Merge pull request #282 from PyPSA/ci-review

Transition to `linopy` implementation
This commit is contained in:
Fabian Hofmann 2023-02-22 09:18:29 +01:00 committed by GitHub
commit 8215510f09
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 148 additions and 154 deletions

View File

@ -400,22 +400,50 @@ solving:
solver:
name: gurobi
threads: 4
method: 2 # barrier
crossover: 0
BarConvTol: 1.e-6
Seed: 123
AggFill: 0
PreDual: 0
GURO_PAR_BARDENSETHRESH: 200
#FeasibilityTol: 1.e-6
options: gurobi-default
solver_options:
gurobi-default:
threads: 4
method: 2 # barrier
crossover: 0
BarConvTol: 1.e-6
Seed: 123
AggFill: 0
PreDual: 0
GURO_PAR_BARDENSETHRESH: 200
seed: 10 # Consistent seed for all plattforms
gurobi-numeric-focus:
name: gurobi
NumericFocus: 3 # Favour numeric stability over speed
method: 2 # barrier
crossover: 0 # do not use crossover
BarHomogeneous: 1 # Use homogeneous barrier if standard does not converge
BarConvTol: 1.e-5
FeasibilityTol: 1.e-4
OptimalityTol: 1.e-4
ObjScale: -0.5
threads: 8
Seed: 123
gurobi-fallback: # Use gurobi defaults
name: gurobi
crossover: 0
method: 2 # barrier
BarHomogeneous: 1 # Use homogeneous barrier if standard does not converge
BarConvTol: 1.e-5
FeasibilityTol: 1.e-5
OptimalityTol: 1.e-5
Seed: 123
threads: 8
cplex-default:
threads: 4
lpmethod: 4 # barrier
solutiontype: 2 # non basic solution, ie no crossover
barrier_convergetol: 1.e-5
feasopt_tolerance: 1.e-6
cbc-default: {} # Used in CI
#name: cplex
#threads: 4
#lpmethod: 4 # barrier
#solutiontype: 2 # non basic solution, ie no crossover
#barrier_convergetol: 1.e-5
#feasopt_tolerance: 1.e-6
mem: 30000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2

View File

@ -1,16 +1,9 @@
"""Solve network."""
import pypsa
import numpy as np
import pandas as pd
from pypsa.linopt import get_var, linexpr, define_constraints
from pypsa.linopf import network_lopf, ilopf
from vresutils.benchmark import memory_logger
from helper import override_component_attrs, update_config_with_sector_opts
import logging
@ -64,22 +57,36 @@ def _add_land_use_constraint_m(n):
n.generators.p_nom_max.clip(lower=0, inplace=True)
def prepare_network(n, solve_opts=None):
def add_co2_sequestration_limit(n, limit=200):
"""Add a global constraint on the amount of Mt CO2 that can be sequestered."""
