Merge remote-tracking branch 'upstream/master' into add_methanol_techs

This commit is contained in:
Philipp Glaum 2024-08-12 09:52:25 +02:00
commit 77385721b6
29 changed files with 1802 additions and 478 deletions

0
borg-it Executable file → Normal file
View File

View File

@ -67,7 +67,6 @@ snapshots:
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable
enable: enable:
retrieve: auto retrieve: auto
prepare_links_p_nom: false
retrieve_databundle: true retrieve_databundle: true
retrieve_cost_data: true retrieve_cost_data: true
build_cutout: false build_cutout: false
@ -355,7 +354,6 @@ biomass:
- Secondary Forestry residues - woodchips - Secondary Forestry residues - woodchips
- Sawdust - Sawdust
- Residues from landscape care - Residues from landscape care
- Municipal waste
not included: not included:
- Sugar from sugar beet - Sugar from sugar beet
- Rape seed - Rape seed
@ -369,6 +367,25 @@ biomass:
biogas: biogas:
- Manure solid, liquid - Manure solid, liquid
- Sludge - Sludge
municipal solid waste:
- Municipal waste
share_unsustainable_use_retained:
2020: 1
2025: 0.66
2030: 0.33
2035: 0
2040: 0
2045: 0
2050: 0
share_sustainable_potential_available:
2020: 0
2025: 0.33
2030: 0.66
2035: 1
2040: 1
2045: 1
2050: 1
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solar-thermal # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solar-thermal
solar_thermal: solar_thermal:
@ -409,6 +426,22 @@ sector:
2045: 0.8 2045: 0.8
2050: 1.0 2050: 1.0
district_heating_loss: 0.15 district_heating_loss: 0.15
forward_temperature: 90 #C
return_temperature: 50 #C
heat_source_cooling: 6 #K
heat_pump_cop_approximation:
refrigerant: ammonia
heat_exchanger_pinch_point_temperature_difference: 5 #K
isentropic_compressor_efficiency: 0.8
heat_loss: 0.0
heat_pump_sources:
urban central:
- air
urban decentral:
- air
rural:
- air
- ground
cluster_heat_buses: true cluster_heat_buses: true
heat_demand_cutout: default heat_demand_cutout: default
bev_dsm_restriction_value: 0.75 bev_dsm_restriction_value: 0.75
@ -491,7 +524,7 @@ sector:
aviation_demand_factor: 1. aviation_demand_factor: 1.
HVC_demand_factor: 1. HVC_demand_factor: 1.
time_dep_hp_cop: true time_dep_hp_cop: true
heat_pump_sink_T: 55. heat_pump_sink_T_individual_heating: 55.
reduce_space_heat_exogenously: true reduce_space_heat_exogenously: true
reduce_space_heat_exogenously_factor: reduce_space_heat_exogenously_factor:
2020: 0.10 # this results in a space heat demand reduction of 10% 2020: 0.10 # this results in a space heat demand reduction of 10%
@ -613,6 +646,7 @@ sector:
biomass_to_liquid: false biomass_to_liquid: false
electrobiofuels: false electrobiofuels: false
biosng: false biosng: false
municipal_solid_waste: false
limit_max_growth: limit_max_growth:
enable: false enable: false
# allowing 30% larger than max historic growth # allowing 30% larger than max historic growth
@ -640,6 +674,7 @@ sector:
max_amount: 1390 # TWh max_amount: 1390 # TWh
upstream_emissions_factor: .1 #share of solid biomass CO2 emissions at full combustion upstream_emissions_factor: .1 #share of solid biomass CO2 emissions at full combustion
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry
industry: industry:
St_primary_fraction: St_primary_fraction:
@ -733,7 +768,7 @@ industry:
# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#costs # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#costs
costs: costs:
year: 2030 year: 2030
version: v0.9.0 version: v0.9.1
social_discountrate: 0.02 social_discountrate: 0.02
fill_values: fill_values:
FOM: 0 FOM: 0
@ -1036,6 +1071,7 @@ plotting:
biogas: '#e3d37d' biogas: '#e3d37d'
biomass: '#baa741' biomass: '#baa741'
solid biomass: '#baa741' solid biomass: '#baa741'
municipal solid waste: '#91ba41'
solid biomass import: '#d5ca8d' solid biomass import: '#d5ca8d'
solid biomass transport: '#baa741' solid biomass transport: '#baa741'
solid biomass for industry: '#7a6d26' solid biomass for industry: '#7a6d26'
@ -1050,6 +1086,7 @@ plotting:
services rural biomass boiler: '#c6cf98' services rural biomass boiler: '#c6cf98'
services urban decentral biomass boiler: '#dde5b5' services urban decentral biomass boiler: '#dde5b5'
biomass to liquid: '#32CD32' biomass to liquid: '#32CD32'
unsustainable bioliquids: '#32CD32'
electrobiofuels: 'red' electrobiofuels: 'red'
BioSNG: '#123456' BioSNG: '#123456'
# power transmission # power transmission

View File

@ -5,7 +5,7 @@ Cross-Channel,France - Echingen 50°4148″N 1°3821″E / 50.69667
Volgograd-Donbass,Russia - Volzhskaya 48°4934″N 44°4020″E / 48.82611°N 44.67222°E,Ukraine - Mikhailovskaya 48°3913″N 38°3356″E / 48.65361°N 38.56556°E,475(0/475),400,750.0,1965,Merc/Thyr,Shut down in 2014,[1],44.672222222222224,48.82611111111111,38.565555555555555,48.65361111111111 Volgograd-Donbass,Russia - Volzhskaya 48°4934″N 44°4020″E / 48.82611°N 44.67222°E,Ukraine - Mikhailovskaya 48°3913″N 38°3356″E / 48.65361°N 38.56556°E,475(0/475),400,750.0,1965,Merc/Thyr,Shut down in 2014,[1],44.672222222222224,48.82611111111111,38.565555555555555,48.65361111111111
Konti-Skan 1,Denmark - Vester Hassing 57°346″N 10°524″E / 57.06278°N 10.09000°E,Sweden - Stenkullen 57°4815″N 12°1913″E / 57.80417°N 12.32028°E,176(87/89),250,250.0,1965,Merc,Replaced in August 2006 by modern converters using thyristors,[1],10.09,57.062777777777775,12.320277777777777,57.80416666666667 Konti-Skan 1,Denmark - Vester Hassing 57°346″N 10°524″E / 57.06278°N 10.09000°E,Sweden - Stenkullen 57°4815″N 12°1913″E / 57.80417°N 12.32028°E,176(87/89),250,250.0,1965,Merc,Replaced in August 2006 by modern converters using thyristors,[1],10.09,57.062777777777775,12.320277777777777,57.80416666666667
SACOI 1a,Italy - Suvereto 43°310″N 10°4142″E / 43.05278°N 10.69500°E ( before 1992: Italy - San Dalmazio 43°1543″N 10°5505″E / 43.26194°N 10.91806°E),"France- Lucciana 42°3140″N 9°2659″E / 42.52778°N 9.44972°E",483(365/118),200,200.0,1965,Merc,"Replaced in 1986 by Thyr- multiterminal scheme",[1],10.695,43.05277777777778,9.449722222222222,42.52777777777778 SACOI 1a,Italy - Suvereto 43°310″N 10°4142″E / 43.05278°N 10.69500°E ( before 1992: Italy - San Dalmazio 43°1543″N 10°5505″E / 43.26194°N 10.91806°E),"France- Lucciana 42°3140″N 9°2659″E / 42.52778°N 9.44972°E",483(365/118),200,200.0,1965,Merc,"Replaced in 1986 by Thyr- multiterminal scheme",[1],10.695,43.05277777777778,9.449722222222222,42.52777777777778
SACOI 1b,"France- Lucciana 42°3140″N 9°2659″E / 42.52778°N 9.44972°E", "Codrongianos- Italy 40°397″N 8°4248″E / 40.65194°N 8.71333°E",483(365/118),200,200.0,1965,Merc,"Replaced in 1986 by Thyr- multiterminal scheme",[1],9.449722222222222,42.52777777777778,8.679351,40.65765 SACOI 1b,"France- Lucciana 42°3140″N 9°2659″E / 42.52778°N 9.44972°E","Codrongianos- Italy 40°397″N 8°4248″E / 40.65194°N 8.71333°E",483(365/118),200,200.0,1965,Merc,"Replaced in 1986 by Thyr- multiterminal scheme",[1],9.449722222222222,42.52777777777778,8.679351,40.65765
Kingsnorth,UK - Kingsnorth 51°2511″N 0°3546″E / 51.41972°N 0.59611°E,UK - London-Beddington 51°2223″N 0°738″W / 51.37306°N 0.12722°W,85(85/0),266,320.0,1975,Merc,Bipolar scheme Supplier: English Electric Shut down in 1987,[33],0.5961111111111111,51.41972222222222,-0.1272222222222222,51.37305555555555 Kingsnorth,UK - Kingsnorth 51°2511″N 0°3546″E / 51.41972°N 0.59611°E,UK - London-Beddington 51°2223″N 0°738″W / 51.37306°N 0.12722°W,85(85/0),266,320.0,1975,Merc,Bipolar scheme Supplier: English Electric Shut down in 1987,[33],0.5961111111111111,51.41972222222222,-0.1272222222222222,51.37305555555555
Skagerrak 1 + 2,Denmark - Tjele 56°2844″N 9°341″E / 56.47889°N 9.56694°E,Norway - Kristiansand 58°1536″N 7°5355″E / 58.26000°N 7.89861°E,230(130/100),250,500.0,1977,Thyr,Supplier: STK(Nexans) Control system upgrade by ABB in 2007,[34][35][36],9.566944444444445,56.47888888888889,7.898611111111111,58.26 Skagerrak 1 + 2,Denmark - Tjele 56°2844″N 9°341″E / 56.47889°N 9.56694°E,Norway - Kristiansand 58°1536″N 7°5355″E / 58.26000°N 7.89861°E,230(130/100),250,500.0,1977,Thyr,Supplier: STK(Nexans) Control system upgrade by ABB in 2007,[34][35][36],9.566944444444445,56.47888888888889,7.898611111111111,58.26
Gotland 2,Sweden - Västervik 57°4341″N 16°3851″E / 57.72806°N 16.64750°E,Sweden - Yigne 57°3513″N 18°1144″E / 57.58694°N 18.19556°E,99.5(92.9/6.6),150,130.0,1983,Thyr,Supplier: ABB,,16.6475,57.72805555555556,18.195555555555554,57.58694444444444 Gotland 2,Sweden - Västervik 57°4341″N 16°3851″E / 57.72806°N 16.64750°E,Sweden - Yigne 57°3513″N 18°1144″E / 57.58694°N 18.19556°E,99.5(92.9/6.6),150,130.0,1983,Thyr,Supplier: ABB,,16.6475,57.72805555555556,18.195555555555554,57.58694444444444
@ -23,7 +23,7 @@ Visby-Nas,Sweden - Nas 57°0558″N 18°1427″E / 57.09944°N 18.24
SwePol,Poland - Wierzbięcin 54°308″N 16°5328″E / 54.50222°N 16.89111°E,Sweden - Stärnö 56°911″N 14°5029″E / 56.15306°N 14.84139°E,245(245/0),450,600.0,2000,Thyr,Supplier: ABB,[38],16.891111111111112,54.50222222222222,14.841388888888888,56.153055555555554 SwePol,Poland - Wierzbięcin 54°308″N 16°5328″E / 54.50222°N 16.89111°E,Sweden - Stärnö 56°911″N 14°5029″E / 56.15306°N 14.84139°E,245(245/0),450,600.0,2000,Thyr,Supplier: ABB,[38],16.891111111111112,54.50222222222222,14.841388888888888,56.153055555555554
Tjæreborg,Denmark - Tjæreborg/Enge 55°2652″N 8°3534″E / 55.44778°N 8.59278°E,Denmark - Tjæreborg/Substation 55°2807″N 8°3336″E / 55.46861°N 8.56000°E,4.3(4.3/0),9,7.0,2000,IGBT,Interconnection to wind power generating stations,,8.592777777777778,55.44777777777778,8.56,55.46861111111111 Tjæreborg,Denmark - Tjæreborg/Enge 55°2652″N 8°3534″E / 55.44778°N 8.59278°E,Denmark - Tjæreborg/Substation 55°2807″N 8°3336″E / 55.46861°N 8.56000°E,4.3(4.3/0),9,7.0,2000,IGBT,Interconnection to wind power generating stations,,8.592777777777778,55.44777777777778,8.56,55.46861111111111
Italy-Greece,Greece - Arachthos 39°1100″N 20°5748″E / 39.18333°N 20.96333°E,Italy - Galatina 40°953″N 18°749″E / 40.16472°N 18.13028°E,310(200/110),400,500.0,2001,Thyr,,,20.963333333333335,39.18333333333333,18.130277777777778,40.164722222222224 Italy-Greece,Greece - Arachthos 39°1100″N 20°5748″E / 39.18333°N 20.96333°E,Italy - Galatina 40°953″N 18°749″E / 40.16472°N 18.13028°E,310(200/110),400,500.0,2001,Thyr,,,20.963333333333335,39.18333333333333,18.130277777777778,40.164722222222224
Moyle,UK - Auchencrosh 55°0410″N 4°5850″W / 55.06944°N 4.98056°W,UK - N. Ireland- Ballycronan More 54°5034″N 5°4611″W / 54.84278°N 5.76972°W,63.5(63.5/0),250,2501.0,2001,Thyr,"Supplier: Siemens- Nexans",[39],-4.980555555555556,55.06944444444444,-5.769722222222223,54.842777777777776 Moyle,UK - Auchencrosh 55°0410″N 4°5850″W / 55.06944°N 4.98056°W,UK - N. Ireland- Ballycronan More 54°5034″N 5°4611″W / 54.84278°N 5.76972°W,63.5(63.5/0),250,500.0,2001,Thyr,"Supplier: Siemens- Nexans",[39],-4.980555555555556,55.06944444444444,-5.769722222222223,54.842777777777776
HVDC Troll,Norway - Kollsnes 60°3301″N 4°5026″E / 60.55028°N 4.84056°E,Norway - Offshore platform Troll A 60°4000″N 3°4000″E / 60.66667°N 3.66667°E,70(70/0),60,80.0,2004,IGBT,Power supply for offshore gas compressor Supplier: ABB,[40],4.8405555555555555,60.55027777777778,3.6666666666666665,60.666666666666664 HVDC Troll,Norway - Kollsnes 60°3301″N 4°5026″E / 60.55028°N 4.84056°E,Norway - Offshore platform Troll A 60°4000″N 3°4000″E / 60.66667°N 3.66667°E,70(70/0),60,80.0,2004,IGBT,Power supply for offshore gas compressor Supplier: ABB,[40],4.8405555555555555,60.55027777777778,3.6666666666666665,60.666666666666664
Estlink,Finland - Espoo 60°1214″N 24°3306″E / 60.20389°N 24.55167°E,Estonia - Harku 59°235″N 24°3337″E / 59.38472°N 24.56028°E,105(105/0),150,350.0,2006,IGBT,Supplier: ABB,[40],24.551666666666666,60.20388888888889,24.560277777777777,59.38472222222222 Estlink,Finland - Espoo 60°1214″N 24°3306″E / 60.20389°N 24.55167°E,Estonia - Harku 59°235″N 24°3337″E / 59.38472°N 24.56028°E,105(105/0),150,350.0,2006,IGBT,Supplier: ABB,[40],24.551666666666666,60.20388888888889,24.560277777777777,59.38472222222222
NorNed,Netherlands - Eemshaven 53°264″N 6°5157″E / 53.43444°N 6.86583°E,Norway - Feda 58°1658″N 6°5155″E / 58.28278°N 6.86528°E,580(580/0),450,700.0,2008,Thyr,"Supplier: ABB- Nexans",[40],6.865833333333334,53.434444444444445,6.865277777777778,58.28277777777778 NorNed,Netherlands - Eemshaven 53°264″N 6°5157″E / 53.43444°N 6.86583°E,Norway - Feda 58°1658″N 6°5155″E / 58.28278°N 6.86528°E,580(580/0),450,700.0,2008,Thyr,"Supplier: ABB- Nexans",[40],6.865833333333334,53.434444444444445,6.865277777777778,58.28277777777778

