/plot_gas_network.py
Normal file
@ -0,0 +1,252 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Creates map of optimised gas network, storage and selected other
|
||||
infrastructure.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import geopandas as gpd
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
from _helpers import configure_logging
|
||||
from plot_power_network import assign_location, load_projection
|
||||
from pypsa.plot import add_legend_circles, add_legend_lines, add_legend_patches
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def plot_ch4_map(n):
|
||||
# if "gas pipeline" not in n.links.carrier.unique():
|
||||
# return
|
||||
|
||||
assign_location(n)
|
||||
|
||||
bus_size_factor = 8e7
|
||||
linewidth_factor = 1e4
|
||||
# MW below which not drawn
|
||||
line_lower_threshold = 1e3
|
||||
|
||||
# Drop non-electric buses so they don't clutter the plot
|
||||
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
||||
|
||||
fossil_gas_i = n.generators[n.generators.carrier == "gas"].index
|
||||
fossil_gas = (
|
||||
n.generators_t.p.loc[:, fossil_gas_i]
|
||||
.mul(n.snapshot_weightings.generators, axis=0)
|
||||
.sum()
|
||||
.groupby(n.generators.loc[fossil_gas_i, "bus"])
|
||||
.sum()
|
||||
/ bus_size_factor
|
||||
)
|
||||
fossil_gas.rename(index=lambda x: x.replace(" gas", ""), inplace=True)
|
||||
fossil_gas = fossil_gas.reindex(n.buses.index).fillna(0)
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
fossil_gas.index = pd.MultiIndex.from_product([fossil_gas.index, ["fossil gas"]])
|
||||
|
||||
methanation_i = n.links.query("carrier == 'Sabatier'").index
|
||||
methanation = (
|
||||
abs(
|
||||
n.links_t.p1.loc[:, methanation_i].mul(
|
||||
n.snapshot_weightings.generators, axis=0
|
||||
)
|
||||
)
|
||||
.sum()
|
||||
.groupby(n.links.loc[methanation_i, "bus1"])
|
||||
.sum()
|
||||
/ bus_size_factor
|
||||
)
|
||||
methanation = (
|
||||
methanation.groupby(methanation.index)
|
||||
.sum()
|
||||
.rename(index=lambda x: x.replace(" gas", ""))
|
||||
)
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
methanation.index = pd.MultiIndex.from_product([methanation.index, ["methanation"]])
|
||||
|
||||
biogas_i = n.stores[n.stores.carrier == "biogas"].index
|
||||
biogas = (
|
||||
n.stores_t.p.loc[:, biogas_i]
|
||||
.mul(n.snapshot_weightings.generators, axis=0)
|
||||
.sum()
|
||||
.groupby(n.stores.loc[biogas_i, "bus"])
|
||||
.sum()
|
||||
/ bus_size_factor
|
||||
)
|
||||
biogas = (
|
||||
biogas.groupby(biogas.index)
|
||||
.sum()
|
||||
.rename(index=lambda x: x.replace(" biogas", ""))
|
||||
)
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
biogas.index = pd.MultiIndex.from_product([biogas.index, ["biogas"]])
|
||||
|
||||
bus_sizes = pd.concat([fossil_gas, methanation, biogas])
|
||||
bus_sizes.sort_index(inplace=True)
|
||||
|
||||
to_remove = n.links.index[~n.links.carrier.str.contains("gas pipeline")]
|
||||
n.links.drop(to_remove, inplace=True)
|
||||
|
||||
link_widths_rem = n.links.p_nom_opt / linewidth_factor
|
||||
link_widths_rem[n.links.p_nom_opt < line_lower_threshold] = 0.0
|
||||
|
||||
link_widths_orig = n.links.p_nom / linewidth_factor
|
||||
link_widths_orig[n.links.p_nom < line_lower_threshold] = 0.0
|
||||
|
||||
max_usage = n.links_t.p0[n.links.index].abs().max(axis=0)
|
||||
link_widths_used = max_usage / linewidth_factor
|
||||
link_widths_used[max_usage < line_lower_threshold] = 0.0
|
||||
|
||||
tech_colors = snakemake.params.plotting["tech_colors"]
|
||||
|
||||
pipe_colors = {
|
||||
"gas pipeline": "#f08080",
|
||||
"gas pipeline new": "#c46868",
|
||||
"gas pipeline (in 2020)": "lightgrey",
|
||||
"gas pipeline (available)": "#e8d1d1",
|
||||
}
|
||||
|
||||
link_color_used = n.links.carrier.map(pipe_colors)
|
||||
|
||||
n.links.bus0 = n.links.bus0.str.replace(" gas", "")
|
||||
n.links.bus1 = n.links.bus1.str.replace(" gas", "")
|
||||
|
||||
bus_colors = {
|
||||
"fossil gas": tech_colors["fossil gas"],
|
||||
"methanation": tech_colors["methanation"],
|
||||
"biogas": "seagreen",
|
||||
}
|
||||
|
||||
fig, ax = plt.subplots(figsize=(7, 6), subplot_kw={"projection": proj})
|
||||
|
||||
n.plot(
|
||||
bus_sizes=bus_sizes,
|
||||
bus_colors=bus_colors,
|
||||
link_colors=pipe_colors["gas pipeline (in 2020)"],
|
||||
link_widths=link_widths_orig,
|
||||
branch_components=["Link"],
|
||||
ax=ax,
|
||||
**map_opts,
|
||||
)
|
||||
|
||||
n.plot(
|
||||
ax=ax,
|
||||
bus_sizes=0.0,
|
||||
link_colors=pipe_colors["gas pipeline (available)"],
|
||||
link_widths=link_widths_rem,
|
||||
branch_components=["Link"],
|
||||
color_geomap=False,
|
||||
boundaries=map_opts["boundaries"],
|
||||
)
|
||||
|
||||
n.plot(
|
||||
ax=ax,
|
||||
bus_sizes=0.0,
|
||||
link_colors=link_color_used,
|
||||
link_widths=link_widths_used,
|
||||
branch_components=["Link"],
|
||||
color_geomap=False,
|
||||
boundaries=map_opts["boundaries"],
|
||||
)
|
||||
|
||||
sizes = [100, 10]
|
||||
labels = [f"{s} TWh" for s in sizes]
|
||||
sizes = [s / bus_size_factor * 1e6 for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0, 1.03),
|
||||
labelspacing=0.8,
|
||||
frameon=False,
|
||||
handletextpad=1,
|
||||
title="gas sources",
|
||||
)
|
||||
|
||||
add_legend_circles(
|
||||
ax,
|
||||
sizes,
|
||||
labels,
|
||||
srid=n.srid,
|
||||
patch_kw=dict(facecolor="lightgrey"),
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
sizes = [50, 10]
|
||||
labels = [f"{s} GW" for s in sizes]
|
||||
scale = 1e3 / linewidth_factor
|
||||
sizes = [s * scale for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.25, 1.03),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1,
|
||||
title="gas pipeline",
|
||||
)
|
||||
|
||||
add_legend_lines(
|
||||
ax,
|
||||
sizes,
|
||||
labels,
|
||||
patch_kw=dict(color="lightgrey"),
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
colors = list(pipe_colors.values()) + list(bus_colors.values())
|
||||
labels = list(pipe_colors.keys()) + list(bus_colors.keys())
|
||||
|
||||
# legend on the side
|
||||
# legend_kw = dict(
|
||||
# bbox_to_anchor=(1.47, 1.04),
|
||||
# frameon=False,
|
||||
# )
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0, 1.24),
|
||||
ncol=2,
|
||||
frameon=False,
|
||||
)
|
||||
|
||||
add_legend_patches(
|
||||
ax,
|
||||
colors,
|
||||
labels,
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
fig.savefig(snakemake.output.map, bbox_inches="tight")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"plot_gas_network",
|
||||
simpl="",
|
||||
opts="",
|
||||
clusters="37",
|
||||
ll="v1.0",
|
||||
sector_opts="4380H-T-H-B-I-A-dist1",
|
||||
)
|
||||
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
|
||||
regions = gpd.read_file(snakemake.input.regions).set_index("name")
|
||||
|
||||
map_opts = snakemake.params.plotting["map"]
|
||||
|
||||
if map_opts["boundaries"] is None:
|
||||
map_opts["boundaries"] = regions.total_bounds[[0, 2, 1, 3]] + [-1, 1, -1, 1]
|
||||
|
||||
proj = load_projection(snakemake.params.plotting)
|
||||
|
||||
plot_ch4_map(n)
|
267
scripts/plot_hydrogen_network.py
Normal file
267
scripts/plot_hydrogen_network.py
Normal file
@ -0,0 +1,267 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Creates map of optimised hydrogen network, storage and selected other
|
||||
infrastructure.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import geopandas as gpd
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
from _helpers import configure_logging
|
||||
from plot_power_network import assign_location, load_projection
|
||||
from pypsa.plot import add_legend_circles, add_legend_lines, add_legend_patches
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def group_pipes(df, drop_direction=False):
|
||||
"""
|
||||
Group pipes which connect same buses and return overall capacity.