n.carriers.loc["co2 stored", "co2_absorptions"] = -1
n.carriers.co2_absorptions = n.carriers.co2_absorptions.fillna(0)
limit = limit * 1e6
for o in opts:
if not "seq" in o: continue
limit = float(o[o.find("seq")+3:]) * 1e6
break
n.add("GlobalConstraint", 'co2_sequestration_limit', sense="<=", constant=limit,
type="primary_energy", carrier_attribute="co2_absorptions")
def prepare_network(n, solve_opts=None, config=None):
if 'clip_p_max_pu' in solve_opts:
for df in (n.generators_t.p_max_pu, n.generators_t.p_min_pu, n.storage_units_t.inflow):
df.where(df>solve_opts['clip_p_max_pu'], other=0., inplace=True)
if solve_opts.get('load_shedding'):
# intersect between macroeconomic and surveybased willingness to pay
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
n.add("Carrier", "Load")
n.madd("Generator", n.buses.index, " load",
bus=n.buses.index,
carrier='load',
sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW
marginal_cost=1e2, # Eur/kWh
# intersect between macroeconomic and surveybased
# willingness to pay
# http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full
p_nom=1e9 # kW
)
@ -103,177 +110,138 @@ def prepare_network(n, solve_opts=None):
if snakemake.config['foresight'] == 'myopic':
add_land_use_constraint(n)
if n.stores.carrier.eq('co2 stored').any():
limit = config["sector"].get("co2_sequestration_potential", 200)
add_co2_sequestration_limit(n, limit=limit)
return n
def add_battery_constraints(n):
"""
Add constraint ensuring that charger = discharger:
1 * charger_size - efficiency * discharger_size = 0
"""
discharger_bool = n.links.index.str.contains("battery discharger")
charger_bool = n.links.index.str.contains("battery charger")
chargers_b = n.links.carrier.str.contains("battery charger")
chargers = n.links.index[chargers_b & n.links.p_nom_extendable]
dischargers = chargers.str.replace("charger", "discharger")
dischargers_ext= n.links[discharger_bool].query("p_nom_extendable").index
chargers_ext= n.links[charger_bool].query("p_nom_extendable").index
if chargers.empty or ('Link', 'p_nom') not in n.variables.index:
return
eff = n.links.efficiency[dischargers_ext].values
lhs = n.model["Link-p_nom"].loc[chargers_ext] - n.model["Link-p_nom"].loc[dischargers_ext] * eff
link_p_nom = get_var(n, "Link", "p_nom")
lhs = linexpr((1,link_p_nom[chargers]),
(-n.links.loc[dischargers, "efficiency"].values,
link_p_nom[dischargers].values))
define_constraints(n, lhs, "=", 0, 'Link', 'charger_ratio')
n.model.add_constraints(lhs == 0, name="Link-charger_ratio")
def add_chp_constraints(n):
electric_bool = (n.links.index.str.contains("urban central")
& n.links.index.str.contains("CHP")
& n.links.index.str.contains("electric"))
heat_bool = (n.links.index.str.contains("urban central")
& n.links.index.str.contains("CHP")
& n.links.index.str.contains("heat"))
electric = (n.links.index.str.contains("urban central")
& n.links.index.str.contains("CHP")
& n.links.index.str.contains("electric"))
heat = (n.links.index.str.contains("urban central")
& n.links.index.str.contains("CHP")
& n.links.index.str.contains("heat"))
electric = n.links.index[electric_bool]
heat = n.links.index[heat_bool]
electric_ext = n.links[electric].query("p_nom_extendable").index
heat_ext = n.links[heat].query("p_nom_extendable").index
electric_ext = n.links.index[electric_bool & n.links.p_nom_extendable]
heat_ext = n.links.index[heat_bool & n.links.p_nom_extendable]
electric_fix = n.links[electric].query("~p_nom_extendable").index
heat_fix = n.links[heat].query("~p_nom_extendable").index
electric_fix = n.links.index[electric_bool & ~n.links.p_nom_extendable]
heat_fix = n.links.index[heat_bool & ~n.links.p_nom_extendable]