1 Name Converterstation 1 Converterstation 2 Total Length (Cable/Pole) (km) Volt (kV) Power (MW) Year Type Remarks Ref x1 y1 x2 y2
5 Volgograd-Donbass Russia - Volzhskaya 48°49′34″N 44°40′20″E / 48.82611°N 44.67222°E Ukraine - Mikhailovskaya 48°39′13″N 38°33′56″E / 48.65361°N 38.56556°E 475(0/475) 400 750.0 1965 Merc/Thyr Shut down in 2014 [1] 44.672222222222224 48.82611111111111 38.565555555555555 48.65361111111111
6 Konti-Skan 1 Denmark - Vester Hassing 57°3′46″N 10°5′24″E / 57.06278°N 10.09000°E Sweden - Stenkullen 57°48′15″N 12°19′13″E / 57.80417°N 12.32028°E 176(87/89) 250 250.0 1965 Merc Replaced in August 2006 by modern converters using thyristors [1] 10.09 57.062777777777775 12.320277777777777 57.80416666666667
7 SACOI 1a Italy - Suvereto 43°3′10″N 10°41′42″E / 43.05278°N 10.69500°E ( before 1992: Italy - San Dalmazio 43°15′43″N 10°55′05″E / 43.26194°N 10.91806°E) France- Lucciana 42°31′40″N 9°26′59″E / 42.52778°N 9.44972°E 483(365/118) 200 200.0 1965 Merc Replaced in 1986 by Thyr- multiterminal scheme [1] 10.695 43.05277777777778 9.449722222222222 42.52777777777778
8 SACOI 1b France- Lucciana 42°31′40″N 9°26′59″E / 42.52778°N 9.44972°E Codrongianos- Italy 40°39′7″N 8°42′48″E / 40.65194°N 8.71333°E 483(365/118) 200 200.0 1965 Merc Replaced in 1986 by Thyr- multiterminal scheme [1] 9.449722222222222 42.52777777777778 8.679351 40.65765
9 Kingsnorth UK - Kingsnorth 51°25′11″N 0°35′46″E / 51.41972°N 0.59611°E UK - London-Beddington 51°22′23″N 0°7′38″W / 51.37306°N 0.12722°W 85(85/0) 266 320.0 1975 Merc Bipolar scheme Supplier: English Electric Shut down in 1987 [33] 0.5961111111111111 51.41972222222222 -0.1272222222222222 51.37305555555555
10 Skagerrak 1 + 2 Denmark - Tjele 56°28′44″N 9°34′1″E / 56.47889°N 9.56694°E Norway - Kristiansand 58°15′36″N 7°53′55″E / 58.26000°N 7.89861°E 230(130/100) 250 500.0 1977 Thyr Supplier: STK(Nexans) Control system upgrade by ABB in 2007 [34][35][36] 9.566944444444445 56.47888888888889 7.898611111111111 58.26
11 Gotland 2 Sweden - Västervik 57°43′41″N 16°38′51″E / 57.72806°N 16.64750°E Sweden - Yigne 57°35′13″N 18°11′44″E / 57.58694°N 18.19556°E 99.5(92.9/6.6) 150 130.0 1983 Thyr Supplier: ABB 16.6475 57.72805555555556 18.195555555555554 57.58694444444444
23 SwePol Poland - Wierzbięcin 54°30′8″N 16°53′28″E / 54.50222°N 16.89111°E Sweden - Stärnö 56°9′11″N 14°50′29″E / 56.15306°N 14.84139°E 245(245/0) 450 600.0 2000 Thyr Supplier: ABB [38] 16.891111111111112 54.50222222222222 14.841388888888888 56.153055555555554
24 Tjæreborg Denmark - Tjæreborg/Enge 55°26′52″N 8°35′34″E / 55.44778°N 8.59278°E Denmark - Tjæreborg/Substation 55°28′07″N 8°33′36″E / 55.46861°N 8.56000°E 4.3(4.3/0) 9 7.0 2000 IGBT Interconnection to wind power generating stations 8.592777777777778 55.44777777777778 8.56 55.46861111111111
25 Italy-Greece Greece - Arachthos 39°11′00″N 20°57′48″E / 39.18333°N 20.96333°E Italy - Galatina 40°9′53″N 18°7′49″E / 40.16472°N 18.13028°E 310(200/110) 400 500.0 2001 Thyr 20.963333333333335 39.18333333333333 18.130277777777778 40.164722222222224
26 Moyle UK - Auchencrosh 55°04′10″N 4°58′50″W / 55.06944°N 4.98056°W UK - N. Ireland- Ballycronan More 54°50′34″N 5°46′11″W / 54.84278°N 5.76972°W 63.5(63.5/0) 250 2501.0 500.0 2001 Thyr Supplier: Siemens- Nexans [39] -4.980555555555556 55.06944444444444 -5.769722222222223 54.842777777777776
27 HVDC Troll Norway - Kollsnes 60°33′01″N 4°50′26″E / 60.55028°N 4.84056°E Norway - Offshore platform Troll A 60°40′00″N 3°40′00″E / 60.66667°N 3.66667°E 70(70/0) 60 80.0 2004 IGBT Power supply for offshore gas compressor Supplier: ABB [40] 4.8405555555555555 60.55027777777778 3.6666666666666665 60.666666666666664
28 Estlink Finland - Espoo 60°12′14″N 24°33′06″E / 60.20389°N 24.55167°E Estonia - Harku 59°23′5″N 24°33′37″E / 59.38472°N 24.56028°E 105(105/0) 150 350.0 2006 IGBT Supplier: ABB [40] 24.551666666666666 60.20388888888889 24.560277777777777 59.38472222222222
29 NorNed Netherlands - Eemshaven 53°26′4″N 6°51′57″E / 53.43444°N 6.86583°E Norway - Feda 58°16′58″N 6°51′55″E / 58.28278°N 6.86528°E 580(580/0) 450 700.0 2008 Thyr Supplier: ABB- Nexans [40] 6.865833333333334 53.434444444444445 6.865277777777778 58.28277777777778

View File

@ -53,7 +53,6 @@ extensions = [
autodoc_mock_imports = [ autodoc_mock_imports = [
"atlite", "atlite",
"snakemake", "snakemake",
"pycountry",
"rioxarray", "rioxarray",
"country_converter", "country_converter",
"tabula", "tabula",
@ -341,4 +340,6 @@ texinfo_documents = [
# Example configuration for intersphinx: refer to the Python standard library. # Example configuration for intersphinx: refer to the Python standard library.
intersphinx_mapping = {"https://docs.python.org/": None} intersphinx_mapping = {
"https://docs.python.org/": ("https://docs.python.org/3", None),
}

View File

@ -5,3 +5,5 @@ classes ,,,
-- solid biomass,--,Array of biomass comodity,The comodity that are included as solid biomass -- solid biomass,--,Array of biomass comodity,The comodity that are included as solid biomass
-- not included,--,Array of biomass comodity,The comodity that are not included as a biomass potential -- not included,--,Array of biomass comodity,The comodity that are not included as a biomass potential
-- biogas,--,Array of biomass comodity,The comodity that are included as biogas -- biogas,--,Array of biomass comodity,The comodity that are included as biogas
share_unsustainable_use_retained,--,Dictionary with planning horizons as keys., Share of unsustainable biomass use retained using primary production of Eurostat data as reference
share_sustainable_potential_available,--,Dictionary with planning horizons as keys., Share determines phase-in of ENSPRESO biomass potentials

1 Unit Values Description
5 -- solid biomass -- Array of biomass comodity The comodity that are included as solid biomass
6 -- not included -- Array of biomass comodity The comodity that are not included as a biomass potential
7 -- biogas -- Array of biomass comodity The comodity that are included as biogas
8 share_unsustainable_use_retained -- Dictionary with planning horizons as keys. Share of unsustainable biomass use retained using primary production of Eurostat data as reference
9 share_sustainable_potential_available -- Dictionary with planning horizons as keys. Share determines phase-in of ENSPRESO biomass potentials

View File

@ -1,6 +1,5 @@
,Unit,Values,Description ,Unit,Values,Description
enable,str or bool,"{auto, true, false}","Switch to include (true) or exclude (false) the retrieve_* rules of snakemake into the workflow; 'auto' sets true|false based on availability of an internet connection to prevent issues with snakemake failing due to lack of internet connection." enable,str or bool,"{auto, true, false}","Switch to include (true) or exclude (false) the retrieve_* rules of snakemake into the workflow; 'auto' sets true|false based on availability of an internet connection to prevent issues with snakemake failing due to lack of internet connection."
prepare_links_p_nom,bool,"{true, false}","Switch to retrieve current HVDC projects from `Wikipedia <https://en.wikipedia.org/wiki/List_of_HVDC_projects>`_"
retrieve_databundle,bool,"{true, false}","Switch to retrieve databundle from zenodo via the rule :mod:`retrieve_databundle` or whether to keep a custom databundle located in the corresponding folder." retrieve_databundle,bool,"{true, false}","Switch to retrieve databundle from zenodo via the rule :mod:`retrieve_databundle` or whether to keep a custom databundle located in the corresponding folder."
retrieve_cost_data,bool,"{true, false}","Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_." retrieve_cost_data,bool,"{true, false}","Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_."
build_cutout,bool,"{true, false}","Switch to enable the building of cutouts via the rule :mod:`build_cutout`." build_cutout,bool,"{true, false}","Switch to enable the building of cutouts via the rule :mod:`build_cutout`."

1 Unit Values Description
2 enable str or bool {auto, true, false} Switch to include (true) or exclude (false) the retrieve_* rules of snakemake into the workflow; 'auto' sets true|false based on availability of an internet connection to prevent issues with snakemake failing due to lack of internet connection.
prepare_links_p_nom bool {true, false} Switch to retrieve current HVDC projects from `Wikipedia <https://en.wikipedia.org/wiki/List_of_HVDC_projects>`_
3 retrieve_databundle bool {true, false} Switch to retrieve databundle from zenodo via the rule :mod:`retrieve_databundle` or whether to keep a custom databundle located in the corresponding folder.
4 retrieve_cost_data bool {true, false} Switch to retrieve technology cost data from `technology-data repository <https://github.com/PyPSA/technology-data>`_.
5 build_cutout bool {true, false} Switch to enable the building of cutouts via the rule :mod:`build_cutout`.

View File

@ -9,6 +9,18 @@ district_heating,--,,`prepare_sector_network.py <https://github.com/PyPSA/pypsa-
-- potential,--,float,maximum fraction of urban demand which can be supplied by district heating -- potential,--,float,maximum fraction of urban demand which can be supplied by district heating
-- progress,--,Dictionary with planning horizons as keys., Increase of today's district heating demand to potential maximum district heating share. Progress = 0 means today's district heating share. Progress = 1 means maximum fraction of urban demand is supplied by district heating -- progress,--,Dictionary with planning horizons as keys., Increase of today's district heating demand to potential maximum district heating share. Progress = 0 means today's district heating share. Progress = 1 means maximum fraction of urban demand is supplied by district heating
-- district_heating_loss,--,float,Share increase in district heat demand in urban central due to heat losses -- district_heating_loss,--,float,Share increase in district heat demand in urban central due to heat losses
-- forward_temperature,°C,float,Forward temperature in district heating
-- return_temperature,°C,float,Return temperature in district heating. Must be lower than forward temperature
-- heat_source_cooling,K,float,Cooling of heat source for heat pumps
-- heat_pump_cop_approximation,,,
-- -- refrigerant,--,"{ammonia, isobutane}",Heat pump refrigerant assumed for COP approximation
-- -- heat_exchanger_pinch_point_temperature_difference,K,float,Heat pump pinch point temperature difference in heat exchangers assumed for approximation.
-- -- isentropic_compressor_efficiency,--,float,Isentropic efficiency of heat pump compressor assumed for approximation. Must be between 0 and 1.
-- -- heat_loss,--,float,Heat pump heat loss assumed for approximation. Must be between 0 and 1.
-- heat_pump_sources,--,,
-- -- urban central,--,List of heat sources for heat pumps in urban central heating,
-- -- urban decentral,--,List of heat sources for heat pumps in urban decentral heating,
-- -- rural,--,List of heat sources for heat pumps in rural heating,
cluster_heat_buses,--,"{true, false}",Cluster residential and service heat buses in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_ to one to save memory. cluster_heat_buses,--,"{true, false}",Cluster residential and service heat buses in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_ to one to save memory.
,,, ,,,
bev_dsm_restriction _value,--,float,Adds a lower state of charge (SOC) limit for battery electric vehicles (BEV) to manage its own energy demand (DSM). Located in `build_transport_demand.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_transport_demand.py>`_. Set to 0 for no restriction on BEV DSM bev_dsm_restriction _value,--,float,Adds a lower state of charge (SOC) limit for battery electric vehicles (BEV) to manage its own energy demand (DSM). Located in `build_transport_demand.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_transport_demand.py>`_. Set to 0 for no restriction on BEV DSM
@ -72,7 +84,7 @@ boilers,--,"{true, false}",Add option for transforming gas into heat using gas b
resistive_heaters,--,"{true, false}",Add option for transforming electricity into heat using resistive heaters (independently from gas boilers) resistive_heaters,--,"{true, false}",Add option for transforming electricity into heat using resistive heaters (independently from gas boilers)
oil_boilers,--,"{true, false}",Add option for transforming oil into heat using boilers oil_boilers,--,"{true, false}",Add option for transforming oil into heat using boilers
biomass_boiler,--,"{true, false}",Add option for transforming biomass into heat using boilers biomass_boiler,--,"{true, false}",Add option for transforming biomass into heat using boilers
overdimension_individual_heating,--,"float",Add option for overdimensioning individual heating systems by a certain factor. This allows them to cover heat demand peaks e.g. 10% higher than those in the data with a setting of 1.1. overdimension_individual_heating,--,float,Add option for overdimensioning individual heating systems by a certain factor. This allows them to cover heat demand peaks e.g. 10% higher than those in the data with a setting of 1.1.
chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP) chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP)
micro_chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP) for decentral areas. micro_chp,--,"{true, false}",Add option for using Combined Heat and Power (CHP) for decentral areas.
solar_thermal,--,"{true, false}",Add option for using solar thermal to generate heat. solar_thermal,--,"{true, false}",Add option for using solar thermal to generate heat.
@ -139,6 +151,7 @@ biogas_upgrading_cc,--,"{true, false}",Add option to capture CO2 from biomass up
conventional_generation,,,Add a more detailed description of conventional carriers. Any power generation requires the consumption of fuel from nodes representing that fuel. conventional_generation,,,Add a more detailed description of conventional carriers. Any power generation requires the consumption of fuel from nodes representing that fuel.
biomass_to_liquid,--,"{true, false}",Add option for transforming solid biomass into liquid fuel with the same properties as oil biomass_to_liquid,--,"{true, false}",Add option for transforming solid biomass into liquid fuel with the same properties as oil
biosng,--,"{true, false}",Add option for transforming solid biomass into synthesis gas with the same properties as natural gas biosng,--,"{true, false}",Add option for transforming solid biomass into synthesis gas with the same properties as natural gas
municipal_solid_waste,--,"{true, false}",Add option for municipal solid waste
limit_max_growth,,, limit_max_growth,,,
-- enable,--,"{true, false}",Add option to limit the maximum growth of a carrier -- enable,--,"{true, false}",Add option to limit the maximum growth of a carrier
-- factor,p.u.,float,The maximum growth factor of a carrier (e.g. 1.3 allows 30% larger than max historic growth) -- factor,p.u.,float,The maximum growth factor of a carrier (e.g. 1.3 allows 30% larger than max historic growth)