|
||||
"""
|
||||
if drop_direction:
|
||||
positive_order = df.bus0 < df.bus1
|
||||
df_p = df[positive_order]
|
||||
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
||||
df_n = df[~positive_order].rename(columns=swap_buses)
|
||||
df = pd.concat([df_p, df_n])
|
||||
|
||||
# there are pipes for each investment period rename to AC buses name for plotting
|
||||
df.index = df.apply(
|
||||
lambda x: f"H2 pipeline {x.bus0.replace(' H2', '')} -> {x.bus1.replace(' H2', '')}",
|
||||
axis=1,
|
||||
)
|
||||
return df.groupby(level=0).agg({"p_nom_opt": sum, "bus0": "first", "bus1": "first"})
|
||||
|
||||
|
||||
def plot_h2_map(n, regions):
|
||||
# if "H2 pipeline" not in n.links.carrier.unique():
|
||||
# return
|
||||
|
||||
assign_location(n)
|
||||
|
||||
h2_storage = n.stores.query("carrier == 'H2'")
|
||||
regions["H2"] = (
|
||||
h2_storage.rename(index=h2_storage.bus.map(n.buses.location))
|
||||
.e_nom_opt.groupby(level=0)
|
||||
.sum()
|
||||
.div(1e6)
|
||||
) # TWh
|
||||
regions["H2"] = regions["H2"].where(regions["H2"] > 0.1)
|
||||
|
||||
bus_size_factor = 1e5
|
||||
linewidth_factor = 7e3
|
||||
# MW below which not drawn
|
||||
line_lower_threshold = 750
|
||||
|
||||
# Drop non-electric buses so they don't clutter the plot
|
||||
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
||||
|
||||
carriers = ["H2 Electrolysis", "H2 Fuel Cell"]
|
||||
|
||||
elec = n.links[n.links.carrier.isin(carriers)].index
|
||||
|
||||
bus_sizes = (
|
||||
n.links.loc[elec, "p_nom_opt"].groupby([n.links["bus0"], n.links.carrier]).sum()
|
||||
/ bus_size_factor
|
||||
)
|
||||
|
||||
# make a fake MultiIndex so that area is correct for legend
|
||||
bus_sizes.rename(index=lambda x: x.replace(" H2", ""), level=0, inplace=True)
|
||||
# drop all links which are not H2 pipelines
|
||||
n.links.drop(
|
||||
n.links.index[~n.links.carrier.str.contains("H2 pipeline")], inplace=True
|
||||
)
|
||||
|
||||
h2_new = n.links[n.links.carrier == "H2 pipeline"]
|
||||
h2_retro = n.links[n.links.carrier == "H2 pipeline retrofitted"]
|
||||
|
||||
if snakemake.params.foresight == "myopic":
|
||||
# sum capacitiy for pipelines from different investment periods
|
||||
h2_new = group_pipes(h2_new)
|
||||
|
||||
if not h2_retro.empty:
|
||||
h2_retro = (
|
||||
group_pipes(h2_retro, drop_direction=True)
|
||||
.reindex(h2_new.index)
|
||||
.fillna(0)
|
||||
)
|
||||
|
||||
if not h2_retro.empty:
|
||||
positive_order = h2_retro.bus0 < h2_retro.bus1
|
||||
h2_retro_p = h2_retro[positive_order]
|
||||
swap_buses = {"bus0": "bus1", "bus1": "bus0"}
|
||||
h2_retro_n = h2_retro[~positive_order].rename(columns=swap_buses)
|
||||
h2_retro = pd.concat([h2_retro_p, h2_retro_n])
|
||||
|
||||
h2_retro["index_orig"] = h2_retro.index
|
||||
h2_retro.index = h2_retro.apply(
|
||||
lambda x: f"H2 pipeline {x.bus0.replace(' H2', '')} -> {x.bus1.replace(' H2', '')}",
|
||||
axis=1,
|
||||
)
|
||||
|
||||
retro_w_new_i = h2_retro.index.intersection(h2_new.index)
|
||||
h2_retro_w_new = h2_retro.loc[retro_w_new_i]
|
||||
|
||||
retro_wo_new_i = h2_retro.index.difference(h2_new.index)
|
||||
h2_retro_wo_new = h2_retro.loc[retro_wo_new_i]
|
||||
h2_retro_wo_new.index = h2_retro_wo_new.index_orig
|
||||
|
||||
to_concat = [h2_new, h2_retro_w_new, h2_retro_wo_new]
|
||||
h2_total = pd.concat(to_concat).p_nom_opt.groupby(level=0).sum()
|
||||
|
||||
else:
|
||||
h2_total = h2_new.p_nom_opt
|
||||
|
||||
link_widths_total = h2_total / linewidth_factor
|
||||
|
||||
n.links.rename(index=lambda x: x.split("-2")[0], inplace=True)
|
||||
n.links = n.links.groupby(level=0).first()
|
||||
link_widths_total = link_widths_total.reindex(n.links.index).fillna(0.0)
|
||||
link_widths_total[n.links.p_nom_opt < line_lower_threshold] = 0.0
|
||||
|
||||
retro = n.links.p_nom_opt.where(
|
||||
n.links.carrier == "H2 pipeline retrofitted", other=0.0
|
||||
)
|
||||
link_widths_retro = retro / linewidth_factor
|
||||
link_widths_retro[n.links.p_nom_opt < line_lower_threshold] = 0.0
|
||||
|
||||
n.links.bus0 = n.links.bus0.str.replace(" H2", "")
|
||||
n.links.bus1 = n.links.bus1.str.replace(" H2", "")
|
||||
|
||||
regions = regions.to_crs(proj.proj4_init)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(7, 6), subplot_kw={"projection": proj})
|
||||
|
||||
color_h2_pipe = "#b3f3f4"
|
||||
color_retrofit = "#499a9c"
|
||||
|
||||
bus_colors = {"H2 Electrolysis": "#ff29d9", "H2 Fuel Cell": "#805394"}
|
||||
|
||||
n.plot(
|
||||
geomap=True,
|
||||
bus_sizes=bus_sizes,
|
||||
bus_colors=bus_colors,
|
||||
link_colors=color_h2_pipe,
|
||||
link_widths=link_widths_total,
|
||||
branch_components=["Link"],
|
||||
ax=ax,
|
||||
**map_opts,
|
||||
)
|
||||
|
||||
n.plot(
|
||||
geomap=True,
|
||||
bus_sizes=0,
|
||||
link_colors=color_retrofit,
|
||||
link_widths=link_widths_retro,
|
||||
branch_components=["Link"],
|
||||
ax=ax,
|
||||
**map_opts,
|
||||
)
|
||||
|
||||
regions.plot(
|
||||
ax=ax,
|
||||
column="H2",
|
||||
cmap="Blues",
|
||||
linewidths=0,
|
||||
legend=True,
|
||||
vmax=6,
|
||||
vmin=0,
|
||||
legend_kwds={
|
||||
"label": "Hydrogen Storage [TWh]",
|
||||
"shrink": 0.7,
|
||||
"extend": "max",
|
||||
},
|
||||
)
|
||||
|
||||
sizes = [50, 10]
|
||||
labels = [f"{s} GW" for s in sizes]
|
||||
sizes = [s / bus_size_factor * 1e3 for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0, 1),
|
||||
labelspacing=0.8,
|
||||
handletextpad=0,
|
||||
frameon=False,
|
||||
)
|
||||
|