link_p = get_var(n, "Link", "p")
p = n.model["Link-p"] # dimension: [time, link]
# output ratio between heat and electricity and top_iso_fuel_line for extendable
if not electric_ext.empty:
p_nom = n.model["Link-p_nom"]
link_p_nom = get_var(n, "Link", "p_nom")
lhs = (p_nom.loc[electric_ext] * (n.links.p_nom_ratio * n.links.efficiency)[electric_ext].values -
p_nom.loc[heat_ext] * n.links.efficiency[heat_ext].values)
n.model.add_constraints(lhs == 0, name='chplink-fix_p_nom_ratio')
#ratio of output heat to electricity set by p_nom_ratio
lhs = linexpr((n.links.loc[electric_ext, "efficiency"]
*n.links.loc[electric_ext, "p_nom_ratio"],
link_p_nom[electric_ext]),
(-n.links.loc[heat_ext, "efficiency"].values,
link_p_nom[heat_ext].values))
rename = {"Link-ext": "Link"}
lhs = p.loc[:, electric_ext] + p.loc[:, heat_ext] - p_nom.rename(rename).loc[electric_ext]
n.model.add_constraints(lhs <= 0, name='chplink-top_iso_fuel_line_ext')
define_constraints(n, lhs, "=", 0, 'chplink', 'fix_p_nom_ratio')
#top_iso_fuel_line for extendable
lhs = linexpr((1,link_p[heat_ext]),
(1,link_p[electric_ext].values),
(-1,link_p_nom[electric_ext].values))
define_constraints(n, lhs, "<=", 0, 'chplink', 'top_iso_fuel_line_ext')
# top_iso_fuel_line for fixed
if not electric_fix.empty:
lhs = p.loc[:, electric_fix] + p.loc[:, heat_fix]
rhs = n.links.p_nom[electric_fix]
n.model.add_constraints(lhs <= rhs, name='chplink-top_iso_fuel_line_fix')
#top_iso_fuel_line for fixed
lhs = linexpr((1,link_p[heat_fix]),
(1,link_p[electric_fix].values))
rhs = n.links.loc[electric_fix, "p_nom"].values
define_constraints(n, lhs, "<=", rhs, 'chplink', 'top_iso_fuel_line_fix')
# back-pressure
if not electric.empty:
lhs = (p.loc[:, heat] * (n.links.efficiency[heat] * n.links.c_b[electric].values) -
p.loc[:, electric] * n.links.efficiency[electric])
n.model.add_constraints(lhs <= rhs, name='chplink-backpressure')
#backpressure
lhs = linexpr((n.links.loc[electric, "c_b"].values
*n.links.loc[heat, "efficiency"],
link_p[heat]),
(-n.links.loc[electric, "efficiency"].values,
link_p[electric].values))
define_constraints(n, lhs, "<=", 0, 'chplink', 'backpressure')
def basename(x):
return x.split("-2")[0]
def add_pipe_retrofit_constraint(n):
"""Add constraint for retrofitting existing CH4 pipelines to H2 pipelines."""
gas_pipes_i = n.links.query("carrier == 'gas pipeline' and p_nom_extendable").index
h2_retrofitted_i = n.links.query("carrier == 'H2 pipeline retrofitted' and p_nom_extendable").index
if h2_retrofitted_i.empty or gas_pipes_i.empty: return
link_p_nom = get_var(n, "Link", "p_nom")
CH4_per_H2 = 1 / n.config["sector"]["H2_retrofit_capacity_per_CH4"]
fr = "H2 pipeline retrofitted"
to = "gas pipeline"
pipe_capacity = n.links.loc[gas_pipes_i, 'p_nom'].rename(basename)
lhs = linexpr(
(CH4_per_H2, link_p_nom.loc[h2_retrofitted_i].rename(index=lambda x: x.replace(fr, to))),
(1, link_p_nom.loc[gas_pipes_i])
)
lhs.rename(basename, inplace=True)
define_constraints(n, lhs, "=", pipe_capacity, 'Link', 'pipe_retrofit')
def add_co2_sequestration_limit(n, sns):
co2_stores = n.stores.loc[n.stores.carrier=='co2 stored'].index
if co2_stores.empty or ('Store', 'e') not in n.variables.index:
if h2_retrofitted_i.empty or gas_pipes_i.empty:
return
vars_final_co2_stored = get_var(n, 'Store', 'e').loc[sns[-1], co2_stores]
p_nom = n.model["Link-p_nom"]
lhs = linexpr((1, vars_final_co2_stored)).sum()
CH4_per_H2 = 1 / n.config["sector"]["H2_retrofit_capacity_per_CH4"]
lhs = p_nom.loc[gas_pipes_i] + CH4_per_H2 * p_nom.loc[h2_retrofitted_i]
rhs = n.links.p_nom[gas_pipes_i].rename_axis("Link-ext")
limit = n.config["sector"].get("co2_sequestration_potential", 200) * 1e6