1 Unit Values Description
9 -- potential -- float maximum fraction of urban demand which can be supplied by district heating
10 -- progress -- Dictionary with planning horizons as keys. Increase of today's district heating demand to potential maximum district heating share. Progress = 0 means today's district heating share. Progress = 1 means maximum fraction of urban demand is supplied by district heating
11 -- district_heating_loss -- float Share increase in district heat demand in urban central due to heat losses
12 -- forward_temperature °C float Forward temperature in district heating
13 -- return_temperature °C float Return temperature in district heating. Must be lower than forward temperature
14 -- heat_source_cooling K float Cooling of heat source for heat pumps
15 -- heat_pump_cop_approximation
16 -- -- refrigerant -- {ammonia, isobutane} Heat pump refrigerant assumed for COP approximation
17 -- -- heat_exchanger_pinch_point_temperature_difference K float Heat pump pinch point temperature difference in heat exchangers assumed for approximation.
18 -- -- isentropic_compressor_efficiency -- float Isentropic efficiency of heat pump compressor assumed for approximation. Must be between 0 and 1.
19 -- -- heat_loss -- float Heat pump heat loss assumed for approximation. Must be between 0 and 1.
20 -- heat_pump_sources --
21 -- -- urban central -- List of heat sources for heat pumps in urban central heating
22 -- -- urban decentral -- List of heat sources for heat pumps in urban decentral heating
23 -- -- rural -- List of heat sources for heat pumps in rural heating
24 cluster_heat_buses -- {true, false} Cluster residential and service heat buses in `prepare_sector_network.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/prepare_sector_network.py>`_ to one to save memory.
25
26 bev_dsm_restriction _value -- float Adds a lower state of charge (SOC) limit for battery electric vehicles (BEV) to manage its own energy demand (DSM). Located in `build_transport_demand.py <https://github.com/PyPSA/pypsa-eur-sec/blob/master/scripts/build_transport_demand.py>`_. Set to 0 for no restriction on BEV DSM
84 resistive_heaters -- {true, false} Add option for transforming electricity into heat using resistive heaters (independently from gas boilers)
85 oil_boilers -- {true, false} Add option for transforming oil into heat using boilers
86 biomass_boiler -- {true, false} Add option for transforming biomass into heat using boilers
87 overdimension_individual_heating -- float Add option for overdimensioning individual heating systems by a certain factor. This allows them to cover heat demand peaks e.g. 10% higher than those in the data with a setting of 1.1.
88 chp -- {true, false} Add option for using Combined Heat and Power (CHP)
89 micro_chp -- {true, false} Add option for using Combined Heat and Power (CHP) for decentral areas.
90 solar_thermal -- {true, false} Add option for using solar thermal to generate heat.
151 conventional_generation Add a more detailed description of conventional carriers. Any power generation requires the consumption of fuel from nodes representing that fuel.
152 biomass_to_liquid -- {true, false} Add option for transforming solid biomass into liquid fuel with the same properties as oil
153 biosng -- {true, false} Add option for transforming solid biomass into synthesis gas with the same properties as natural gas
154 municipal_solid_waste -- {true, false} Add option for municipal solid waste
155 limit_max_growth
156 -- enable -- {true, false} Add option to limit the maximum growth of a carrier
157 -- factor p.u. float The maximum growth factor of a carrier (e.g. 1.3 allows 30% larger than max historic growth)

View File

@ -41,11 +41,6 @@ Rule ``build_cutout``
.. automodule:: build_cutout .. automodule:: build_cutout
Rule ``prepare_links_p_nom``
===============================
.. automodule:: prepare_links_p_nom
.. _base: .. _base:
Rule ``base_network`` Rule ``base_network``

View File

@ -10,9 +10,19 @@ Release Notes
Upcoming Release Upcoming Release
================ ================
* Added unsustainable biomass potentials for solid, gaseous, and liquid biomass. The potentials can be phased-out and/or
substituted by the phase-in of sustainable biomass types using the config parameters
``biomass: share_unsustainable_use_retained`` and ``biomass: share_sustainable_potential_available``.
* The rule ``prepare_links_p_nom`` was removed since it was outdated and not used.
* Changed heat pump COP approximation for central heating to be based on `Jensen et al. (2018) <https://backend.orbit.dtu.dk/ws/portalfiles/portal/151965635/MAIN_Final.pdf>`__ and a default forward temperature of 90C. This is more realistic for district heating than the previously used approximation method.
* split solid biomass potentials into solid biomass and municipal solid waste. Add option to use municipal solid waste. This option is only activated in combination with the flag ``waste_to_energy``
* Add option to import solid biomass * Add option to import solid biomass
* Add option to produce electrobiofuels (flag ``electrobiofuels`) from solid biomass and hydrogen, as a combination of BtL and Fischer-Tropsch to make more use of the biogenic carbon * Add option to produce electrobiofuels (flag ``electrobiofuels``) from solid biomass and hydrogen, as a combination of BtL and Fischer-Tropsch to make more use of the biogenic carbon
* Add flag ``sector: fossil_fuels`` in config to remove the option of importing fossil fuels * Add flag ``sector: fossil_fuels`` in config to remove the option of importing fossil fuels

View File

@ -17,7 +17,6 @@ tabula-py
# cartopy # cartopy
scikit-learn scikit-learn
pycountry
pyyaml pyyaml
seaborn seaborn
memory_profiler memory_profiler

View File

@ -18,7 +18,6 @@ dependencies:
# Dependencies of the workflow itself # Dependencies of the workflow itself
- xlrd - xlrd
- openpyxl!=3.1.1 - openpyxl!=3.1.1
- pycountry
- seaborn - seaborn
- snakemake-minimal>=8.14 - snakemake-minimal>=8.14
- memory_profiler - memory_profiler

View File

@ -2,21 +2,6 @@
# #
# SPDX-License-Identifier: MIT # SPDX-License-Identifier: MIT
if config["enable"].get("prepare_links_p_nom", False):
rule prepare_links_p_nom:
output:
"data/links_p_nom.csv",
log:
logs("prepare_links_p_nom.log"),
threads: 1
resources:
mem_mb=1500,
conda:
"../envs/environment.yaml"
script:
"../scripts/prepare_links_p_nom.py"
rule build_electricity_demand: rule build_electricity_demand:
params: params:
@ -106,8 +91,8 @@ rule build_shapes:
params: params:
countries=config_provider("countries"), countries=config_provider("countries"),
input: input:
naturalearth=ancient("data/bundle/naturalearth/ne_10m_admin_0_countries.shp"), naturalearth=ancient("data/naturalearth/ne_10m_admin_0_countries_deu.shp"),
eez=ancient("data/bundle/eez/World_EEZ_v8_2014.shp"), eez=ancient("data/eez/World_EEZ_v12_20231025_gpkg/eez_v12.gpkg"),
nuts3=ancient("data/bundle/NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp"), nuts3=ancient("data/bundle/NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp"),
nuts3pop=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"), nuts3pop=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"),
nuts3gdp=ancient("data/bundle/nama_10r_3gdp.tsv.gz"), nuts3gdp=ancient("data/bundle/nama_10r_3gdp.tsv.gz"),

View File

@ -217,13 +217,27 @@ rule build_temperature_profiles:
rule build_cop_profiles: rule build_cop_profiles:
params: params:
heat_pump_sink_T=config_provider("sector", "heat_pump_sink_T"), heat_pump_sink_T_decentral_heating=config_provider(
"sector", "heat_pump_sink_T_individual_heating"
),
forward_temperature_central_heating=config_provider(
"sector", "district_heating", "forward_temperature"
),
return_temperature_central_heating=config_provider(
"sector", "district_heating", "return_temperature"
),
heat_source_cooling_central_heating=config_provider(
"sector", "district_heating", "heat_source_cooling"
),
heat_pump_cop_approximation_central_heating=config_provider(
"sector", "district_heating", "heat_pump_cop_approximation"
),
heat_pump_sources=config_provider("sector", "heat_pump_sources"),
input: input:
temp_soil_total=resources("temp_soil_total_elec_s{simpl}_{clusters}.nc"), temp_soil_total=resources("temp_soil_total_elec_s{simpl}_{clusters}.nc"),
temp_air_total=resources("temp_air_total_elec_s{simpl}_{clusters}.nc"), temp_air_total=resources("temp_air_total_elec_s{simpl}_{clusters}.nc"),
output: output:
cop_soil_total=resources("cop_soil_total_elec_s{simpl}_{clusters}.nc"), cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"),
cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"),
resources: resources:
mem_mb=20000, mem_mb=20000,
log: log:
@ -233,7 +247,7 @@ rule build_cop_profiles:
conda: conda:
"../envs/environment.yaml" "../envs/environment.yaml"
script: script:
"../scripts/build_cop_profiles.py" "../scripts/build_cop_profiles/run.py"
def solar_thermal_cutout(wildcards): def solar_thermal_cutout(wildcards):
@ -331,7 +345,8 @@ rule build_biomass_potentials:
"https://zenodo.org/records/10356004/files/ENSPRESO_BIOMASS.xlsx", "https://zenodo.org/records/10356004/files/ENSPRESO_BIOMASS.xlsx",
keep_local=True, keep_local=True,
), ),
nuts2="data/bundle/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson", # https://gisco-services.ec.europa.eu/distribution/v2/nuts/download/#nuts21 eurostat="data/eurostat/Balances-April2023",
nuts2="data/bundle/nuts/NUTS_RG_10M_2013_4326_LEVL_2.geojson",
regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"), regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"),
nuts3_population=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"), nuts3_population=ancient("data/bundle/nama_10r_3popgdp.tsv.gz"),
swiss_cantons=ancient("data/ch_cantons.csv"), swiss_cantons=ancient("data/ch_cantons.csv"),
@ -344,7 +359,7 @@ rule build_biomass_potentials:
biomass_potentials=resources( biomass_potentials=resources(
"biomass_potentials_s{simpl}_{clusters}_{planning_horizons}.csv" "biomass_potentials_s{simpl}_{clusters}_{planning_horizons}.csv"
), ),
threads: 1 threads: 8
resources: resources:
mem_mb=1000, mem_mb=1000,
log: log:
@ -940,7 +955,10 @@ rule prepare_sector_network:
countries=config_provider("countries"), countries=config_provider("countries"),
adjustments=config_provider("adjustments", "sector"), adjustments=config_provider("adjustments", "sector"),
emissions_scope=config_provider("energy", "emissions"), emissions_scope=config_provider("energy", "emissions"),
biomass=config_provider("biomass"),
RDIR=RDIR, RDIR=RDIR,
heat_pump_sources=config_provider("sector", "heat_pump_sources"),
heat_systems=config_provider("sector", "heat_systems"),
input: input:
unpack(input_profile_offwind), unpack(input_profile_offwind),
**rules.cluster_gas_network.output, **rules.cluster_gas_network.output,
@ -1020,8 +1038,7 @@ rule prepare_sector_network:
), ),
temp_soil_total=resources("temp_soil_total_elec_s{simpl}_{clusters}.nc"), temp_soil_total=resources("temp_soil_total_elec_s{simpl}_{clusters}.nc"),
temp_air_total=resources("temp_air_total_elec_s{simpl}_{clusters}.nc"), temp_air_total=resources("temp_air_total_elec_s{simpl}_{clusters}.nc"),
cop_soil_total=resources("cop_soil_total_elec_s{simpl}_{clusters}.nc"), cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"),
cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"),
solar_thermal_total=lambda w: ( solar_thermal_total=lambda w: (
resources("solar_thermal_total_elec_s{simpl}_{clusters}.nc") resources("solar_thermal_total_elec_s{simpl}_{clusters}.nc")
if config_provider("sector", "solar_thermal")(w) if config_provider("sector", "solar_thermal")(w)

View File

@ -4,6 +4,7 @@
import requests import requests
from datetime import datetime, timedelta from datetime import datetime, timedelta
from shutil import move, unpack_archive
if config["enable"].get("retrieve", "auto") == "auto": if config["enable"].get("retrieve", "auto") == "auto":
config["enable"]["retrieve"] = has_internet_access() config["enable"]["retrieve"] = has_internet_access()
@ -15,8 +16,6 @@ if config["enable"]["retrieve"] is False:
if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle", True): if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle", True):
datafiles = [ datafiles = [
"je-e-21.03.02.xls", "je-e-21.03.02.xls",
"eez/World_EEZ_v8_2014.shp",
"naturalearth/ne_10m_admin_0_countries.shp",
"NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp", "NUTS_2013_60M_SH/data/NUTS_RG_60M_2013.shp",
"nama_10r_3popgdp.tsv.gz", "nama_10r_3popgdp.tsv.gz",
"nama_10r_3gdp.tsv.gz", "nama_10r_3gdp.tsv.gz",
@ -53,6 +52,8 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle",
log: log:
"logs/retrieve_eurostat_data.log", "logs/retrieve_eurostat_data.log",
retries: 2 retries: 2
conda:
"../envs/retrieve.yaml"
script: script:
"../scripts/retrieve_eurostat_data.py" "../scripts/retrieve_eurostat_data.py"
@ -62,6 +63,8 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle",
log: log:
"logs/retrieve_eurostat_household_data.log", "logs/retrieve_eurostat_household_data.log",
retries: 2 retries: 2
conda:
"../envs/retrieve.yaml"
script: script:
"../scripts/retrieve_eurostat_household_data.py" "../scripts/retrieve_eurostat_household_data.py"
@ -211,6 +214,64 @@ if config["enable"]["retrieve"]:
move(input[0], output[0]) move(input[0], output[0])
if config["enable"]["retrieve"]:
rule retrieve_eez:
params:
zip="data/eez/World_EEZ_v12_20231025_gpkg.zip",
output:
gpkg="data/eez/World_EEZ_v12_20231025_gpkg/eez_v12.gpkg",
run:
import os
import requests
from uuid import uuid4
name = str(uuid4())[:8]
org = str(uuid4())[:8]
response = requests.post(
"https://www.marineregions.org/download_file.php",
params={"name": "World_EEZ_v12_20231025_gpkg.zip"},
data={
"name": name,
"organisation": org,
"email": f"{name}@{org}.org",
"country": "Germany",
"user_category": "academia",
"purpose_category": "Research",
"agree": "1",
},
)
with open(params["zip"], "wb") as f:
f.write(response.content)
output_folder = Path(params["zip"]).parent
unpack_archive(params["zip"], output_folder)
os.remove(params["zip"])
if config["enable"]["retrieve"]:
# Download directly from naciscdn.org which is a redirect from naturalearth.com
# (https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/)
# Use point-of-view (POV) variant of Germany so that Crimea is included.
rule retrieve_naturalearth_countries:
input:
storage(
"https://naciscdn.org/naturalearth/10m/cultural/ne_10m_admin_0_countries_deu.zip"
),
params:
zip="data/naturalearth/ne_10m_admin_0_countries_deu.zip",
output:
countries="data/naturalearth/ne_10m_admin_0_countries_deu.shp",
run:
move(input[0], params["zip"])
output_folder = Path(output["countries"]).parent
unpack_archive(params["zip"], output_folder)
os.remove(params["zip"])
if config["enable"]["retrieve"]: if config["enable"]["retrieve"]:
# Some logic to find the correct file URL # Some logic to find the correct file URL
# Sometimes files are released delayed or ahead of schedule, check which file is currently available # Sometimes files are released delayed or ahead of schedule, check which file is currently available