||||
add_legend_circles(
|
||||
ax,
|
||||
sizes,
|
||||
labels,
|
||||
srid=n.srid,
|
||||
patch_kw=dict(facecolor="lightgrey"),
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
sizes = [30, 10]
|
||||
labels = [f"{s} GW" for s in sizes]
|
||||
scale = 1e3 / linewidth_factor
|
||||
sizes = [s * scale for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.23, 1),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1,
|
||||
)
|
||||
|
||||
add_legend_lines(
|
||||
ax,
|
||||
sizes,
|
||||
labels,
|
||||
patch_kw=dict(color="lightgrey"),
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
colors = [bus_colors[c] for c in carriers] + [color_h2_pipe, color_retrofit]
|
||||
labels = carriers + ["H2 pipeline (total)", "H2 pipeline (repurposed)"]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0, 1.13),
|
||||
ncol=2,
|
||||
frameon=False,
|
||||
)
|
||||
|
||||
add_legend_patches(ax, colors, labels, legend_kw=legend_kw)
|
||||
|
||||
ax.set_facecolor("white")
|
||||
|
||||
fig.savefig(snakemake.output.map, bbox_inches="tight")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"plot_hydrogen_network",
|
||||
simpl="",
|
||||
opts="",
|
||||
clusters="37",
|
||||
ll="v1.0",
|
||||
sector_opts="4380H-T-H-B-I-A-dist1",
|
||||
)
|
||||
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
|
||||
regions = gpd.read_file(snakemake.input.regions).set_index("name")
|
||||
|
||||
map_opts = snakemake.params.plotting["map"]
|
||||
|
||||
if map_opts["boundaries"] is None:
|
||||
map_opts["boundaries"] = regions.total_bounds[[0, 2, 1, 3]] + [-1, 1, -1, 1]
|
||||
|
||||
proj = load_projection(snakemake.params.plotting)
|
||||
|
||||
plot_h2_map(n, regions)
|
File diff suppressed because it is too large
Load Diff
272
scripts/plot_power_network.py
Normal file
272
scripts/plot_power_network.py
Normal file
@ -0,0 +1,272 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Creates plots for optimised power network topologies and regional generation,
|
||||
storage and conversion capacities built.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import cartopy.crs as ccrs
|
||||
import geopandas as gpd
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
from _helpers import configure_logging
|
||||
from plot_summary import preferred_order, rename_techs
|
||||
from pypsa.plot import add_legend_circles, add_legend_lines, add_legend_patches
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def rename_techs_tyndp(tech):
|
||||
tech = rename_techs(tech)
|
||||
if "heat pump" in tech or "resistive heater" in tech:
|
||||
return "power-to-heat"
|
||||
elif tech in ["H2 Electrolysis", "methanation", "H2 liquefaction"]:
|
||||
return "power-to-gas"
|
||||
elif tech == "H2":
|
||||
return "H2 storage"
|
||||
elif tech in ["NH3", "Haber-Bosch", "ammonia cracker", "ammonia store"]:
|
||||
return "ammonia"
|
||||
elif tech in ["OCGT", "CHP", "gas boiler", "H2 Fuel Cell"]:
|
||||
return "gas-to-power/heat"
|
||||
# elif "solar" in tech:
|
||||
# return "solar"
|
||||
elif tech in ["Fischer-Tropsch", "methanolisation"]:
|
||||
return "power-to-liquid"
|
||||
elif "offshore wind" in tech:
|
||||
return "offshore wind"
|
||||
elif "CC" in tech or "sequestration" in tech:
|
||||
return "CCS"
|
||||
else:
|
||||
return tech
|
||||
|
||||
|
||||
def assign_location(n):
|
||||
for c in n.iterate_components(n.one_port_components | n.branch_components):
|
||||
ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index)
|
||||
for i in ifind.value_counts().index:
|
||||
# these have already been assigned defaults
|
||||
if i == -1:
|
||||
continue
|
||||
names = ifind.index[ifind == i]
|
||||
c.df.loc[names, "location"] = names.str[:i]
|
||||
|
||||
|
||||
def load_projection(plotting_params):
|
||||
proj_kwargs = plotting_params.get("projection", dict(name="EqualEarth"))
|
||||
proj_func = getattr(ccrs, proj_kwargs.pop("name"))
|
||||
return proj_func(**proj_kwargs)
|
||||
|
||||
|
||||
def plot_map(
|
||||
n,
|
||||
components=["links", "stores", "storage_units", "generators"],
|
||||
bus_size_factor=2e10,
|
||||
transmission=False,
|
||||
with_legend=True,
|
||||
):
|
||||
tech_colors = snakemake.params.plotting["tech_colors"]
|
||||
|
||||
assign_location(n)
|
||||
# Drop non-electric buses so they don't clutter the plot
|
||||
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
||||
|
||||
costs = pd.DataFrame(index=n.buses.index)
|
||||
|
||||
for comp in components:
|
||||
df_c = getattr(n, comp)
|
||||
|
||||
if df_c.empty:
|
||||
continue
|
||||
|
||||
df_c["nice_group"] = df_c.carrier.map(rename_techs_tyndp)
|
||||
|
||||
attr = "e_nom_opt" if comp == "stores" else "p_nom_opt"
|
||||
|
||||
costs_c = (
|
||||
(df_c.capital_cost * df_c[attr])
|
||||
.groupby([df_c.location, df_c.nice_group])
|
||||
.sum()
|
||||
.unstack()
|
||||
.fillna(0.0)
|
||||
)
|
||||
costs = pd.concat([costs, costs_c], axis=1)
|
||||
|
||||
logger.debug(f"{comp}, {costs}")
|
||||
|
||||
costs = costs.groupby(costs.columns, axis=1).sum()
|
||||
|
||||
costs.drop(list(costs.columns[(costs == 0.0).all()]), axis=1, inplace=True)
|
||||
|
||||
new_columns = preferred_order.intersection(costs.columns).append(
|
||||
costs.columns.difference(preferred_order)
|
||||
)
|
||||
costs = costs[new_columns]
|
||||
|
||||
for item in new_columns:
|
||||
if item not in tech_colors:
|
||||
logger.warning(f"{item} not in config/plotting/tech_colors")
|
||||
|
||||
costs = costs.stack() # .sort_index()
