Update supply_demand.rst
This commit is contained in:
parent
5eb20ebdd5
commit
77e2e53aa5
@ -420,7 +420,7 @@ The chemicals industry includes a wide range of diverse industries, including th
|
|||||||
|
|
||||||
The chemicals industry includes a wide range of diverse industries, including the production of basic organic compounds (olefins, alcohols, aromatics), basic inorganic compounds (ammonia, chlorine), polymers (plastics), and end-user products (cosmetics, pharmaceutics).
|
The chemicals industry includes a wide range of diverse industries, including the production of basic organic compounds (olefins, alcohols, aromatics), basic inorganic compounds (ammonia, chlorine), polymers (plastics), and end-user products (cosmetics, pharmaceutics).
|
||||||
|
|
||||||
The chemicals industry consumes large amounts of fossil-fuel based feedstocks (see `Levi et. al <https://pubs.acs.org/doi/10.1021/acs.est.7b04573>`_), which can also be produced from renewables as outlined for hydrogen (LINK TO HYDROGEN SUPPLY), for methane (LINK TO METHANE SUPPLY), and for oil-based products (LINK TO OIL-BASED PRODUCTS SUPPLY). The ratio between synthetic and fossil-based fuels used in the industry is an endogenous result of the opti- misation.
|
The chemicals industry consumes large amounts of fossil-fuel based feedstocks (see `Levi et. al <https://pubs.acs.org/doi/10.1021/acs.est.7b04573>`_), which can also be produced from renewables as outlined for hydrogen (see :ref:`Hydrogen supply`), for methane (see :ref:`Methane supply`), and for oil-based products (see :ref:`Oil-based products supply`). The ratio between synthetic and fossil-based fuels used in the industry is an endogenous result of the opti- misation.
|
||||||
|
|
||||||
The basic chemicals consumption data from the `JRC IDEES <https://op.europa.eu/en/publication-detail/-/publication/989282db-ad65-11e7-837e-01aa75ed71a1/language-en>`_ database comprises high- value chemicals (ethylene, propylene and BTX), chlorine, methanol and ammonia. However, it is necessary to separate out these chemicals because their current and future production routes are different.
|
The basic chemicals consumption data from the `JRC IDEES <https://op.europa.eu/en/publication-detail/-/publication/989282db-ad65-11e7-837e-01aa75ed71a1/language-en>`_ database comprises high- value chemicals (ethylene, propylene and BTX), chlorine, methanol and ammonia. However, it is necessary to separate out these chemicals because their current and future production routes are different.
|
||||||
|
|
||||||
@ -431,7 +431,7 @@ N_2 + 3H_2 → 2NH_3
|
|||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
The Haber-Bosch process is not explicitly represented in the model, such that demand for ammonia enters the model as a demand for hydrogen ( $6.5 MWh_{H_2}$ / t $_{NH_3}$ ) and electricity ( $1.17 MWh_{el}$ /t $_{NH_3}$ ) (see `Wang et. al <https://doi.org/10.1016/j.joule.2018.04.017>`_). Today, natural gas dominates in Europe as the source for the hydrogen used in the Haber-Bosch process, but the model can choose among the various hydrogen supply options described in the hydrogen section (LINK TO HYDROGEN SUPPLY)
|
The Haber-Bosch process is not explicitly represented in the model, such that demand for ammonia enters the model as a demand for hydrogen ( $6.5 MWh_{H_2}$ / t $_{NH_3}$ ) and electricity ( $1.17 MWh_{el}$ /t $_{NH_3}$ ) (see `Wang et. al <https://doi.org/10.1016/j.joule.2018.04.017>`_). Today, natural gas dominates in Europe as the source for the hydrogen used in the Haber-Bosch process, but the model can choose among the various hydrogen supply options described in the hydrogen section (see :ref:`Hydrogen supply`)
|
||||||
|
|
||||||
Transportation
|
Transportation
|
||||||
=========================
|
=========================
|
||||||
@ -455,19 +455,19 @@ The battery cost of BEV is not included in the model since it is assumed that BE
|
|||||||
|
|
||||||
*Hydrogen fuel cell vehicles (FCEV)*
|
*Hydrogen fuel cell vehicles (FCEV)*
|
||||||
|
|
||||||
The share of all land transport that is specified to be be FCEV will be converted to a demand for hydrogen [link to hydrogen] using the `FCEV efficiency
|
The share of all land transport that is specified to be be FCEV will be converted to a demand for hydrogen (see :ref:`Hydrogen supply`) using the `FCEV efficiency
|
||||||
<https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L191>`_.
|
<https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L191>`_.
|
||||||
|
|
||||||
FCEVs are typically used to simulate demand for transport that is hard to electrify directly, e.g. heavy construction machinery. But it may also be used to investigate a more widespread adoption of the technology.
|
FCEVs are typically used to simulate demand for transport that is hard to electrify directly, e.g. heavy construction machinery. But it may also be used to investigate a more widespread adoption of the technology.
|
||||||
|
|
||||||
*Internal combustion engine vehicles (ICE)*
|
*Internal combustion engine vehicles (ICE)*
|
||||||
|
|
||||||
All land transport that is not specified to be either BEV or FCEV will be treated as conventional ICEs. The transport demand is converted to a demand for oil products [link to oil products] using the `ICE efficiency
|
All land transport that is not specified to be either BEV or FCEV will be treated as conventional ICEs. The transport demand is converted to a demand for oil products (see :ref:`Oil-based products supply`) using the `ICE efficiency
|
||||||
<https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L192>`_.
|
<https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L192>`_.
|
||||||
|
|
||||||
*Aviation*
|
*Aviation*
|
||||||
|
|
||||||
The ‘demand for aviation <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2193>`_ includes international and domestic use. It is modeled as an oil demand since aviation consumes kerosene. This can be produced synthetically or have fossil-origin [link to oil product].
|
The ‘demand for aviation <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2193>`_ includes international and domestic use. It is modeled as an oil demand since aviation consumes kerosene. This can be produced synthetically or have fossil-origin (see :ref:`Oil-based products supply`).
|
||||||
|
|
||||||
|
|
||||||
*Shipping*
|
*Shipping*
|
||||||
@ -476,7 +476,7 @@ Shipping energy demand is covered by a combination of oil and hydrogen. Other fu
|
|||||||
|
|
||||||
To estimate the `hydrogen demand <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2090>`_, the average fuel efficiency of the fleet is used in combination with the efficiency of the fuel cell defined in the technology-data repository. The average fuel efficiency is set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L196>`_.
|
To estimate the `hydrogen demand <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2090>`_, the average fuel efficiency of the fleet is used in combination with the efficiency of the fuel cell defined in the technology-data repository. The average fuel efficiency is set in the `config file <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L196>`_.
|
||||||
|
|
||||||
The consumed hydrogen comes from the general hydrogen bus where it can be produced by SMR, SMR+CC or electrolysers [link to hydrogen]. The fraction that is not converted into hydrogen use oil products, i.e. is connected to the general oil bus.
|
The consumed hydrogen comes from the general hydrogen bus where it can be produced by SMR, SMR+CC or electrolysers (see :ref:`Hydrogen supply`). The fraction that is not converted into hydrogen use oil products, i.e. is connected to the general oil bus.
|
||||||
|
|
||||||
The energy demand for liquefaction of the hydrogen used for shipping can be `included <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L197>`_. If this option is selected, liquifaction will happen at the `node where the shipping demand occurs <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2064>`_.
|
The energy demand for liquefaction of the hydrogen used for shipping can be `included <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L197>`_. If this option is selected, liquifaction will happen at the `node where the shipping demand occurs <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2064>`_.
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user