View File

@ -9,6 +9,7 @@ rule add_existing_baseyear:
sector=config_provider("sector"), sector=config_provider("sector"),
existing_capacities=config_provider("existing_capacities"), existing_capacities=config_provider("existing_capacities"),
costs=config_provider("costs"), costs=config_provider("costs"),
heat_pump_sources=config_provider("sector", "heat_pump_sources"),
input: input:
network=RESULTS network=RESULTS
+ "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
@ -21,8 +22,7 @@ rule add_existing_baseyear:
config_provider("scenario", "planning_horizons", 0)(w) config_provider("scenario", "planning_horizons", 0)(w)
) )
), ),
cop_soil_total=resources("cop_soil_total_elec_s{simpl}_{clusters}.nc"), cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"),
cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"),
existing_heating_distribution=resources( existing_heating_distribution=resources(
"existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv" "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
), ),
@ -69,6 +69,7 @@ rule add_brownfield:
snapshots=config_provider("snapshots"), snapshots=config_provider("snapshots"),
drop_leap_day=config_provider("enable", "drop_leap_day"), drop_leap_day=config_provider("enable", "drop_leap_day"),
carriers=config_provider("electricity", "renewable_carriers"), carriers=config_provider("electricity", "renewable_carriers"),
heat_pump_sources=config_provider("sector", "heat_pump_sources"),
input: input:
unpack(input_profile_tech_brownfield), unpack(input_profile_tech_brownfield),
simplify_busmap=resources("busmap_elec_s{simpl}.csv"), simplify_busmap=resources("busmap_elec_s{simpl}.csv"),
@ -77,8 +78,7 @@ rule add_brownfield:
+ "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
network_p=solved_previous_horizon, #solved network at previous time step network_p=solved_previous_horizon, #solved network at previous time step
costs=resources("costs_{planning_horizons}.csv"), costs=resources("costs_{planning_horizons}.csv"),
cop_soil_total=resources("cop_soil_total_elec_s{simpl}_{clusters}.nc"), cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"),
cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"),
output: output:
RESULTS RESULTS
+ "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",

View File

@ -7,6 +7,7 @@ rule add_existing_baseyear:
sector=config_provider("sector"), sector=config_provider("sector"),
existing_capacities=config_provider("existing_capacities"), existing_capacities=config_provider("existing_capacities"),
costs=config_provider("costs"), costs=config_provider("costs"),
heat_pump_sources=config_provider("sector", "heat_pump_sources"),
input: input:
network=RESULTS network=RESULTS
+ "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc",
@ -19,8 +20,7 @@ rule add_existing_baseyear:
config_provider("scenario", "planning_horizons", 0)(w) config_provider("scenario", "planning_horizons", 0)(w)
) )
), ),
cop_soil_total=resources("cop_soil_total_elec_s{simpl}_{clusters}.nc"), cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"),
cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"),
existing_heating_distribution=resources( existing_heating_distribution=resources(
"existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv" "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv"
), ),

View File

@ -24,6 +24,10 @@ from _helpers import (
from add_electricity import sanitize_carriers from add_electricity import sanitize_carriers
from prepare_sector_network import cluster_heat_buses, define_spatial, prepare_costs from prepare_sector_network import cluster_heat_buses, define_spatial, prepare_costs
from scripts.definitions.heat_sector import HeatSector
from scripts.definitions.heat_system import HeatSystem
from scripts.definitions.heat_system_type import HeatSystemType
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
cc = coco.CountryConverter() cc = coco.CountryConverter()
idx = pd.IndexSlice idx = pd.IndexSlice
@ -416,14 +420,14 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas
def add_heating_capacities_installed_before_baseyear( def add_heating_capacities_installed_before_baseyear(
n, n: pypsa.Network,
baseyear, baseyear: int,
grouping_years, grouping_years: list,
ashp_cop, cop: dict,
gshp_cop, time_dep_hp_cop: bool,
time_dep_hp_cop, costs: pd.DataFrame,
costs, default_lifetime: int,
default_lifetime, existing_heating: pd.DataFrame,
): ):
""" """
Parameters Parameters
@ -435,141 +439,158 @@ def add_heating_capacities_installed_before_baseyear(
currently assumed heating capacities split between residential and currently assumed heating capacities split between residential and
services proportional to heating load in both 50% capacities services proportional to heating load in both 50% capacities
in rural buses 50% in urban buses in rural buses 50% in urban buses
cop: xr.DataArray
DataArray with time-dependent coefficients of performance (COPs) heat pumps. Coordinates are heat sources (see config), heat system types (see :file:`scripts/enums/HeatSystemType.py`), nodes and snapshots.
time_dep_hp_cop: bool
If True, time-dependent (dynamic) COPs are used for heat pumps
""" """
logger.debug(f"Adding heating capacities installed before {baseyear}") logger.debug(f"Adding heating capacities installed before {baseyear}")
existing_heating = pd.read_csv( for heat_system in existing_heating.columns.get_level_values(0).unique():
snakemake.input.existing_heating_distribution, header=[0, 1], index_col=0 heat_system = HeatSystem(heat_system)
)
for name in existing_heating.columns.get_level_values(0).unique(): nodes = pd.Index(
name_type = "central" if name == "urban central" else "decentral" n.buses.location[n.buses.index.str.contains(f"{heat_system} heat")]
)
nodes = pd.Index(n.buses.location[n.buses.index.str.contains(f"{name} heat")]) if (not heat_system == HeatSystem.URBAN_CENTRAL) and options[
"electricity_distribution_grid"
if (name_type != "central") and options["electricity_distribution_grid"]: ]:
nodes_elec = nodes + " low voltage" nodes_elec = nodes + " low voltage"
else: else:
nodes_elec = nodes nodes_elec = nodes
heat_pump_type = "air" if "urban" in name else "ground" too_large_grouping_years = [
gy for gy in grouping_years if gy >= int(baseyear)
# Add heat pumps
costs_name = f"decentral {heat_pump_type}-sourced heat pump"
cop = {"air": ashp_cop, "ground": gshp_cop}
if time_dep_hp_cop:
efficiency = cop[heat_pump_type][nodes]
else:
efficiency = costs.at[costs_name, "efficiency"]
too_large_grouping_years = [gy for gy in grouping_years if gy >= int(baseyear)]
if too_large_grouping_years:
logger.warning(
f"Grouping years >= baseyear are ignored. Dropping {too_large_grouping_years}."
)
valid_grouping_years = pd.Series(
[
int(grouping_year)
for grouping_year in grouping_years
if int(grouping_year) + default_lifetime > int(baseyear)
and int(grouping_year) < int(baseyear)
] ]
) if too_large_grouping_years:
logger.warning(
f"Grouping years >= baseyear are ignored. Dropping {too_large_grouping_years}."
)
valid_grouping_years = pd.Series(
[
int(grouping_year)
for grouping_year in grouping_years
if int(grouping_year) + default_lifetime > int(baseyear)
and int(grouping_year) < int(baseyear)
]
)
assert valid_grouping_years.is_monotonic_increasing assert valid_grouping_years.is_monotonic_increasing
# get number of years of each interval # get number of years of each interval
_years = valid_grouping_years.diff() _years = valid_grouping_years.diff()
# Fill NA from .diff() with value for the first interval # Fill NA from .diff() with value for the first interval
_years[0] = valid_grouping_years[0] - baseyear + default_lifetime _years[0] = valid_grouping_years[0] - baseyear + default_lifetime
# Installation is assumed to be linear for the past # Installation is assumed to be linear for the past
ratios = _years / _years.sum() ratios = _years / _years.sum()
for ratio, grouping_year in zip(ratios, valid_grouping_years): for ratio, grouping_year in zip(ratios, valid_grouping_years):
# Add heat pumps
for heat_source in snakemake.params.heat_pump_sources[
heat_system.system_type.value
]:
costs_name = heat_system.heat_pump_costs_name(heat_source)
n.madd( efficiency = (
"Link", cop.sel(
nodes, heat_system=heat_system.system_type.value,
suffix=f" {name} {heat_pump_type} heat pump-{grouping_year}", heat_source=heat_source,
bus0=nodes_elec, name=nodes,
bus1=nodes + " " + name + " heat", )
carrier=f"{name} {heat_pump_type} heat pump", .to_pandas()
efficiency=efficiency, .reindex(index=n.snapshots)
capital_cost=costs.at[costs_name, "efficiency"] if time_dep_hp_cop
* costs.at[costs_name, "fixed"], else costs.at[costs_name, "efficiency"]
p_nom=existing_heating.loc[nodes, (name, f"{heat_pump_type} heat pump")] )
* ratio
/ costs.at[costs_name, "efficiency"], n.madd(
build_year=int(grouping_year), "Link",
lifetime=costs.at[costs_name, "lifetime"], nodes,
) suffix=f" {heat_system} {heat_source} heat pump-{grouping_year}",
bus0=nodes_elec,
bus1=nodes + " " + heat_system.value + " heat",
carrier=f"{heat_system} {heat_source} heat pump",
efficiency=efficiency,
capital_cost=costs.at[costs_name, "efficiency"]
* costs.at[costs_name, "fixed"],
p_nom=existing_heating.loc[
nodes, (heat_system.value, f"{heat_source} heat pump")
]
* ratio
/ costs.at[costs_name, "efficiency"],
build_year=int(grouping_year),
lifetime=costs.at[costs_name, "lifetime"],
)
# add resistive heater, gas boilers and oil boilers # add resistive heater, gas boilers and oil boilers
n.madd( n.madd(
"Link", "Link",
nodes, nodes,
suffix=f" {name} resistive heater-{grouping_year}", suffix=f" {heat_system} resistive heater-{grouping_year}",
bus0=nodes_elec, bus0=nodes_elec,
bus1=nodes + " " + name + " heat", bus1=nodes + " " + heat_system.value + " heat",
carrier=name + " resistive heater", carrier=heat_system.value + " resistive heater",
efficiency=costs.at[f"{name_type} resistive heater", "efficiency"], efficiency=costs.at[
heat_system.resistive_heater_costs_name, "efficiency"
],
capital_cost=( capital_cost=(
costs.at[f"{name_type} resistive heater", "efficiency"] costs.at[heat_system.resistive_heater_costs_name, "efficiency"]
* costs.at[f"{name_type} resistive heater", "fixed"] * costs.at[heat_system.resistive_heater_costs_name, "fixed"]
), ),
p_nom=( p_nom=(
existing_heating.loc[nodes, (name, "resistive heater")] existing_heating.loc[nodes, (heat_system.value, "resistive heater")]
* ratio * ratio
/ costs.at[f"{name_type} resistive heater", "efficiency"] / costs.at[heat_system.resistive_heater_costs_name, "efficiency"]
), ),
build_year=int(grouping_year), build_year=int(grouping_year),
lifetime=costs.at[f"{name_type} resistive heater", "lifetime"], lifetime=costs.at[heat_system.resistive_heater_costs_name, "lifetime"],
) )
n.madd( n.madd(
"Link", "Link",
nodes, nodes,
suffix=f" {name} gas boiler-{grouping_year}", suffix=f"{heat_system} gas boiler-{grouping_year}",
bus0="EU gas" if "EU gas" in spatial.gas.nodes else nodes + " gas", bus0="EU gas" if "EU gas" in spatial.gas.nodes else nodes + " gas",
bus1=nodes + " " + name + " heat", bus1=nodes + " " + heat_system.value + " heat",
bus2="co2 atmosphere", bus2="co2 atmosphere",
carrier=name + " gas boiler", carrier=heat_system.value + " gas boiler",
efficiency=costs.at[f"{name_type} gas boiler", "efficiency"], efficiency=costs.at[heat_system.gas_boiler_costs_name, "efficiency"],
efficiency2=costs.at["gas", "CO2 intensity"], efficiency2=costs.at["gas", "CO2 intensity"],
capital_cost=( capital_cost=(
costs.at[f"{name_type} gas boiler", "efficiency"] costs.at[heat_system.gas_boiler_costs_name, "efficiency"]
* costs.at[f"{name_type} gas boiler", "fixed"] * costs.at[heat_system.gas_boiler_costs_name, "fixed"]
), ),
p_nom=( p_nom=(
existing_heating.loc[nodes, (name, "gas boiler")] existing_heating.loc[nodes, (heat_system.value, "gas boiler")]
* ratio * ratio
/ costs.at[f"{name_type} gas boiler", "efficiency"] / costs.at[heat_system.gas_boiler_costs_name, "efficiency"]
), ),
build_year=int(grouping_year), build_year=int(grouping_year),
lifetime=costs.at[f"{name_type} gas boiler", "lifetime"], lifetime=costs.at[heat_system.gas_boiler_costs_name, "lifetime"],
) )
n.madd( n.madd(
"Link", "Link",
nodes, nodes,
suffix=f" {name} oil boiler-{grouping_year}", suffix=f" {heat_system} oil boiler-{grouping_year}",
bus0=spatial.oil.nodes, bus0=spatial.oil.nodes,
bus1=nodes + " " + name + " heat", bus1=nodes + " " + heat_system.value + " heat",
bus2="co2 atmosphere", bus2="co2 atmosphere",
carrier=name + " oil boiler", carrier=heat_system.value + " oil boiler",
efficiency=costs.at["decentral oil boiler", "efficiency"], efficiency=costs.at[heat_system.oil_boiler_costs_name, "efficiency"],
efficiency2=costs.at["oil", "CO2 intensity"], efficiency2=costs.at["oil", "CO2 intensity"],
capital_cost=costs.at["decentral oil boiler", "efficiency"] capital_cost=costs.at[heat_system.oil_boiler_costs_name, "efficiency"]
* costs.at["decentral oil boiler", "fixed"], * costs.at[heat_system.oil_boiler_costs_name, "fixed"],
p_nom=( p_nom=(
existing_heating.loc[nodes, (name, "oil boiler")] existing_heating.loc[nodes, (heat_system.value, "oil boiler")]
* ratio * ratio
/ costs.at["decentral oil boiler", "efficiency"] / costs.at[heat_system.oil_boiler_costs_name, "efficiency"]
), ),
build_year=int(grouping_year), build_year=int(grouping_year),
lifetime=costs.at[f"{name_type} gas boiler", "lifetime"], lifetime=costs.at[
f"{heat_system.central_or_decentral} gas boiler", "lifetime"
],
) )
# delete links with p_nom=nan corresponding to extra nodes in country # delete links with p_nom=nan corresponding to extra nodes in country
@ -639,29 +660,22 @@ if __name__ == "__main__":
) )
if options["heating"]: if options["heating"]:
time_dep_hp_cop = options["time_dep_hp_cop"]
ashp_cop = (
xr.open_dataarray(snakemake.input.cop_air_total)
.to_pandas()
.reindex(index=n.snapshots)
)
gshp_cop = (
xr.open_dataarray(snakemake.input.cop_soil_total)
.to_pandas()
.reindex(index=n.snapshots)
)
default_lifetime = snakemake.params.existing_capacities[
"default_heating_lifetime"
]
add_heating_capacities_installed_before_baseyear( add_heating_capacities_installed_before_baseyear(
n, n=n,
baseyear, baseyear=baseyear,
grouping_years_heat, grouping_years=grouping_years_heat,
ashp_cop, cop=xr.open_dataarray(snakemake.input.cop_profiles),
gshp_cop, time_dep_hp_cop=options["time_dep_hp_cop"],
time_dep_hp_cop, costs=costs,
costs, default_lifetime=snakemake.params.existing_capacities[
default_lifetime, "default_heating_lifetime"
],
existing_heating=pd.read_csv(
snakemake.input.existing_heating_distribution,
header=[0, 1],
index_col=0,
),
) )
if options.get("cluster_heat_buses", False): if options.get("cluster_heat_buses", False):