|
||||
|
||||
# hack because impossible to drop buses...
|
||||
eu_location = snakemake.params.plotting.get("eu_node_location", dict(x=-5.5, y=46))
|
||||
n.buses.loc["EU gas", "x"] = eu_location["x"]
|
||||
n.buses.loc["EU gas", "y"] = eu_location["y"]
|
||||
|
||||
n.links.drop(
|
||||
n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")],
|
||||
inplace=True,
|
||||
)
|
||||
|
||||
# drop non-bus
|
||||
to_drop = costs.index.levels[0].symmetric_difference(n.buses.index)
|
||||
if len(to_drop) != 0:
|
||||
logger.info(f"Dropping non-buses {to_drop.tolist()}")
|
||||
costs.drop(to_drop, level=0, inplace=True, axis=0, errors="ignore")
|
||||
|
||||
# make sure they are removed from index
|
||||
costs.index = pd.MultiIndex.from_tuples(costs.index.values)
|
||||
|
||||
threshold = 100e6 # 100 mEUR/a
|
||||
carriers = costs.groupby(level=1).sum()
|
||||
carriers = carriers.where(carriers > threshold).dropna()
|
||||
carriers = list(carriers.index)
|
||||
|
||||
# PDF has minimum width, so set these to zero
|
||||
line_lower_threshold = 500.0
|
||||
line_upper_threshold = 1e4
|
||||
linewidth_factor = 4e3
|
||||
ac_color = "rosybrown"
|
||||
dc_color = "darkseagreen"
|
||||
|
||||
title = "added grid"
|
||||
|
||||
if snakemake.wildcards["ll"] == "v1.0":
|
||||
# should be zero
|
||||
line_widths = n.lines.s_nom_opt - n.lines.s_nom
|
||||
link_widths = n.links.p_nom_opt - n.links.p_nom
|
||||
if transmission:
|
||||
line_widths = n.lines.s_nom_opt
|
||||
link_widths = n.links.p_nom_opt
|
||||
linewidth_factor = 2e3
|
||||
line_lower_threshold = 0.0
|
||||
title = "current grid"
|
||||
else:
|
||||
line_widths = n.lines.s_nom_opt - n.lines.s_nom_min
|
||||
link_widths = n.links.p_nom_opt - n.links.p_nom_min
|
||||
if transmission:
|
||||
line_widths = n.lines.s_nom_opt
|
||||
link_widths = n.links.p_nom_opt
|
||||
title = "total grid"
|
||||
|
||||
line_widths = line_widths.clip(line_lower_threshold, line_upper_threshold)
|
||||
link_widths = link_widths.clip(line_lower_threshold, line_upper_threshold)
|
||||
|
||||
line_widths = line_widths.replace(line_lower_threshold, 0)
|
||||
link_widths = link_widths.replace(line_lower_threshold, 0)
|
||||
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": proj})
|
||||
fig.set_size_inches(7, 6)
|
||||
|
||||
n.plot(
|
||||
bus_sizes=costs / bus_size_factor,
|
||||
bus_colors=tech_colors,
|
||||
line_colors=ac_color,
|
||||
link_colors=dc_color,
|
||||
line_widths=line_widths / linewidth_factor,
|
||||
link_widths=link_widths / linewidth_factor,
|
||||
ax=ax,
|
||||
**map_opts,
|
||||
)
|
||||
|
||||
sizes = [20, 10, 5]
|
||||
labels = [f"{s} bEUR/a" for s in sizes]
|
||||
sizes = [s / bus_size_factor * 1e9 for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.01, 1.06),
|
||||
labelspacing=0.8,
|
||||
frameon=False,
|
||||
handletextpad=0,
|
||||
title="system cost",
|
||||
)
|
||||
|
||||
add_legend_circles(
|
||||
ax,
|
||||
sizes,
|
||||
labels,
|
||||
srid=n.srid,
|
||||
patch_kw=dict(facecolor="lightgrey"),
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
sizes = [10, 5]
|
||||
labels = [f"{s} GW" for s in sizes]
|
||||
scale = 1e3 / linewidth_factor
|
||||
sizes = [s * scale for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.27, 1.06),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1,
|
||||
title=title,
|
||||
)
|
||||
|
||||
add_legend_lines(
|
||||
ax, sizes, labels, patch_kw=dict(color="lightgrey"), legend_kw=legend_kw
|
||||
)
|
||||
|
||||
legend_kw = dict(
|
||||
bbox_to_anchor=(1.52, 1.04),
|
||||
frameon=False,
|
||||
)
|
||||
|
||||
if with_legend:
|
||||
colors = [tech_colors[c] for c in carriers] + [ac_color, dc_color]
|
||||
labels = carriers + ["HVAC line", "HVDC link"]
|
||||
|
||||
add_legend_patches(
|
||||
ax,
|
||||
colors,
|
||||
labels,
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
fig.savefig(snakemake.output.map, bbox_inches="tight")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"plot_power_network",
|
||||
simpl="",
|
||||
opts="",
|
||||
clusters="37",
|
||||
ll="v1.0",
|
||||
sector_opts="4380H-T-H-B-I-A-dist1",
|
||||
)
|
||||
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
|
||||
regions = gpd.read_file(snakemake.input.regions).set_index("name")
|
||||
|
||||
map_opts = snakemake.params.plotting["map"]
|
||||
|
||||
if map_opts["boundaries"] is None:
|
||||
map_opts["boundaries"] = regions.total_bounds[[0, 2, 1, 3]] + [-1, 1, -1, 1]
|
||||
|
||||
proj = load_projection(snakemake.params.plotting)
|
||||
|
||||
plot_map(n)
|
78
scripts/plot_power_network_clustered.py
Normal file
78
scripts/plot_power_network_clustered.py
Normal file
@ -0,0 +1,78 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2023-2024 PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Plot clustered electricity transmission network.