for o in opts:
if not "seq" in o: continue
limit = float(o[o.find("seq")+3:]) * 1e6
break
name = 'co2_sequestration_limit'
sense = "<="
n.add("GlobalConstraint", name, sense=sense, constant=limit,
type=np.nan, carrier_attribute=np.nan)
define_constraints(n, lhs, sense, limit, 'GlobalConstraint',
'mu', axes=pd.Index([name]), spec=name)
n.model.add_constraints(lhs == rhs, name='Link-pipe_retrofit')
def extra_functionality(n, snapshots):
add_battery_constraints(n)
add_pipe_retrofit_constraint(n)
add_co2_sequestration_limit(n, snapshots)
def solve_network(n, config, opts='', **kwargs):
solver_options = config['solving']['solver'].copy()
solver_name = solver_options.pop('name')
cf_solving = config['solving']['options']
track_iterations = cf_solving.get('track_iterations', False)
min_iterations = cf_solving.get('min_iterations', 4)
max_iterations = cf_solving.get('max_iterations', 6)
keep_shadowprices = cf_solving.get('keep_shadowprices', True)
def solve_network(n, config, opts="", **kwargs):
set_of_options = config['solving']['solver']['options']
solver_options = config['solving']["solver_options"][set_of_options] if set_of_options else {}
solver_name = config['solving']['solver']['name']
cf_solving = config["solving"]["options"]
track_iterations = cf_solving.get("track_iterations", False)
min_iterations = cf_solving.get("min_iterations", 4)
max_iterations = cf_solving.get("max_iterations", 6)
# add to network for extra_functionality
n.config = config
n.opts = opts
if cf_solving.get('skip_iterations', False):
network_lopf(n, solver_name=solver_name, solver_options=solver_options,
extra_functionality=extra_functionality,
keep_shadowprices=keep_shadowprices, **kwargs)
skip_iterations = cf_solving.get("skip_iterations", False)
if not n.lines.s_nom_extendable.any():
skip_iterations = True
logger.info("No expandable lines found. Skipping iterative solving.")
if skip_iterations:
status, condition = n.optimize(
solver_name=solver_name,
extra_functionality=extra_functionality,
**solver_options,
**kwargs,
)
else:
ilopf(n, solver_name=solver_name, solver_options=solver_options,
track_iterations=track_iterations,
min_iterations=min_iterations,
max_iterations=max_iterations,
extra_functionality=extra_functionality,
keep_shadowprices=keep_shadowprices,
**kwargs)
status, condition = n.optimize.optimize_transmission_expansion_iteratively(
solver_name=solver_name,
track_iterations=track_iterations,
min_iterations=min_iterations,
max_iterations=max_iterations,
extra_functionality=extra_functionality,
**solver_options,
**kwargs,
)
if status != "ok":
logger.warning(f"Solving status '{status}' with termination condition '{condition}'")
return n
if __name__ == "__main__":
if 'snakemake' not in globals():
from helper import mock_snakemake
@ -281,10 +249,10 @@ if __name__ == "__main__":
'solve_network',
simpl='',
opts="",
clusters="37",
clusters="5",
lv=1.0,
sector_opts='168H-T-H-B-I-A-solar+p3-dist1',
planning_horizons="2030",
sector_opts='Co2L0-3H-T-H-B-I-A-solar+p3-dist1',
planning_horizons="2050",
)
logging.basicConfig(filename=snakemake.log.python,
@ -305,11 +273,9 @@ if __name__ == "__main__":
overrides = override_component_attrs(snakemake.input.overrides)
n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides)
n = prepare_network(n, solve_opts)
n = prepare_network(n, solve_opts, config=snakemake.config)
n = solve_network(n, config=snakemake.config, opts=opts,
solver_dir=tmpdir,
solver_logfile=snakemake.log.solver)
n = solve_network(n, config=snakemake.config, opts=opts, log_fn=snakemake.log.solver)
if "lv_limit" in n.global_constraints.index:
n.line_volume_limit = n.global_constraints.at["lv_limit", "constant"]