View File

@ -13,11 +13,51 @@ import geopandas as gpd
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from _helpers import configure_logging, set_scenario_config from _helpers import configure_logging, set_scenario_config
from build_energy_totals import build_eurostat
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
AVAILABLE_BIOMASS_YEARS = [2010, 2020, 2030, 2040, 2050] AVAILABLE_BIOMASS_YEARS = [2010, 2020, 2030, 2040, 2050]
def _calc_unsustainable_potential(df, df_unsustainable, share_unsus, resource_type):
"""
Calculate the unsustainable biomass potential for a given resource type or
regex.
Parameters
----------
df : pd.DataFrame
The dataframe with sustainable biomass potentials.
df_unsustainable : pd.DataFrame
The dataframe with unsustainable biomass potentials.
share_unsus : float
The share of unsustainable biomass potential retained.
resource_type : str or regex
The resource type to calculate the unsustainable potential for.
Returns
-------
pd.Series
The unsustainable biomass potential for the given resource type or regex.
"""
if "|" in resource_type:
resource_potential = df_unsustainable.filter(regex=resource_type).sum(axis=1)
else:
resource_potential = df_unsustainable[resource_type]
return (
df.apply(
lambda c: c.sum()
/ df.loc[df.index.str[:2] == c.name[:2]].sum().sum()
* resource_potential.loc[c.name[:2]],
axis=1,
)
.mul(share_unsus)
.clip(lower=0)
)
def build_nuts_population_data(year=2013): def build_nuts_population_data(year=2013):
pop = pd.read_csv( pop = pd.read_csv(
snakemake.input.nuts3_population, snakemake.input.nuts3_population,
@ -211,15 +251,104 @@ def convert_nuts2_to_regions(bio_nuts2, regions):
return bio_regions return bio_regions
def add_unsustainable_potentials(df):
"""
Add unsustainable biomass potentials to the given dataframe. The difference
between the data of JRC and Eurostat is assumed to be unsustainable
biomass.
Parameters
----------
df : pd.DataFrame
The dataframe with sustainable biomass potentials.
unsustainable_biomass : str
Path to the file with unsustainable biomass potentials.
Returns
-------
pd.DataFrame
The dataframe with added unsustainable biomass potentials.
"""
if "GB" in snakemake.config["countries"]:
latest_year = 2019
else:
latest_year = 2021
idees_rename = {"GR": "EL", "GB": "UK"}
df_unsustainable = (
build_eurostat(
countries=snakemake.config["countries"],
input_eurostat=snakemake.input.eurostat,
nprocesses=int(snakemake.threads),
)
.xs(
max(min(latest_year, int(snakemake.wildcards.planning_horizons)), 1990),
level=1,
)
.xs("Primary production", level=2)
.droplevel([1, 2, 3])
)
df_unsustainable.index = df_unsustainable.index.str.strip()
df_unsustainable = df_unsustainable.rename(
{v: k for k, v in idees_rename.items()}, axis=0
)
bio_carriers = [
"Primary solid biofuels",
"Biogases",
"Renewable municipal waste",
"Pure biogasoline",
"Blended biogasoline",
"Pure biodiesels",
"Blended biodiesels",
"Pure bio jet kerosene",
"Blended bio jet kerosene",
"Other liquid biofuels",
]
df_unsustainable = df_unsustainable[bio_carriers]
# Phase out unsustainable biomass potentials linearly from 2020 to 2035 while phasing in sustainable potentials
share_unsus = params.get("share_unsustainable_use_retained").get(investment_year)
df_wo_ch = df.drop(df.filter(regex="CH\d", axis=0).index)
# Calculate unsustainable solid biomass
df_wo_ch["unsustainable solid biomass"] = _calc_unsustainable_potential(
df_wo_ch, df_unsustainable, share_unsus, "Primary solid biofuels"
)
# Calculate unsustainable biogas
df_wo_ch["unsustainable biogas"] = _calc_unsustainable_potential(
df_wo_ch, df_unsustainable, share_unsus, "Biogases"
)
# Calculate unsustainable bioliquids
df_wo_ch["unsustainable bioliquids"] = _calc_unsustainable_potential(
df_wo_ch,
df_unsustainable,
share_unsus,
resource_type="gasoline|diesel|kerosene|liquid",
)
share_sus = params.get("share_sustainable_potential_available").get(investment_year)
df *= share_sus
df = df.join(df_wo_ch.filter(like="unsustainable")).fillna(0)
return df
if __name__ == "__main__": if __name__ == "__main__":
if "snakemake" not in globals(): if "snakemake" not in globals():
from _helpers import mock_snakemake from _helpers import mock_snakemake
snakemake = mock_snakemake( snakemake = mock_snakemake(
"build_biomass_potentials", "build_biomass_potentials",
simpl="", simpl="",
clusters="5", clusters="37",
planning_horizons=2050, planning_horizons=2020,
) )
configure_logging(snakemake) configure_logging(snakemake)
@ -269,6 +398,8 @@ if __name__ == "__main__":
grouper = {v: k for k, vv in params["classes"].items() for v in vv} grouper = {v: k for k, vv in params["classes"].items() for v in vv}
df = df.T.groupby(grouper).sum().T df = df.T.groupby(grouper).sum().T
df = add_unsustainable_potentials(df)
df *= 1e6 # TWh/a to MWh/a df *= 1e6 # TWh/a to MWh/a
df.index.name = "MWh/a" df.index.name = "MWh/a"

View File

@ -1,69 +0,0 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Build coefficient of performance (COP) time series for air- or ground-sourced
heat pumps.
The COP is approximated as a quatratic function of the temperature difference between source and
sink, based on Staffell et al. 2012.
This rule is executed in ``build_sector.smk``.
Relevant Settings
-----------------
.. code:: yaml
heat_pump_sink_T:
Inputs:
-------
- ``resources/<run_name>/temp_soil_total_elec_s<simpl>_<clusters>.nc``: Soil temperature (total) time series.
- ``resources/<run_name>/temp_air_total_elec_s<simpl>_<clusters>.nc``: Ambient air temperature (total) time series.
Outputs:
--------
- ``resources/cop_soil_total_elec_s<simpl>_<clusters>.nc``: COP (ground-sourced) time series (total).
- ``resources/cop_air_total_elec_s<simpl>_<clusters>.nc``: COP (air-sourced) time series (total).
References
----------
[1] Staffell et al., Energy & Environmental Science 11 (2012): A review of domestic heat pumps, https://doi.org/10.1039/C2EE22653G.
"""
import xarray as xr
from _helpers import set_scenario_config
def coefficient_of_performance(delta_T, source="air"):
if source == "air":
return 6.81 - 0.121 * delta_T + 0.000630 * delta_T**2
elif source == "soil":
return 8.77 - 0.150 * delta_T + 0.000734 * delta_T**2
else:
raise NotImplementedError("'source' must be one of ['air', 'soil']")
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_cop_profiles",
simpl="",
clusters=48,
)
set_scenario_config(snakemake)
for source in ["air", "soil"]:
source_T = xr.open_dataarray(snakemake.input[f"temp_{source}_total"])
delta_T = snakemake.params.heat_pump_sink_T - source_T
cop = coefficient_of_performance(delta_T, source)
cop.to_netcdf(snakemake.output[f"cop_{source}_total"])

View File

@ -0,0 +1,111 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from abc import ABC, abstractmethod
from typing import Union
import numpy as np
import xarray as xr
class BaseCopApproximator(ABC):
"""
Abstract class for approximating the coefficient of performance (COP) of a
heat pump.
Attributes:
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
Methods:
-------
__init__(self, forward_temperature_celsius, source_inlet_temperature_celsius)
Initialize CopApproximator.
approximate_cop(self)
Approximate heat pump coefficient of performance (COP).
celsius_to_kelvin(t_celsius)
Convert temperature from Celsius to Kelvin.
logarithmic_mean(t_hot, t_cold)
Calculate the logarithmic mean temperature difference.
"""
def __init__(
self,
forward_temperature_celsius: Union[xr.DataArray, np.array],
source_inlet_temperature_celsius: Union[xr.DataArray, np.array],
):
"""
Initialize CopApproximator.
Parameters:
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
"""
pass
@abstractmethod
def approximate_cop(self) -> Union[xr.DataArray, np.array]:
"""
Approximate heat pump coefficient of performance (COP).
Returns:
-------
Union[xr.DataArray, np.array]
The calculated COP values.
"""
pass
@staticmethod
def celsius_to_kelvin(
t_celsius: Union[float, xr.DataArray, np.array]
) -> Union[float, xr.DataArray, np.array]:
"""
Convert temperature from Celsius to Kelvin.
Parameters:
----------
t_celsius : Union[float, xr.DataArray, np.array]
Temperature in Celsius.
Returns:
-------
Union[float, xr.DataArray, np.array]
Temperature in Kelvin.
"""
if (np.asarray(t_celsius) > 200).any():
raise ValueError(
"t_celsius > 200. Are you sure you are using the right units?"
)
return t_celsius + 273.15
@staticmethod
def logarithmic_mean(
t_hot: Union[float, xr.DataArray, np.ndarray],
t_cold: Union[float, xr.DataArray, np.ndarray],
) -> Union[float, xr.DataArray, np.ndarray]:
"""
Calculate the logarithmic mean temperature difference.
Parameters:
----------
t_hot : Union[float, xr.DataArray, np.ndarray]
Hot temperature.
t_cold : Union[float, xr.DataArray, np.ndarray]
Cold temperature.
Returns:
-------
Union[float, xr.DataArray, np.ndarray]
Logarithmic mean temperature difference.
"""
if (np.asarray(t_hot <= t_cold)).any():
raise ValueError("t_hot must be greater than t_cold")
return (t_hot - t_cold) / np.log(t_hot / t_cold)