|
||||
"""
|
||||
|
||||
import cartopy.crs as ccrs
|
||||
import geopandas as gpd
|
||||
import matplotlib.pyplot as plt
|
||||
import pypsa
|
||||
from matplotlib.lines import Line2D
|
||||
from plot_power_network import load_projection
|
||||
from pypsa.plot import add_legend_lines
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"plot_power_network_clustered",
|
||||
clusters=128,
|
||||
configfiles=["../../config/config.test.yaml"],
|
||||
)
|
||||
|
||||
lw_factor = 2e3
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
|
||||
regions = gpd.read_file(snakemake.input.regions_onshore).set_index("name")
|
||||
|
||||
proj = load_projection(snakemake.params.plotting)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(8, 8), subplot_kw={"projection": proj})
|
||||
regions.to_crs(proj.proj4_init).plot(
|
||||
ax=ax, facecolor="none", edgecolor="lightgray", linewidth=0.75
|
||||
)
|
||||
n.plot(
|
||||
ax=ax,
|
||||
margin=0.06,
|
||||
line_widths=n.lines.s_nom / lw_factor,
|
||||
link_colors=n.links.p_nom.apply(
|
||||
lambda x: "darkseagreen" if x > 0 else "skyblue"
|
||||
),
|
||||
link_widths=2.0,
|
||||
)
|
||||
|
||||
sizes = [10, 20]
|
||||
labels = [f"HVAC ({s} GW)" for s in sizes]
|
||||
scale = 1e3 / lw_factor
|
||||
sizes = [s * scale for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc=[0.25, 0.9],
|
||||
frameon=False,
|
||||
labelspacing=0.5,
|
||||
handletextpad=1,
|
||||
fontsize=13,
|
||||
)
|
||||
|
||||
add_legend_lines(
|
||||
ax, sizes, labels, patch_kw=dict(color="rosybrown"), legend_kw=legend_kw
|
||||
)
|
||||
|
||||
handles = [
|
||||
Line2D([0], [0], color="darkseagreen", lw=2),
|
||||
Line2D([0], [0], color="skyblue", lw=2),
|
||||
]
|
||||
plt.legend(
|
||||
handles,
|
||||
["HVDC existing", "HVDC planned"],
|
||||
frameon=False,
|
||||
loc=[0.0, 0.9],
|
||||
fontsize=13,
|
||||
)
|
||||
|
||||
plt.savefig(snakemake.output.map, bbox_inches="tight")
|
199
scripts/plot_power_network_perfect.py
Normal file
199
scripts/plot_power_network_perfect.py
Normal file
@ -0,0 +1,199 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
"""
|
||||
Creates plots for optimised power network topologies and regional generation,
|
||||
storage and conversion capacities built for the perfect foresight scenario.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import geopandas as gpd
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
from _helpers import configure_logging
|
||||
from plot_power_network import assign_location, load_projection, rename_techs_tyndp
|
||||
from plot_summary import preferred_order
|
||||
from pypsa.plot import add_legend_circles, add_legend_lines
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def plot_map_perfect(
|
||||
n,
|
||||
components=["Link", "Store", "StorageUnit", "Generator"],
|
||||
bus_size_factor=2e10,
|
||||
):
|
||||
assign_location(n)
|
||||
# Drop non-electric buses so they don't clutter the plot
|
||||
n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True)
|
||||
# investment periods
|
||||
investments = n.snapshots.levels[0]
|
||||
|
||||
costs = {}
|
||||
for comp in components:
|
||||
df_c = n.df(comp)
|
||||
if df_c.empty:
|
||||
continue
|
||||
df_c["nice_group"] = df_c.carrier.map(rename_techs_tyndp)
|
||||
|
||||
attr = "e_nom_opt" if comp == "Store" else "p_nom_opt"
|
||||
|
||||
active = pd.concat(
|
||||
[n.get_active_assets(comp, inv_p).rename(inv_p) for inv_p in investments],
|
||||
axis=1,
|
||||
).astype(int)
|
||||
capital_cost = n.df(comp)[attr] * n.df(comp).capital_cost
|
||||
capital_cost_t = (
|
||||
(active.mul(capital_cost, axis=0))
|
||||
.groupby([n.df(comp).location, n.df(comp).nice_group])
|
||||
.sum()
|
||||
)
|
||||
|
||||
capital_cost_t.drop("load", level=1, inplace=True, errors="ignore")
|
||||
|
||||
costs[comp] = capital_cost_t
|
||||
|
||||
costs = pd.concat(costs).groupby(level=[1, 2]).sum()
|
||||
costs.drop(costs[costs.sum(axis=1) == 0].index, inplace=True)
|
||||
|
||||
new_columns = preferred_order.intersection(costs.index.levels[1]).append(
|
||||
costs.index.levels[1].difference(preferred_order)
|
||||
)
|
||||
costs = costs.reindex(new_columns, level=1)
|
||||
|
||||
for item in new_columns:
|
||||
if item not in snakemake.config["plotting"]["tech_colors"]:
|
||||
print(
|
||||
"Warning!",
|
||||
item,
|
||||
"not in config/plotting/tech_colors, assign random color",
|
||||
)
|
||||
snakemake.config["plotting"]["tech_colors"] = "pink"
|
||||
|
||||
n.links.drop(
|
||||
n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")],
|
||||
inplace=True,
|
||||
)
|
||||
|
||||
# drop non-bus
|
||||
to_drop = costs.index.levels[0].symmetric_difference(n.buses.index)
|
||||
if len(to_drop) != 0:
|
||||
print("dropping non-buses", to_drop)
|
||||
costs.drop(to_drop, level=0, inplace=True, axis=0, errors="ignore")
|
||||
|
||||
# make sure they are removed from index
|
||||
costs.index = pd.MultiIndex.from_tuples(costs.index.values)
|
||||
|
||||
# PDF has minimum width, so set these to zero
|
||||
line_lower_threshold = 500.0
|
||||
line_upper_threshold = 1e4
|
||||
linewidth_factor = 2e3
|
||||
ac_color = "gray"
|
||||
dc_color = "m"
|
||||
|
||||
line_widths = n.lines.s_nom_opt
|
||||
link_widths = n.links.p_nom_opt
|
||||
linewidth_factor = 2e3
|
||||
line_lower_threshold = 0.0
|
||||
title = "Today's transmission"
|
||||
|
||||
line_widths[line_widths < line_lower_threshold] = 0.0
|
||||
link_widths[link_widths < line_lower_threshold] = 0.0
|
||||
|
||||
line_widths[line_widths > line_upper_threshold] = line_upper_threshold
|
||||
link_widths[link_widths > line_upper_threshold] = line_upper_threshold
|
||||
|
||||
for year in costs.columns:
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": proj})
|
||||
fig.set_size_inches(7, 6)
|
||||
fig.suptitle(year)
|
||||
|
||||
n.plot(
|
||||