View File

@ -0,0 +1,392 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from typing import Union
import numpy as np
import xarray as xr
from BaseCopApproximator import BaseCopApproximator
class CentralHeatingCopApproximator(BaseCopApproximator):
"""
Approximate the coefficient of performance (COP) for a heat pump in a
central heating system (district heating).
Uses an approximation method proposed by Jensen et al. (2018) and
default parameters from Pieper et al. (2020). The method is based on
a thermodynamic heat pump model with some hard-to-know parameters
being approximated.
Attributes:
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
return_temperature_celsius : Union[xr.DataArray, np.array]
The return temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
source_outlet_temperature_celsius : Union[xr.DataArray, np.array]
The source outlet temperature in Celsius.
delta_t_pinch_point : float, optional
The pinch point temperature difference, by default 5.
isentropic_compressor_efficiency : float, optional
The isentropic compressor efficiency, by default 0.8.
heat_loss : float, optional
The heat loss, by default 0.0.
Methods:
-------
__init__(
forward_temperature_celsius: Union[xr.DataArray, np.array],
source_inlet_temperature_celsius: Union[xr.DataArray, np.array],
return_temperature_celsius: Union[xr.DataArray, np.array],
source_outlet_temperature_celsius: Union[xr.DataArray, np.array],
delta_t_pinch_point: float = 5,
isentropic_compressor_efficiency: float = 0.8,
heat_loss: float = 0.0,
) -> None:
Initializes the CentralHeatingCopApproximator object.
approximate_cop(self) -> Union[xr.DataArray, np.array]:
Calculate the coefficient of performance (COP) for the system.
_approximate_delta_t_refrigerant_source(
self, delta_t_source: Union[xr.DataArray, np.array]
) -> Union[xr.DataArray, np.array]:
Approximates the temperature difference between the refrigerant and the source.
_approximate_delta_t_refrigerant_sink(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.2, "isobutane": -0.0011},
b: float = {"ammonia": 0.2, "isobutane": 0.3},
c: float = {"ammonia": 0.016, "isobutane": 2.4},
) -> Union[xr.DataArray, np.array]:
Approximates the temperature difference between the refrigerant and heat sink.
_ratio_evaporation_compression_work_approximation(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.0014, "isobutane": 0.0035},
) -> Union[xr.DataArray, np.array]:
Calculate the ratio of evaporation to compression work based on approximation.
_approximate_delta_t_refrigerant_sink(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.2, "isobutane": -0.0011},
b: float = {"ammonia": 0.2, "isobutane": 0.3},
c: float = {"ammonia": 0.016, "isobutane": 2.4},
) -> Union[xr.DataArray, np.array]:
Approximates the temperature difference between the refrigerant and heat sink.
_ratio_evaporation_compression_work_approximation(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.0014, "isobutane": 0.0035},
) -> Union[xr.DataArray, np.array]:
Calculate the ratio of evaporation to compression work based on approximation.
"""
def __init__(
self,
forward_temperature_celsius: Union[xr.DataArray, np.array],
source_inlet_temperature_celsius: Union[xr.DataArray, np.array],
return_temperature_celsius: Union[xr.DataArray, np.array],
source_outlet_temperature_celsius: Union[xr.DataArray, np.array],
delta_t_pinch_point: float = 5,
isentropic_compressor_efficiency: float = 0.8,
heat_loss: float = 0.0,
) -> None:
"""
Initializes the CentralHeatingCopApproximator object.
Parameters:
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
return_temperature_celsius : Union[xr.DataArray, np.array]
The return temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
source_outlet_temperature_celsius : Union[xr.DataArray, np.array]
The source outlet temperature in Celsius.
delta_t_pinch_point : float, optional
The pinch point temperature difference, by default 5.
isentropic_compressor_efficiency : float, optional
The isentropic compressor efficiency, by default 0.8.
heat_loss : float, optional
The heat loss, by default 0.0.
"""
self.t_source_in_kelvin = BaseCopApproximator.celsius_to_kelvin(
source_inlet_temperature_celsius
)
self.t_sink_out_kelvin = BaseCopApproximator.celsius_to_kelvin(
forward_temperature_celsius
)
self.t_sink_in_kelvin = BaseCopApproximator.celsius_to_kelvin(
return_temperature_celsius
)
self.t_source_out = BaseCopApproximator.celsius_to_kelvin(
source_outlet_temperature_celsius
)
self.isentropic_efficiency_compressor_kelvin = isentropic_compressor_efficiency
self.heat_loss = heat_loss
self.delta_t_pinch = delta_t_pinch_point
def approximate_cop(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the coefficient of performance (COP) for the system.
Returns:
--------
Union[xr.DataArray, np.array]: The calculated COP values.
"""
return (
self.ideal_lorenz_cop
* (
(
1
+ (self.delta_t_refrigerant_sink + self.delta_t_pinch)
/ self.t_sink_mean_kelvin
)
/ (
1
+ (
self.delta_t_refrigerant_sink
+ self.delta_t_refrigerant_source
+ 2 * self.delta_t_pinch
)
/ self.delta_t_lift
)
)
* self.isentropic_efficiency_compressor_kelvin
* (1 - self.ratio_evaporation_compression_work)
+ 1
- self.isentropic_efficiency_compressor_kelvin
- self.heat_loss
)
@property
def t_sink_mean_kelvin(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the logarithmic mean temperature difference between the cold
and hot sinks.
Returns
-------
Union[xr.DataArray, np.array]
The mean temperature difference.
"""
return BaseCopApproximator.logarithmic_mean(
t_cold=self.t_sink_in_kelvin, t_hot=self.t_sink_out_kelvin
)
@property
def t_source_mean_kelvin(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the logarithmic mean temperature of the heat source.
Returns
-------
Union[xr.DataArray, np.array]
The mean temperature of the heat source.
"""
return BaseCopApproximator.logarithmic_mean(
t_hot=self.t_source_in_kelvin, t_cold=self.t_source_out
)
@property
def delta_t_lift(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the temperature lift as the difference between the
logarithmic sink and source temperatures.
Returns
-------
Union[xr.DataArray, np.array]
The temperature difference between the sink and source.
"""
return self.t_sink_mean_kelvin - self.t_source_mean_kelvin
@property
def ideal_lorenz_cop(self) -> Union[xr.DataArray, np.array]:
"""
Ideal Lorenz coefficient of performance (COP).
The ideal Lorenz COP is calculated as the ratio of the mean sink temperature
to the lift temperature difference.
Returns
-------
np.array
The ideal Lorenz COP.
"""
return self.t_sink_mean_kelvin / self.delta_t_lift
@property
def delta_t_refrigerant_source(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the temperature difference between the refrigerant source
inlet and outlet.
Returns
-------
Union[xr.DataArray, np.array]
The temperature difference between the refrigerant source inlet and outlet.
"""
return self._approximate_delta_t_refrigerant_source(
delta_t_source=self.t_source_in_kelvin - self.t_source_out
)
@property
def delta_t_refrigerant_sink(self) -> Union[xr.DataArray, np.array]:
"""
Temperature difference between the refrigerant and the sink based on
approximation.
Returns
-------
Union[xr.DataArray, np.array]
The temperature difference between the refrigerant and the sink.
"""
return self._approximate_delta_t_refrigerant_sink()
@property
def ratio_evaporation_compression_work(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the ratio of evaporation to compression work based on
approximation.
Returns
-------
Union[xr.DataArray, np.array]
The calculated ratio of evaporation to compression work.
"""
return self._ratio_evaporation_compression_work_approximation()
@property
def delta_t_sink(self) -> Union[xr.DataArray, np.array]:
"""
Calculate the temperature difference at the sink.
Returns
-------
Union[xr.DataArray, np.array]
The temperature difference at the sink.
"""
return self.t_sink_out_kelvin - self.t_sink_in_kelvin
def _approximate_delta_t_refrigerant_source(
self, delta_t_source: Union[xr.DataArray, np.array]
) -> Union[xr.DataArray, np.array]:
"""
Approximates the temperature difference between the refrigerant and the
source.
Parameters
----------
delta_t_source : Union[xr.DataArray, np.array]
The temperature difference for the refrigerant source.
Returns
-------
Union[xr.DataArray, np.array]
The approximate temperature difference between the refrigerant and heat source.
"""
return delta_t_source / 2
def _approximate_delta_t_refrigerant_sink(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.2, "isobutane": -0.0011},
b: float = {"ammonia": 0.2, "isobutane": 0.3},
c: float = {"ammonia": 0.016, "isobutane": 2.4},
) -> Union[xr.DataArray, np.array]:
"""
Approximates the temperature difference between the refrigerant and
heat sink.
Parameters:
----------
refrigerant : str, optional
The refrigerant used in the system. Either 'isobutane' or 'ammonia. Default is 'ammonia'.
a : float, optional
Coefficient for the temperature difference between the sink and source, default is 0.2.
b : float, optional
Coefficient for the temperature difference at the sink, default is 0.2.
c : float, optional
Constant term, default is 0.016.
Returns:
-------
Union[xr.DataArray, np.array]
The approximate temperature difference between the refrigerant and heat sink.
Notes:
------
This function assumes ammonia as the refrigerant.
The approximate temperature difference at the refrigerant sink is calculated using the following formula:
a * (t_sink_out - t_source_out + 2 * delta_t_pinch) + b * delta_t_sink + c
"""
if refrigerant not in a.keys():
raise ValueError(
f"Invalid refrigerant '{refrigerant}'. Must be one of {a.keys()}"
)
return (
a[refrigerant]
* (self.t_sink_out_kelvin - self.t_source_out + 2 * self.delta_t_pinch)
+ b[refrigerant] * self.delta_t_sink
+ c[refrigerant]
)
def _ratio_evaporation_compression_work_approximation(
self,
refrigerant: str = "ammonia",
a: float = {"ammonia": 0.0014, "isobutane": 0.0035},
b: float = {"ammonia": -0.0015, "isobutane": -0.0033},
c: float = {"ammonia": 0.039, "isobutane": 0.053},
) -> Union[xr.DataArray, np.array]:
"""
Calculate the ratio of evaporation to compression work approximation.
Parameters:
----------
refrigerant : str, optional
The refrigerant used in the system. Either 'isobutane' or 'ammonia. Default is 'ammonia'.
a : float, optional
Coefficient 'a' in the approximation equation. Default is 0.0014.
b : float, optional
Coefficient 'b' in the approximation equation. Default is -0.0015.
c : float, optional
Coefficient 'c' in the approximation equation. Default is 0.039.
Returns:
-------
Union[xr.DataArray, np.array]
The approximated ratio of evaporation to compression work.
Notes:
------
This function assumes ammonia as the refrigerant.
The approximation equation used is:
ratio = a * (t_sink_out - t_source_out + 2 * delta_t_pinch) + b * delta_t_sink + c
"""
if refrigerant not in a.keys():
raise ValueError(
f"Invalid refrigerant '{refrigerant}'. Must be one of {a.keys()}"
)
return (
a[refrigerant]
* (self.t_sink_out_kelvin - self.t_source_out + 2 * self.delta_t_pinch)
+ b[refrigerant] * self.delta_t_sink
+ c[refrigerant]
)

View File

@ -0,0 +1,110 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from typing import Union
import numpy as np
import xarray as xr
from BaseCopApproximator import BaseCopApproximator
class DecentralHeatingCopApproximator(BaseCopApproximator):
"""
Approximate the coefficient of performance (COP) for a heat pump in a
decentral heating system (individual/household heating).
Uses a quadratic regression on the temperature difference between the source and sink based on empirical data proposed by Staffell et al. 2012.
Attributes
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
source_type : str
The source of the heat pump. Must be either 'air' or 'ground'.
Methods
-------
__init__(forward_temperature_celsius, source_inlet_temperature_celsius, source_type)
Initialize the DecentralHeatingCopApproximator object.
approximate_cop()
Compute the COP values using quadratic regression for air-/ground-source heat pumps.
_approximate_cop_air_source()
Evaluate quadratic regression for an air-sourced heat pump.
_approximate_cop_ground_source()
Evaluate quadratic regression for a ground-sourced heat pump.
References
----------
[1] Staffell et al., Energy & Environmental Science 11 (2012): A review of domestic heat pumps, https://doi.org/10.1039/C2EE22653G.
"""
def __init__(
self,
forward_temperature_celsius: Union[xr.DataArray, np.array],
source_inlet_temperature_celsius: Union[xr.DataArray, np.array],
source_type: str,
):
"""
Initialize the DecentralHeatingCopApproximator object.
Parameters
----------
forward_temperature_celsius : Union[xr.DataArray, np.array]
The forward temperature in Celsius.
source_inlet_temperature_celsius : Union[xr.DataArray, np.array]
The source inlet temperature in Celsius.
source_type : str
The source of the heat pump. Must be either 'air' or 'ground'.
"""
self.delta_t = forward_temperature_celsius - source_inlet_temperature_celsius
if source_type not in ["air", "ground"]:
raise ValueError("'source_type' must be one of ['air', 'ground']")
else:
self.source_type = source_type
def approximate_cop(self) -> Union[xr.DataArray, np.array]:
"""
Compute the COP values using quadratic regression for air-/ground-
source heat pumps.
Returns
-------
Union[xr.DataArray, np.array]
The calculated COP values.
"""
if self.source_type == "air":
return self._approximate_cop_air_source()
elif self.source_type == "ground":
return self._approximate_cop_ground_source()
def _approximate_cop_air_source(self) -> Union[xr.DataArray, np.array]:
"""
Evaluate quadratic regression for an air-sourced heat pump.
COP = 6.81 - 0.121 * delta_T + 0.000630 * delta_T^2
Returns
-------
Union[xr.DataArray, np.array]
The calculated COP values.
"""
return 6.81 - 0.121 * self.delta_t + 0.000630 * self.delta_t**2
def _approximate_cop_ground_source(self) -> Union[xr.DataArray, np.array]:
"""
Evaluate quadratic regression for a ground-sourced heat pump.
COP = 8.77 - 0.150 * delta_T + 0.000734 * delta_T^2
Returns
-------
Union[xr.DataArray, np.array]
The calculated COP values.
"""
return 8.77 - 0.150 * self.delta_t + 0.000734 * self.delta_t**2

View File

@ -0,0 +1,95 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
import sys
import numpy as np
import pandas as pd
import xarray as xr
from _helpers import set_scenario_config
from CentralHeatingCopApproximator import CentralHeatingCopApproximator
from DecentralHeatingCopApproximator import DecentralHeatingCopApproximator
from scripts.definitions.heat_system_type import HeatSystemType
sys.path.append("..")
def get_cop(
heat_system_type: str,
heat_source: str,
source_inlet_temperature_celsius: xr.DataArray,
) -> xr.DataArray:
"""
Calculate the coefficient of performance (COP) for a heating system.
Parameters
----------
heat_system_type : str
The type of heating system.
heat_source : str
The heat source used in the heating system.
source_inlet_temperature_celsius : xr.DataArray
The inlet temperature of the heat source in Celsius.
Returns
-------
xr.DataArray
The calculated coefficient of performance (COP) for the heating system.
"""
if HeatSystemType(heat_system_type).is_central:
return CentralHeatingCopApproximator(
forward_temperature_celsius=snakemake.params.forward_temperature_central_heating,
return_temperature_celsius=snakemake.params.return_temperature_central_heating,
source_inlet_temperature_celsius=source_inlet_temperature_celsius,
source_outlet_temperature_celsius=source_inlet_temperature_celsius
- snakemake.params.heat_source_cooling_central_heating,
).approximate_cop()
else:
return DecentralHeatingCopApproximator(
forward_temperature_celsius=snakemake.params.heat_pump_sink_T_decentral_heating,
source_inlet_temperature_celsius=source_inlet_temperature_celsius,
source_type=heat_source,
).approximate_cop()
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"build_cop_profiles",
simpl="",
clusters=48,
)
set_scenario_config(snakemake)
cop_all_system_types = []
for heat_system_type, heat_sources in snakemake.params.heat_pump_sources.items():
cop_this_system_type = []
for heat_source in heat_sources:
source_inlet_temperature_celsius = xr.open_dataarray(
snakemake.input[f"temp_{heat_source.replace('ground', 'soil')}_total"]
)
cop_da = get_cop(
heat_system_type=heat_system_type,
heat_source=heat_source,
source_inlet_temperature_celsius=source_inlet_temperature_celsius,
)
cop_this_system_type.append(cop_da)
cop_all_system_types.append(
xr.concat(
cop_this_system_type, dim=pd.Index(heat_sources, name="heat_source")
)
)
cop_dataarray = xr.concat(
cop_all_system_types,
dim=pd.Index(snakemake.params.heat_pump_sources.keys(), name="heat_system"),
)
cop_dataarray.to_netcdf(snakemake.output.cop_profiles)

View File

@ -26,7 +26,7 @@ Inputs
.. image:: img/countries.png .. image:: img/countries.png
:scale: 33 % :scale: 33 %
- ``data/bundle/eez/World_EEZ_v8_2014.shp``: World `exclusive economic zones <https://en.wikipedia.org/wiki/Exclusive_economic_zone>`_ (EEZ) - ``data/eez/World_EEZ_v12_20231025_gpkg/eez_v12.gpkg ``: World `exclusive economic zones <https://en.wikipedia.org/wiki/Exclusive_economic_zone>`_ (EEZ)
.. image:: img/eez.png .. image:: img/eez.png
:scale: 33 % :scale: 33 %
@ -73,22 +73,16 @@ from functools import reduce
from itertools import takewhile from itertools import takewhile
from operator import attrgetter from operator import attrgetter
import country_converter as coco
import geopandas as gpd import geopandas as gpd
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pycountry as pyc
from _helpers import configure_logging, set_scenario_config from _helpers import configure_logging, set_scenario_config
from shapely.geometry import MultiPolygon, Polygon from shapely.geometry import MultiPolygon, Polygon
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
cc = coco.CountryConverter()
def _get_country(target, **keys):
assert len(keys) == 1
try:
return getattr(pyc.countries.get(**keys), target)
except (KeyError, AttributeError):
return np.nan
def _simplify_polys(polys, minarea=0.1, tolerance=None, filterremote=True): def _simplify_polys(polys, minarea=0.1, tolerance=None, filterremote=True):
@ -135,22 +129,15 @@ def countries(naturalearth, country_list):
return s return s
def eez(country_shapes, eez, country_list): def eez(eez, country_list):
df = gpd.read_file(eez) df = gpd.read_file(eez)
df = df.loc[ iso3_list = cc.convert(country_list, src="ISO2", to="ISO3")
df["ISO_3digit"].isin( df = df.query("ISO_TER1 in @iso3_list and POL_TYPE == '200NM'").copy()
[_get_country("alpha_3", alpha_2=c) for c in country_list] df["name"] = cc.convert(df.ISO_TER1, src="ISO3", to="ISO2")
)
]
df["name"] = df["ISO_3digit"].map(lambda c: _get_country("alpha_2", alpha_3=c))
s = df.set_index("name").geometry.map( s = df.set_index("name").geometry.map(
lambda s: _simplify_polys(s, filterremote=False) lambda s: _simplify_polys(s, filterremote=False)
) )
s = gpd.GeoSeries( s = s.to_frame("geometry").set_crs(df.crs)
{k: v for k, v in s.items() if v.distance(country_shapes[k]) < 1e-3},
crs=df.crs,
)
s = s.to_frame("geometry")
s.index.name = "name" s.index.name = "name"
return s return s
@ -262,9 +249,7 @@ if __name__ == "__main__":
country_shapes = countries(snakemake.input.naturalearth, snakemake.params.countries) country_shapes = countries(snakemake.input.naturalearth, snakemake.params.countries)
country_shapes.reset_index().to_file(snakemake.output.country_shapes) country_shapes.reset_index().to_file(snakemake.output.country_shapes)
offshore_shapes = eez( offshore_shapes = eez(snakemake.input.eez, snakemake.params.countries)
country_shapes, snakemake.input.eez, snakemake.params.countries
)
offshore_shapes.reset_index().to_file(snakemake.output.offshore_shapes) offshore_shapes.reset_index().to_file(snakemake.output.offshore_shapes)
europe_shape = gpd.GeoDataFrame( europe_shape = gpd.GeoDataFrame(