bus_sizes=costs[year] / bus_size_factor,
|
||||
bus_colors=snakemake.config["plotting"]["tech_colors"],
|
||||
line_colors=ac_color,
|
||||
link_colors=dc_color,
|
||||
line_widths=line_widths / linewidth_factor,
|
||||
link_widths=link_widths / linewidth_factor,
|
||||
ax=ax,
|
||||
**map_opts,
|
||||
)
|
||||
|
||||
sizes = [20, 10, 5]
|
||||
labels = [f"{s} bEUR/a" for s in sizes]
|
||||
sizes = [s / bus_size_factor * 1e9 for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.01, 1.06),
|
||||
labelspacing=0.8,
|
||||
frameon=False,
|
||||
handletextpad=0,
|
||||
title="system cost",
|
||||
)
|
||||
|
||||
add_legend_circles(
|
||||
ax,
|
||||
sizes,
|
||||
labels,
|
||||
srid=n.srid,
|
||||
patch_kw=dict(facecolor="lightgrey"),
|
||||
legend_kw=legend_kw,
|
||||
)
|
||||
|
||||
sizes = [10, 5]
|
||||
labels = [f"{s} GW" for s in sizes]
|
||||
scale = 1e3 / linewidth_factor
|
||||
sizes = [s * scale for s in sizes]
|
||||
|
||||
legend_kw = dict(
|
||||
loc="upper left",
|
||||
bbox_to_anchor=(0.27, 1.06),
|
||||
frameon=False,
|
||||
labelspacing=0.8,
|
||||
handletextpad=1,
|
||||
title=title,
|
||||
)
|
||||
|
||||
add_legend_lines(
|
||||
ax, sizes, labels, patch_kw=dict(color="lightgrey"), legend_kw=legend_kw
|
||||
)
|
||||
|
||||
legend_kw = dict(
|
||||
bbox_to_anchor=(1.52, 1.04),
|
||||
frameon=False,
|
||||
)
|
||||
|
||||
fig.savefig(snakemake.output[f"map_{year}"], bbox_inches="tight")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if "snakemake" not in globals():
|
||||
from _helpers import mock_snakemake
|
||||
|
||||
snakemake = mock_snakemake(
|
||||
"plot_power_network_perfect",
|
||||
simpl="",
|
||||
opts="",
|
||||
clusters="37",
|
||||
ll="v1.0",
|
||||
sector_opts="4380H-T-H-B-I-A-dist1",
|
||||
)
|
||||
|
||||
configure_logging(snakemake)
|
||||
|
||||
n = pypsa.Network(snakemake.input.network)
|
||||
|
||||
regions = gpd.read_file(snakemake.input.regions).set_index("name")
|
||||
|
||||
map_opts = snakemake.params.plotting["map"]
|
||||
|
||||
if map_opts["boundaries"] is None:
|
||||
map_opts["boundaries"] = regions.total_bounds[[0, 2, 1, 3]] + [-1, 1, -1, 1]
|
||||
|
||||
proj = load_projection(snakemake.params.plotting)
|
||||
|
||||
plot_map_perfect(n)
|
@ -18,7 +18,7 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import pypsa
|
||||
import xarray as xr
|
||||
from _helpers import generate_periodic_profiles, update_config_with_sector_opts
|
||||
from _helpers import update_config_with_sector_opts
|
||||
from add_electricity import calculate_annuity, sanitize_carriers
|
||||
from build_energy_totals import build_co2_totals, build_eea_co2, build_eurostat_co2
|
||||
from networkx.algorithms import complement
|
||||
@ -1639,40 +1639,25 @@ def add_land_transport(n, costs):
|
||||
|
||||
|
||||
def build_heat_demand(n):
|
||||
# copy forward the daily average heat demand into each hour, so it can be multiplied by the intraday profile
|
||||
daily_space_heat_demand = (
|
||||
xr.open_dataarray(snakemake.input.heat_demand_total)
|
||||
.to_pandas()
|
||||
.reindex(index=n.snapshots, method="ffill")
|
||||
heat_demand_shape = (
|
||||
xr.open_dataset(snakemake.input.hourly_heat_demand_total)
|
||||
.to_dataframe()
|
||||
.unstack(level=1)
|
||||
)
|
||||
|
||||
intraday_profiles = pd.read_csv(snakemake.input.heat_profile, index_col=0)
|
||||
|
||||
sectors = ["residential", "services"]
|
||||
uses = ["water", "space"]
|
||||
|
||||
heat_demand = {}
|
||||
electric_heat_supply = {}
|
||||
for sector, use in product(sectors, uses):
|
||||
weekday = list(intraday_profiles[f"{sector} {use} weekday"])
|
||||
weekend = list(intraday_profiles[f"{sector} {use} weekend"])
|
||||
weekly_profile = weekday * 5 + weekend * 2
|
||||
intraday_year_profile = generate_periodic_profiles(
|
||||
daily_space_heat_demand.index.tz_localize("UTC"),
|
||||
nodes=daily_space_heat_demand.columns,
|
||||
weekly_profile=weekly_profile,
|
||||
)
|
||||
name = f"{sector} {use}"
|
||||
|
||||
if use == "space":
|
||||
heat_demand_shape = daily_space_heat_demand * intraday_year_profile
|
||||
else:
|
||||
heat_demand_shape = intraday_year_profile
|
||||
|
||||
heat_demand[f"{sector} {use}"] = (
|
||||
heat_demand_shape / heat_demand_shape.sum()
|
||||
heat_demand[name] = (
|
||||
heat_demand_shape[name] / heat_demand_shape[name].sum()
|
||||
).multiply(pop_weighted_energy_totals[f"total {sector} {use}"]) * 1e6
|
||||
electric_heat_supply[f"{sector} {use}"] = (
|
||||
heat_demand_shape / heat_demand_shape.sum()
|
||||
electric_heat_supply[name] = (
|
||||
heat_demand_shape[name] / heat_demand_shape[name].sum()
|
||||
).multiply(pop_weighted_energy_totals[f"electricity {sector} {use}"]) * 1e6
|
||||
|
||||
heat_demand = pd.concat(heat_demand, axis=1)
|
||||
@ -1695,7 +1680,9 @@ def add_heat(n, costs):
|
||||
|
||||
heat_demand = build_heat_demand(n)
|
||||
|
||||
nodes, dist_fraction, urban_fraction = create_nodes_for_heat_sector()
|
||||
district_heat_info = pd.read_csv(snakemake.input.district_heat_share, index_col=0)
|
||||
dist_fraction = district_heat_info["district fraction of node"]
|
||||
urban_fraction = district_heat_info["urban fraction"]
|
||||
|
||||
# NB: must add costs of central heating afterwards (EUR 400 / kWpeak, 50a, 1% FOM from Fraunhofer ISE)
|
||||
|
||||
@ -1735,12 +1722,17 @@ def add_heat(n, costs):
|
||||
for name in heat_systems:
|
||||
name_type = "central" if name == "urban central" else "decentral"
|
||||
|
||||
if name == "urban central":
|
||||
nodes = dist_fraction.index[dist_fraction > 0]
|
||||
else:
|
||||
nodes = pop_layout.index
|
||||
|
||||
n.add("Carrier", name + " heat")
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
nodes[name] + f" {name} heat",
|
||||
location=nodes[name],
|
||||
nodes + f" {name} heat",
|
||||
location=nodes,
|
||||
carrier=name + " heat",
|
||||
unit="MWh_th",
|
||||
)
|
||||
@ -1748,9 +1740,9 @@ def add_heat(n, costs):
|
||||
if name == "urban central" and options.get("central_heat_vent"):
|
||||
n.madd(
|
||||
"Generator",
|
||||
nodes[name] + f" {name} heat vent",
|
||||
bus=nodes[name] + f" {name} heat",
|
||||
location=nodes[name],
|
||||
nodes + f" {name} heat vent",
|
||||
bus=nodes + f" {name} heat",
|
||||
location=nodes,
|
||||
carrier=name + " heat vent",
|
||||
p_nom_extendable=True,
|
||||
p_max_pu=0,
|
||||
@ -1763,11 +1755,11 @@ def add_heat(n, costs):
|
||||
for sector in sectors:
|
||||
# heat demand weighting
|
||||
if "rural" in name:
|
||||
factor = 1 - urban_fraction[nodes[name]]
|
||||
factor = 1 - urban_fraction[nodes]
|
||||
elif "urban central" in name:
|
||||
factor = dist_fraction[nodes[name]]
|
||||
factor = dist_fraction[nodes]
|
||||
elif "urban decentral" in name:
|
||||
factor = urban_fraction[nodes[name]] - dist_fraction[nodes[name]]
|
||||
factor = urban_fraction[nodes] - dist_fraction[nodes]
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f" {name} not in " f"heat systems: {heat_systems}"
|
||||
@ -1778,7 +1770,7 @@ def add_heat(n, costs):
|
||||
heat_demand[[sector + " water", sector + " space"]]
|
||||
.T.groupby(level=1)
|
||||
.sum()
|
||||
.T[nodes[name]]
|
||||
.T[nodes]
|
||||
.multiply(factor)
|
||||
)
|
||||
|
||||
@ -1786,7 +1778,7 @@ def add_heat(n, costs):
|
||||
heat_load = (
|
||||
heat_demand.T.groupby(level=1)
|
||||
.sum()
|
||||
.T[nodes[name]]
|
||||
.T[nodes]
|
||||
.multiply(
|
||||
factor * (1 + options["district_heating"]["district_heating_loss"])
|
||||
)
|
||||
@ -1794,9 +1786,9 @@ def add_heat(n, costs):
|
||||
|
||||
n.madd(
|
||||
"Load",
|
||||
nodes[name],
|
||||
nodes,
|
||||
suffix=f" {name} heat",
|
||||
bus=nodes[name] + f" {name} heat",
|
||||
bus=nodes + f" {name} heat",
|
||||
carrier=name + " heat",
|
||||
p_set=heat_load,
|
||||
)
|
||||
@ -1808,17 +1800,17 @@ def add_heat(n, costs):
|
||||
for heat_pump_type in heat_pump_types:
|
||||
costs_name = f"{name_type} {heat_pump_type}-sourced heat pump"
|
||||
efficiency = (
|
||||
cop[heat_pump_type][nodes[name]]
|
||||
cop[heat_pump_type][nodes]
|
||||
if options["time_dep_hp_cop"]
|
||||
else costs.at[costs_name, "efficiency"]
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name],
|
||||
nodes,
|
||||
suffix=f" {name} {heat_pump_type} heat pump",
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + f" {name} heat",
|
||||
bus0=nodes,
|
||||
bus1=nodes + f" {name} heat",
|
||||
carrier=f"{name} {heat_pump_type} heat pump",
|
||||
efficiency=efficiency,
|
||||
capital_cost=costs.at[costs_name, "efficiency"]
|
||||
@ -1832,17 +1824,17 @@ def add_heat(n, costs):
|
||||
|
||||
n.madd(
|
||||
"Bus",
|
||||
nodes[name] + f" {name} water tanks",
|
||||
location=nodes[name],
|
||||
nodes + f" {name} water tanks",
|
||||
location=nodes,
|
||||
carrier=name + " water tanks",
|
||||
unit="MWh_th",
|
||||
)
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name] + f" {name} water tanks charger",
|
||||
bus0=nodes[name] + f" {name} heat",
|
||||
bus1=nodes[name] + f" {name} water tanks",
|
||||
nodes + f" {name} water tanks charger",
|
||||
bus0=nodes + f" {name} heat",
|
||||
bus1=nodes + f" {name} water tanks",
|
||||
efficiency=costs.at["water tank charger", "efficiency"],
|
||||
carrier=name + " water tanks charger",
|
||||
p_nom_extendable=True,
|
||||
@ -1850,9 +1842,9 @@ def add_heat(n, costs):
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name] + f" {name} water tanks discharger",
|
||||
bus0=nodes[name] + f" {name} water tanks",
|
||||
bus1=nodes[name] + f" {name} heat",
|
||||
nodes + f" {name} water tanks discharger",
|
||||
bus0=nodes + f" {name} water tanks",
|
||||
bus1=nodes + f" {name} heat",
|
||||
carrier=name + " water tanks discharger",
|
||||
efficiency=costs.at["water tank discharger", "efficiency"],
|
||||
p_nom_extendable=True,
|
||||
@ -1871,8 +1863,8 @@ def add_heat(n, costs):
|
||||
|
||||
n.madd(
|
||||
"Store",
|
||||
nodes[name] + f" {name} water tanks",
|
||||
bus=nodes[name] + f" {name} water tanks",
|
||||
nodes + f" {name} water tanks",
|
||||
bus=nodes + f" {name} water tanks",
|
||||
e_cyclic=True,
|
||||
e_nom_extendable=True,
|
||||
carrier=name + " water tanks",
|
||||
@ -1886,9 +1878,9 @@ def add_heat(n, costs):
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name] + f" {name} resistive heater",
|
||||
bus0=nodes[name],
|
||||
bus1=nodes[name] + f" {name} heat",
|
||||
nodes + f" {name} resistive heater",
|
||||
bus0=nodes,
|
||||
bus1=nodes + f" {name} heat",
|
||||
carrier=name + " resistive heater",
|
||||
efficiency=costs.at[key, "efficiency"],
|
||||
capital_cost=costs.at[key, "efficiency"] * costs.at[key, "fixed"],
|
||||
@ -1901,10 +1893,10 @@ def add_heat(n, costs):
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name] + f" {name} gas boiler",
|
||||
nodes + f" {name} gas boiler",
|
||||
p_nom_extendable=True,
|
||||
bus0=spatial.gas.df.loc[nodes[name], "nodes"].values,
|
||||
bus1=nodes[name] + f" {name} heat",
|
||||
bus0=spatial.gas.df.loc[nodes, "nodes"].values,
|
||||
bus1=nodes + f" {name} heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=name + " gas boiler",
|
||||
efficiency=costs.at[key, "efficiency"],
|
||||
@ -1918,13 +1910,13 @@ def add_heat(n, costs):
|
||||
|
||||
n.madd(
|
||||
"Generator",
|
||||
nodes[name],
|
||||
nodes,
|
||||
suffix=f" {name} solar thermal collector",
|
||||
bus=nodes[name] + f" {name} heat",
|
||||
bus=nodes + f" {name} heat",
|
||||
carrier=name + " solar thermal",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at[name_type + " solar thermal", "fixed"],
|
||||
p_max_pu=solar_thermal[nodes[name]],
|
||||
p_max_pu=solar_thermal[nodes],
|
||||
lifetime=costs.at[name_type + " solar thermal", "lifetime"],
|
||||
)
|
||||
|
||||