View File

@ -0,0 +1,28 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from enum import Enum
class HeatSector(Enum):
"""
Enumeration class representing different heat sectors.
Attributes:
RESIDENTIAL (str): Represents the residential heat sector.
SERVICES (str): Represents the services heat sector.
"""
RESIDENTIAL = "residential"
SERVICES = "services"
def __str__(self) -> str:
"""
Returns the string representation of the heat sector.
Returns:
str: The string representation of the heat sector.
"""
return self.value

View File

@ -0,0 +1,267 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from enum import Enum
from scripts.definitions.heat_sector import HeatSector
from scripts.definitions.heat_system_type import HeatSystemType
class HeatSystem(Enum):
"""
Enumeration representing different heat systems.
Attributes
----------
RESIDENTIAL_RURAL : str
Heat system for residential areas in rural locations.
SERVICES_RURAL : str
Heat system for service areas in rural locations.
RESIDENTIAL_URBAN_DECENTRAL : str
Heat system for residential areas in urban decentralized locations.
SERVICES_URBAN_DECENTRAL : str
Heat system for service areas in urban decentralized locations.
URBAN_CENTRAL : str
Heat system for urban central areas.
Methods
-------
__str__()
Returns the string representation of the heat system.
central_or_decentral()
Returns whether the heat system is central or decentralized.
system_type()
Returns the type of the heat system.
sector()
Returns the sector of the heat system.
rural()
Returns whether the heat system is for rural areas.
urban_decentral()
Returns whether the heat system is for urban decentralized areas.
urban()
Returns whether the heat system is for urban areas.
heat_demand_weighting(urban_fraction=None, dist_fraction=None)
Calculates the heat demand weighting based on urban fraction and distribution fraction.
heat_pump_costs_name(heat_source)
Generates the name for the heat pump costs based on the heat source.
"""
RESIDENTIAL_RURAL = "residential rural"
SERVICES_RURAL = "services rural"
RESIDENTIAL_URBAN_DECENTRAL = "residential urban decentral"
SERVICES_URBAN_DECENTRAL = "services urban decentral"
URBAN_CENTRAL = "urban central"
def __init__(self, *args):
super().__init__(*args)
def __str__(self) -> str:
"""
Returns the string representation of the heat system.
Returns
-------
str
The string representation of the heat system.
"""
return self.value
@property
def central_or_decentral(self) -> str:
"""
Returns whether the heat system is central or decentralized.
Returns
-------
str
"central" if the heat system is central, "decentral" otherwise.
"""
if self == HeatSystem.URBAN_CENTRAL:
return "central"
else:
return "decentral"
@property
def system_type(self) -> HeatSystemType:
"""
Returns the type of the heat system.
Returns
-------
str
The type of the heat system.
Raises
------
RuntimeError
If the heat system is invalid.
"""
if self == HeatSystem.URBAN_CENTRAL:
return HeatSystemType.URBAN_CENTRAL
elif (
self == HeatSystem.RESIDENTIAL_URBAN_DECENTRAL
or self == HeatSystem.SERVICES_URBAN_DECENTRAL
):
return HeatSystemType.URBAN_DECENTRAL
elif self == HeatSystem.RESIDENTIAL_RURAL or self == HeatSystem.SERVICES_RURAL:
return HeatSystemType.RURAL
else:
raise RuntimeError(f"Invalid heat system: {self}")
@property
def sector(self) -> HeatSector:
"""
Returns the sector of the heat system.
Returns
-------
HeatSector
The sector of the heat system.
"""
if (
self == HeatSystem.RESIDENTIAL_RURAL
or self == HeatSystem.RESIDENTIAL_URBAN_DECENTRAL
):
return HeatSector.RESIDENTIAL
elif (
self == HeatSystem.SERVICES_RURAL
or self == HeatSystem.SERVICES_URBAN_DECENTRAL
):
return HeatSector.SERVICES
else:
"tot"
@property
def is_rural(self) -> bool:
"""
Returns whether the heat system is for rural areas.
Returns
-------
bool
True if the heat system is for rural areas, False otherwise.
"""
if self == HeatSystem.RESIDENTIAL_RURAL or self == HeatSystem.SERVICES_RURAL:
return True
else:
return False
@property
def is_urban_decentral(self) -> bool:
"""
Returns whether the heat system is for urban decentralized areas.
Returns
-------
bool
True if the heat system is for urban decentralized areas, False otherwise.
"""
if (
self == HeatSystem.RESIDENTIAL_URBAN_DECENTRAL
or self == HeatSystem.SERVICES_URBAN_DECENTRAL
):
return True
else:
return False
@property
def is_urban(self) -> bool:
"""
Returns whether the heat system is for urban areas.
Returns
-------
bool True if the heat system is for urban areas, False otherwise.
"""
return not self.is_rural
def heat_demand_weighting(self, urban_fraction=None, dist_fraction=None) -> float:
"""
Calculates the heat demand weighting based on urban fraction and
distribution fraction.
Parameters
----------
urban_fraction : float, optional
The fraction of urban heat demand.
dist_fraction : float, optional
The fraction of distributed heat demand.
Returns
-------
float
The heat demand weighting.
Raises
------
RuntimeError
If the heat system is invalid.
"""
if "rural" in self.value:
return 1 - urban_fraction
elif "urban central" in self.value:
return dist_fraction
elif "urban decentral" in self.value:
return urban_fraction - dist_fraction
else:
raise RuntimeError(f"Invalid heat system: {self}")
def heat_pump_costs_name(self, heat_source: str) -> str:
"""
Generates the name for the heat pump costs based on the heat source and
system.
Used to retrieve data from `technology-data <https://github.com/PyPSA/technology-data>`.
Parameters
----------
heat_source : str
The heat source.
Returns
-------
str
The name for the heat pump costs.
"""
return f"{self.central_or_decentral} {heat_source}-sourced heat pump"
@property
def resistive_heater_costs_name(self) -> str:
"""
Generates the name for the resistive heater costs based on the heat
system.
Used to retrieve data from `technology-data <https://github.com/PyPSA/technology-data>`.
Returns
-------
str
The name for the heater costs.
"""
return f"{self.central_or_decentral} resistive heater"
@property
def gas_boiler_costs_name(self) -> str:
"""
Generates the name for the gas boiler costs based on the heat system.
Used to retrieve data from `technology-data <https://github.com/PyPSA/technology-data>`.
Returns
-------
str
The name for the gas boiler costs.
"""
return f"{self.central_or_decentral} gas boiler"
@property
def oil_boiler_costs_name(self) -> str:
"""
Generates the name for the oil boiler costs based on the heat system.
Used to retrieve data from `technology-data <https://github.com/PyPSA/technology-data>`.
Returns
-------
str
The name for the oil boiler costs.
"""
return "decentral oil boiler"

View File

@ -0,0 +1,35 @@
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
from enum import Enum
class HeatSystemType(Enum):
"""
Enumeration representing different types of heat systems.
"""
URBAN_CENTRAL = "urban central"
URBAN_DECENTRAL = "urban decentral"
RURAL = "rural"
def __str__(self) -> str:
"""
Returns the string representation of the heat system type.
Returns:
str: The string representation of the heat system type.
"""
return self.value
@property
def is_central(self) -> bool:
"""
Returns whether the heat system type is central.
Returns:
bool: True if the heat system type is central, False otherwise.
"""
return self == HeatSystemType.URBAN_CENTRAL

View File

@ -1,95 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Extracts capacities of HVDC links from `Wikipedia.
<https://en.wikipedia.org/wiki/List_of_HVDC_projects>`_.
Relevant Settings
-----------------
.. code:: yaml
enable:
prepare_links_p_nom:
.. seealso::
Documentation of the configuration file ``config/config.yaml`` at
:ref:`toplevel_cf`
Inputs
------
*None*
Outputs
-------
- ``data/links_p_nom.csv``: A plain download of https://en.wikipedia.org/wiki/List_of_HVDC_projects#Europe plus extracted coordinates.
Description
-----------
*None*
"""
import logging
import pandas as pd
from _helpers import configure_logging, set_scenario_config
logger = logging.getLogger(__name__)
def multiply(s):
return s.str[0].astype(float) * s.str[1].astype(float)
def extract_coordinates(s):
regex = (
r"(\d{1,2})°(\d{1,2})(\d{1,2})″(N|S) " r"(\d{1,2})°(\d{1,2})(\d{1,2})″(E|W)"
)
e = s.str.extract(regex, expand=True)
lat = (
e[0].astype(float) + (e[1].astype(float) + e[2].astype(float) / 60.0) / 60.0
) * e[3].map({"N": +1.0, "S": -1.0})
lon = (
e[4].astype(float) + (e[5].astype(float) + e[6].astype(float) / 60.0) / 60.0
) * e[7].map({"E": +1.0, "W": -1.0})
return lon, lat
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake # rule must be enabled in config
snakemake = mock_snakemake("prepare_links_p_nom", simpl="")
configure_logging(snakemake)
set_scenario_config(snakemake)
links_p_nom = pd.read_html(
"https://en.wikipedia.org/wiki/List_of_HVDC_projects", header=0, match="SwePol"
)[0]
mw = "Power (MW)"
m_b = links_p_nom[mw].str.contains("x").fillna(False)
links_p_nom.loc[m_b, mw] = links_p_nom.loc[m_b, mw].str.split("x").pipe(multiply)
links_p_nom[mw] = (
links_p_nom[mw].str.extract("[-/]?([\d.]+)", expand=False).astype(float)
)
links_p_nom["x1"], links_p_nom["y1"] = extract_coordinates(
links_p_nom["Converterstation 1"]
)
links_p_nom["x2"], links_p_nom["y2"] = extract_coordinates(
links_p_nom["Converterstation 2"]
)
links_p_nom.dropna(subset=["x1", "y1", "x2", "y2"]).to_csv(
snakemake.output[0], index=False
)