@ -1932,10 +1924,10 @@ def add_heat(n, costs):
|
||||
# add gas CHP; biomass CHP is added in biomass section
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name] + " urban central gas CHP",
|
||||
bus0=spatial.gas.df.loc[nodes[name], "nodes"].values,
|
||||
bus1=nodes[name],
|
||||
bus2=nodes[name] + " urban central heat",
|
||||
nodes + " urban central gas CHP",
|
||||
bus0=spatial.gas.df.loc[nodes, "nodes"].values,
|
||||
bus1=nodes,
|
||||
bus2=nodes + " urban central heat",
|
||||
bus3="co2 atmosphere",
|
||||
carrier="urban central gas CHP",
|
||||
p_nom_extendable=True,
|
||||
@ -1951,12 +1943,12 @@ def add_heat(n, costs):
|
||||
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name] + " urban central gas CHP CC",
|
||||
bus0=spatial.gas.df.loc[nodes[name], "nodes"].values,
|
||||
bus1=nodes[name],
|
||||
bus2=nodes[name] + " urban central heat",
|
||||
nodes + " urban central gas CHP CC",
|
||||
bus0=spatial.gas.df.loc[nodes, "nodes"].values,
|
||||
bus1=nodes,
|
||||
bus2=nodes + " urban central heat",
|
||||
bus3="co2 atmosphere",
|
||||
bus4=spatial.co2.df.loc[nodes[name], "nodes"].values,
|
||||
bus4=spatial.co2.df.loc[nodes, "nodes"].values,
|
||||
carrier="urban central gas CHP CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["central gas CHP", "fixed"]
|
||||
@ -1988,11 +1980,11 @@ def add_heat(n, costs):
|
||||
if options["chp"] and options["micro_chp"] and name != "urban central":
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes[name] + f" {name} micro gas CHP",
|
||||
nodes + f" {name} micro gas CHP",
|
||||
p_nom_extendable=True,
|
||||
bus0=spatial.gas.df.loc[nodes[name], "nodes"].values,
|
||||
bus1=nodes[name],
|
||||
bus2=nodes[name] + f" {name} heat",
|
||||
bus0=spatial.gas.df.loc[nodes, "nodes"].values,
|
||||
bus1=nodes,
|
||||
bus2=nodes + f" {name} heat",
|
||||
bus3="co2 atmosphere",
|
||||
carrier=name + " micro gas CHP",
|
||||
efficiency=costs.at["micro CHP", "efficiency"],
|
||||
@ -2123,50 +2115,6 @@ def add_heat(n, costs):
|
||||
)
|
||||
|
||||
|
||||
def create_nodes_for_heat_sector():
|
||||
# TODO pop_layout
|
||||
|
||||
# rural are areas with low heating density and individual heating
|
||||
# urban are areas with high heating density
|
||||
# urban can be split into district heating (central) and individual heating (decentral)
|
||||
|
||||
ct_urban = pop_layout.urban.groupby(pop_layout.ct).sum()
|
||||
# distribution of urban population within a country
|
||||
pop_layout["urban_ct_fraction"] = pop_layout.urban / pop_layout.ct.map(ct_urban.get)
|
||||
|
||||
sectors = ["residential", "services"]
|
||||
|
||||
nodes = {}
|
||||
urban_fraction = pop_layout.urban / pop_layout[["rural", "urban"]].sum(axis=1)
|
||||
|
||||
for sector in sectors:
|
||||
nodes[sector + " rural"] = pop_layout.index
|
||||
nodes[sector + " urban decentral"] = pop_layout.index
|
||||
|
||||
district_heat_share = pop_weighted_energy_totals["district heat share"]
|
||||
|
||||
# maximum potential of urban demand covered by district heating
|
||||
central_fraction = options["district_heating"]["potential"]
|
||||
# district heating share at each node
|
||||
dist_fraction_node = (
|
||||
district_heat_share * pop_layout["urban_ct_fraction"] / pop_layout["fraction"]
|
||||
)
|
||||
nodes["urban central"] = dist_fraction_node.index
|
||||
# if district heating share larger than urban fraction -> set urban
|
||||
# fraction to district heating share
|
||||
urban_fraction = pd.concat([urban_fraction, dist_fraction_node], axis=1).max(axis=1)
|
||||
# difference of max potential and today's share of district heating
|
||||
diff = (urban_fraction * central_fraction) - dist_fraction_node
|
||||
progress = get(options["district_heating"]["progress"], investment_year)
|
||||
dist_fraction_node += diff * progress
|
||||
logger.info(
|
||||
f"Increase district heating share by a progress factor of {progress:.2%} "
|
||||
f"resulting in new average share of {dist_fraction_node.mean():.2%}"
|
||||
)
|
||||
|
||||
return nodes, dist_fraction_node, urban_fraction
|
||||
|
||||
|
||||
def add_biomass(n, costs):
|
||||
logger.info("Add biomass")
|
||||
|
||||
@ -2384,7 +2332,7 @@ def add_biomass(n, costs):
|
||||
|
||||
if options["biomass_boiler"]:
|
||||
# TODO: Add surcharge for pellets
|
||||
nodes_heat = create_nodes_for_heat_sector()[0]
|
||||
nodes = pop_layout.index
|
||||
for name in [
|
||||
"residential rural",
|
||||
"services rural",
|
||||
@ -2393,10 +2341,10 @@ def add_biomass(n, costs):
|
||||
]:
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes_heat[name] + f" {name} biomass boiler",
|
||||
nodes + f" {name} biomass boiler",
|
||||
p_nom_extendable=True,
|
||||
bus0=spatial.biomass.df.loc[nodes_heat[name], "nodes"].values,
|
||||
bus1=nodes_heat[name] + f" {name} heat",
|
||||
bus0=spatial.biomass.df.loc[nodes, "nodes"].values,
|
||||
bus1=nodes + f" {name} heat",
|
||||
carrier=name + " biomass boiler",
|
||||
efficiency=costs.at["biomass boiler", "efficiency"],
|
||||
capital_cost=costs.at["biomass boiler", "efficiency"]
|
||||
@ -2839,7 +2787,7 @@ def add_industry(n, costs):
|
||||
)
|
||||
|
||||
if options["oil_boilers"]:
|
||||
nodes_heat = create_nodes_for_heat_sector()[0]
|
||||
nodes = pop_layout.index
|
||||
|
||||
for name in [
|
||||
"residential rural",
|
||||
@ -2849,10 +2797,10 @@ def add_industry(n, costs):
|
||||
]:
|
||||
n.madd(
|
||||
"Link",
|
||||
nodes_heat[name] + f" {name} oil boiler",
|
||||
nodes + f" {name} oil boiler",
|
||||
p_nom_extendable=True,
|
||||
bus0=spatial.oil.nodes,
|
||||
bus1=nodes_heat[name] + f" {name} heat",
|
||||
bus1=nodes + f" {name} heat",
|
||||
bus2="co2 atmosphere",
|
||||
carrier=f"{name} oil boiler",
|
||||
efficiency=costs.at["decentral oil boiler", "efficiency"],
|
||||
|
Loading…
Reference in New Issue
Block a user