View File

@ -37,6 +37,10 @@ from pypsa.geo import haversine_pts
from pypsa.io import import_components_from_dataframe from pypsa.io import import_components_from_dataframe
from scipy.stats import beta from scipy.stats import beta
from scripts.definitions.heat_sector import HeatSector
from scripts.definitions.heat_system import HeatSystem
from scripts.definitions.heat_system_type import HeatSystemType
spatial = SimpleNamespace() spatial = SimpleNamespace()
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -56,19 +60,27 @@ def define_spatial(nodes, options):
# biomass # biomass
spatial.biomass = SimpleNamespace() spatial.biomass = SimpleNamespace()
spatial.msw = SimpleNamespace()
if options.get("biomass_spatial", options["biomass_transport"]): if options.get("biomass_spatial", options["biomass_transport"]):
spatial.biomass.nodes = nodes + " solid biomass" spatial.biomass.nodes = nodes + " solid biomass"
spatial.biomass.bioliquids = nodes + " bioliquids"
spatial.biomass.locations = nodes spatial.biomass.locations = nodes
spatial.biomass.industry = nodes + " solid biomass for industry" spatial.biomass.industry = nodes + " solid biomass for industry"
spatial.biomass.industry_cc = nodes + " solid biomass for industry CC" spatial.biomass.industry_cc = nodes + " solid biomass for industry CC"
spatial.msw.nodes = nodes + " municipal solid waste"
spatial.msw.locations = nodes
else: else:
spatial.biomass.nodes = ["EU solid biomass"] spatial.biomass.nodes = ["EU solid biomass"]
spatial.biomass.bioliquids = ["EU unsustainable bioliquids"]
spatial.biomass.locations = ["EU"] spatial.biomass.locations = ["EU"]
spatial.biomass.industry = ["solid biomass for industry"] spatial.biomass.industry = ["solid biomass for industry"]
spatial.biomass.industry_cc = ["solid biomass for industry CC"] spatial.biomass.industry_cc = ["solid biomass for industry CC"]
spatial.msw.nodes = ["EU municipal solid waste"]
spatial.msw.locations = ["EU"]
spatial.biomass.df = pd.DataFrame(vars(spatial.biomass), index=nodes) spatial.biomass.df = pd.DataFrame(vars(spatial.biomass), index=nodes)
spatial.msw.df = pd.DataFrame(vars(spatial.msw), index=nodes)
# co2 # co2
@ -2102,7 +2114,7 @@ def build_heat_demand(n):
.unstack(level=1) .unstack(level=1)
) )
sectors = ["residential", "services"] sectors = [sector.value for sector in HeatSector]
uses = ["water", "space"] uses = ["water", "space"]
heat_demand = {} heat_demand = {}
@ -2130,10 +2142,21 @@ def build_heat_demand(n):
return heat_demand return heat_demand
def add_heat(n, costs): def add_heat(n: pypsa.Network, costs: pd.DataFrame, cop: xr.DataArray):
"""
Add heat sector to the network.
Parameters:
n (pypsa.Network): The PyPSA network object.
costs (pd.DataFrame): DataFrame containing cost information.
cop (xr.DataArray): DataArray containing coefficient of performance (COP) values.
Returns:
None
"""
logger.info("Add heat sector") logger.info("Add heat sector")
sectors = ["residential", "services"] sectors = [sector.value for sector in HeatSector]
heat_demand = build_heat_demand(n) heat_demand = build_heat_demand(n)
@ -2152,23 +2175,6 @@ def add_heat(n, costs):
for sector in sectors: for sector in sectors:
heat_demand[sector + " space"] = (1 - dE) * heat_demand[sector + " space"] heat_demand[sector + " space"] = (1 - dE) * heat_demand[sector + " space"]
heat_systems = [
"residential rural",
"services rural",
"residential urban decentral",
"services urban decentral",
"urban central",
]
cop = {
"air": xr.open_dataarray(snakemake.input.cop_air_total)
.to_pandas()
.reindex(index=n.snapshots),
"ground": xr.open_dataarray(snakemake.input.cop_soil_total)
.to_pandas()
.reindex(index=n.snapshots),
}
if options["solar_thermal"]: if options["solar_thermal"]:
solar_thermal = ( solar_thermal = (
xr.open_dataarray(snakemake.input.solar_thermal_total) xr.open_dataarray(snakemake.input.solar_thermal_total)
@ -2178,31 +2184,34 @@ def add_heat(n, costs):
# 1e3 converts from W/m^2 to MW/(1000m^2) = kW/m^2 # 1e3 converts from W/m^2 to MW/(1000m^2) = kW/m^2
solar_thermal = options["solar_cf_correction"] * solar_thermal / 1e3 solar_thermal = options["solar_cf_correction"] * solar_thermal / 1e3
for name in heat_systems: for (
name_type = "central" if name == "urban central" else "decentral" heat_system
) in (
HeatSystem
): # this loops through all heat systems defined in _entities.HeatSystem
if name == "urban central": if heat_system == HeatSystem.URBAN_CENTRAL:
nodes = dist_fraction.index[dist_fraction > 0] nodes = dist_fraction.index[dist_fraction > 0]
else: else:
nodes = pop_layout.index nodes = pop_layout.index
n.add("Carrier", name + " heat") n.add("Carrier", f"{heat_system} heat")
n.madd( n.madd(
"Bus", "Bus",
nodes + f" {name} heat", nodes + f" {heat_system.value} heat",
location=nodes, location=nodes,
carrier=name + " heat", carrier=f"{heat_system.value} heat",
unit="MWh_th", unit="MWh_th",
) )
if name == "urban central" and options.get("central_heat_vent"): if heat_system == HeatSystem.URBAN_CENTRAL and options.get("central_heat_vent"):
n.madd( n.madd(
"Generator", "Generator",
nodes + f" {name} heat vent", nodes + f" {heat_system} heat vent",
bus=nodes + f" {name} heat", bus=nodes + f" {heat_system} heat",
location=nodes, location=nodes,
carrier=name + " heat vent", carrier=f"{heat_system} heat vent",
p_nom_extendable=True, p_nom_extendable=True,
p_max_pu=0, p_max_pu=0,
p_min_pu=-1, p_min_pu=-1,
@ -2210,30 +2219,24 @@ def add_heat(n, costs):
) )
## Add heat load ## Add heat load
factor = heat_system.heat_demand_weighting(
urban_fraction=urban_fraction[nodes], dist_fraction=dist_fraction[nodes]
)
if not heat_system == HeatSystem.URBAN_CENTRAL:
heat_load = (
heat_demand[
[
heat_system.sector.value + " water",
heat_system.sector.value + " space",
]
]
.T.groupby(level=1)
.sum()
.T[nodes]
.multiply(factor)
)
for sector in sectors: if heat_system == HeatSystem.URBAN_CENTRAL:
# heat demand weighting
if "rural" in name:
factor = 1 - urban_fraction[nodes]
elif "urban central" in name:
factor = dist_fraction[nodes]
elif "urban decentral" in name:
factor = urban_fraction[nodes] - dist_fraction[nodes]
else:
raise NotImplementedError(
f" {name} not in " f"heat systems: {heat_systems}"
)
if sector in name:
heat_load = (
heat_demand[[sector + " water", sector + " space"]]
.T.groupby(level=1)
.sum()
.T[nodes]
.multiply(factor)
)
if name == "urban central":
heat_load = ( heat_load = (
heat_demand.T.groupby(level=1) heat_demand.T.groupby(level=1)
.sum() .sum()
@ -2246,20 +2249,25 @@ def add_heat(n, costs):
n.madd( n.madd(
"Load", "Load",
nodes, nodes,
suffix=f" {name} heat", suffix=f" {heat_system} heat",
bus=nodes + f" {name} heat", bus=nodes + f" {heat_system} heat",
carrier=name + " heat", carrier=f"{heat_system} heat",
p_set=heat_load, p_set=heat_load,
) )
## Add heat pumps ## Add heat pumps
for heat_source in snakemake.params.heat_pump_sources[
heat_pump_types = ["air"] if "urban" in name else ["ground", "air"] heat_system.system_type.value
]:
for heat_pump_type in heat_pump_types: costs_name = heat_system.heat_pump_costs_name(heat_source)
costs_name = f"{name_type} {heat_pump_type}-sourced heat pump"
efficiency = ( efficiency = (
cop[heat_pump_type][nodes] cop.sel(
heat_system=heat_system.system_type.value,
heat_source=heat_source,
name=nodes,
)
.to_pandas()
.reindex(index=n.snapshots)
if options["time_dep_hp_cop"] if options["time_dep_hp_cop"]
else costs.at[costs_name, "efficiency"] else costs.at[costs_name, "efficiency"]
) )
@ -2267,10 +2275,10 @@ def add_heat(n, costs):
n.madd( n.madd(
"Link", "Link",
nodes, nodes,
suffix=f" {name} {heat_pump_type} heat pump", suffix=f" {heat_system} {heat_source} heat pump",
bus0=nodes, bus0=nodes,
bus1=nodes + f" {name} heat", bus1=nodes + f" {heat_system} heat",
carrier=f"{name} {heat_pump_type} heat pump", carrier=f"{heat_system} {heat_source} heat pump",
efficiency=efficiency, efficiency=efficiency,
capital_cost=costs.at[costs_name, "efficiency"] capital_cost=costs.at[costs_name, "efficiency"]
* costs.at[costs_name, "fixed"] * costs.at[costs_name, "fixed"]
@ -2280,59 +2288,65 @@ def add_heat(n, costs):
) )
if options["tes"]: if options["tes"]:
n.add("Carrier", name + " water tanks") n.add("Carrier", f"{heat_system} water tanks")
n.madd( n.madd(
"Bus", "Bus",
nodes + f" {name} water tanks", nodes + f" {heat_system} water tanks",
location=nodes, location=nodes,
carrier=name + " water tanks", carrier=f"{heat_system} water tanks",
unit="MWh_th", unit="MWh_th",
) )
n.madd( n.madd(
"Link", "Link",
nodes + f" {name} water tanks charger", nodes + f" {heat_system} water tanks charger",
bus0=nodes + f" {name} heat", bus0=nodes + f" {heat_system} heat",
bus1=nodes + f" {name} water tanks", bus1=nodes + f" {heat_system} water tanks",
efficiency=costs.at["water tank charger", "efficiency"], efficiency=costs.at["water tank charger", "efficiency"],
carrier=name + " water tanks charger", carrier=f"{heat_system} water tanks charger",
p_nom_extendable=True, p_nom_extendable=True,
) )
n.madd( n.madd(
"Link", "Link",
nodes + f" {name} water tanks discharger", nodes + f" {heat_system} water tanks discharger",
bus0=nodes + f" {name} water tanks", bus0=nodes + f" {heat_system} water tanks",
bus1=nodes + f" {name} heat", bus1=nodes + f" {heat_system} heat",
carrier=name + " water tanks discharger", carrier=f"{heat_system} water tanks discharger",
efficiency=costs.at["water tank discharger", "efficiency"], efficiency=costs.at["water tank discharger", "efficiency"],
p_nom_extendable=True, p_nom_extendable=True,
) )
tes_time_constant_days = options["tes_tau"][name_type] tes_time_constant_days = options["tes_tau"][
heat_system.central_or_decentral
]
n.madd( n.madd(
"Store", "Store",
nodes + f" {name} water tanks", nodes + f" {heat_system} water tanks",
bus=nodes + f" {name} water tanks", bus=nodes + f" {heat_system} water tanks",
e_cyclic=True, e_cyclic=True,
e_nom_extendable=True, e_nom_extendable=True,
carrier=name + " water tanks", carrier=f"{heat_system} water tanks",
standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days),
capital_cost=costs.at[name_type + " water tank storage", "fixed"], capital_cost=costs.at[
lifetime=costs.at[name_type + " water tank storage", "lifetime"], heat_system.central_or_decentral + " water tank storage", "fixed"
],
lifetime=costs.at[
heat_system.central_or_decentral + " water tank storage", "lifetime"
],
) )
if options["resistive_heaters"]: if options["resistive_heaters"]:
key = f"{name_type} resistive heater" key = f"{heat_system.central_or_decentral} resistive heater"
n.madd( n.madd(
"Link", "Link",
nodes + f" {name} resistive heater", nodes + f" {heat_system} resistive heater",
bus0=nodes, bus0=nodes,
bus1=nodes + f" {name} heat", bus1=nodes + f" {heat_system} heat",
carrier=name + " resistive heater", carrier=f"{heat_system} resistive heater",
efficiency=costs.at[key, "efficiency"], efficiency=costs.at[key, "efficiency"],
capital_cost=costs.at[key, "efficiency"] capital_cost=costs.at[key, "efficiency"]
* costs.at[key, "fixed"] * costs.at[key, "fixed"]
@ -2342,16 +2356,16 @@ def add_heat(n, costs):
) )
if options["boilers"]: if options["boilers"]:
key = f"{name_type} gas boiler" key = f"{heat_system.central_or_decentral} gas boiler"
n.madd( n.madd(
"Link", "Link",
nodes + f" {name} gas boiler", nodes + f" {heat_system} gas boiler",
p_nom_extendable=True, p_nom_extendable=True,
bus0=spatial.gas.df.loc[nodes, "nodes"].values, bus0=spatial.gas.df.loc[nodes, "nodes"].values,
bus1=nodes + f" {name} heat", bus1=nodes + f" {heat_system} heat",
bus2="co2 atmosphere", bus2="co2 atmosphere",
carrier=name + " gas boiler", carrier=f"{heat_system} gas boiler",
efficiency=costs.at[key, "efficiency"], efficiency=costs.at[key, "efficiency"],
efficiency2=costs.at["gas", "CO2 intensity"], efficiency2=costs.at["gas", "CO2 intensity"],
capital_cost=costs.at[key, "efficiency"] capital_cost=costs.at[key, "efficiency"]
@ -2361,22 +2375,26 @@ def add_heat(n, costs):
) )
if options["solar_thermal"]: if options["solar_thermal"]:
n.add("Carrier", name + " solar thermal") n.add("Carrier", f"{heat_system} solar thermal")
n.madd( n.madd(
"Generator", "Generator",
nodes, nodes,
suffix=f" {name} solar thermal collector", suffix=f" {heat_system} solar thermal collector",
bus=nodes + f" {name} heat", bus=nodes + f" {heat_system} heat",
carrier=name + " solar thermal", carrier=f"{heat_system} solar thermal",
p_nom_extendable=True, p_nom_extendable=True,
capital_cost=costs.at[name_type + " solar thermal", "fixed"] capital_cost=costs.at[
heat_system.central_or_decentral + " solar thermal", "fixed"
]
* overdim_factor, * overdim_factor,
p_max_pu=solar_thermal[nodes], p_max_pu=solar_thermal[nodes],
lifetime=costs.at[name_type + " solar thermal", "lifetime"], lifetime=costs.at[
heat_system.central_or_decentral + " solar thermal", "lifetime"
],
) )
if options["chp"] and name == "urban central": if options["chp"] and heat_system == HeatSystem.URBAN_CENTRAL:
# add gas CHP; biomass CHP is added in biomass section # add gas CHP; biomass CHP is added in biomass section
n.madd( n.madd(
"Link", "Link",
@ -2433,16 +2451,20 @@ def add_heat(n, costs):
lifetime=costs.at["central gas CHP", "lifetime"], lifetime=costs.at["central gas CHP", "lifetime"],
) )
if options["chp"] and options["micro_chp"] and name != "urban central": if (
options["chp"]
and options["micro_chp"]
and heat_system.value != "urban central"
):
n.madd( n.madd(
"Link", "Link",
nodes + f" {name} micro gas CHP", nodes + f" {heat_system} micro gas CHP",
p_nom_extendable=True, p_nom_extendable=True,
bus0=spatial.gas.df.loc[nodes, "nodes"].values, bus0=spatial.gas.df.loc[nodes, "nodes"].values,
bus1=nodes, bus1=nodes,
bus2=nodes + f" {name} heat", bus2=nodes + f" {heat_system} heat",
bus3="co2 atmosphere", bus3="co2 atmosphere",
carrier=name + " micro gas CHP", carrier=heat_system.value + " micro gas CHP",
efficiency=costs.at["micro CHP", "efficiency"], efficiency=costs.at["micro CHP", "efficiency"],
efficiency2=costs.at["micro CHP", "efficiency-heat"], efficiency2=costs.at["micro CHP", "efficiency-heat"],
efficiency3=costs.at["gas", "CO2 intensity"], efficiency3=costs.at["gas", "CO2 intensity"],
@ -2478,7 +2500,7 @@ def add_heat(n, costs):
) / heat_demand.T.groupby(level=[1]).sum().T ) / heat_demand.T.groupby(level=[1]).sum().T
for name in n.loads[ for name in n.loads[
n.loads.carrier.isin([x + " heat" for x in heat_systems]) n.loads.carrier.isin([x + " heat" for x in HeatSystem])
].index: ].index:
node = n.buses.loc[name, "location"] node = n.buses.loc[name, "location"]
ct = pop_layout.loc[node, "ct"] ct = pop_layout.loc[node, "ct"]
@ -2632,19 +2654,83 @@ def add_biomass(n, costs):
biogas_potentials_spatial = biomass_potentials["biogas"].rename( biogas_potentials_spatial = biomass_potentials["biogas"].rename(
index=lambda x: x + " biogas" index=lambda x: x + " biogas"
) )
unsustainable_biogas_potentials_spatial = biomass_potentials[
"unsustainable biogas"
].rename(index=lambda x: x + " biogas")
else: else:
biogas_potentials_spatial = biomass_potentials["biogas"].sum() biogas_potentials_spatial = biomass_potentials["biogas"].sum()
unsustainable_biogas_potentials_spatial = biomass_potentials[
"unsustainable biogas"
].sum()
if options.get("biomass_spatial", options["biomass_transport"]): if options.get("biomass_spatial", options["biomass_transport"]):
solid_biomass_potentials_spatial = biomass_potentials["solid biomass"].rename( solid_biomass_potentials_spatial = biomass_potentials["solid biomass"].rename(
index=lambda x: x + " solid biomass" index=lambda x: x + " solid biomass"
) )
msw_biomass_potentials_spatial = biomass_potentials[
"municipal solid waste"
].rename(index=lambda x: x + " municipal solid waste")
unsustainable_solid_biomass_potentials_spatial = biomass_potentials[
"unsustainable solid biomass"
].rename(index=lambda x: x + " solid biomass")
else: else:
solid_biomass_potentials_spatial = biomass_potentials["solid biomass"].sum() solid_biomass_potentials_spatial = biomass_potentials["solid biomass"].sum()
msw_biomass_potentials_spatial = biomass_potentials[
"municipal solid waste"
].sum()
unsustainable_solid_biomass_potentials_spatial = biomass_potentials[
"unsustainable solid biomass"
].sum()
if options["regional_oil_demand"]:
unsustainable_liquid_biofuel_potentials_spatial = biomass_potentials[
"unsustainable bioliquids"
].rename(index=lambda x: x + " bioliquids")
else:
unsustainable_liquid_biofuel_potentials_spatial = biomass_potentials[
"unsustainable bioliquids"
].sum()
n.add("Carrier", "biogas") n.add("Carrier", "biogas")
n.add("Carrier", "solid biomass") n.add("Carrier", "solid biomass")
if (
options["municipal_solid_waste"]
and not options["industry"]
and cf_industry["waste_to_energy"]
or cf_industry["waste_to_energy_cc"]
):
logger.warning(
"Flag municipal_solid_waste can be only used with industry "
"sector waste to energy."
"Setting municipal_solid_waste=False."
)
options["municipal_solid_waste"] = False
if options["municipal_solid_waste"]:
n.add("Carrier", "municipal solid waste")
n.madd(
"Bus",
spatial.msw.nodes,
location=spatial.msw.locations,
carrier="municipal solid waste",
)
e_max_pu = pd.Series([1] * (len(n.snapshots) - 1) + [0], index=n.snapshots)
n.madd(
"Store",
spatial.msw.nodes,
bus=spatial.msw.nodes,
carrier="municipal solid waste",
e_nom=msw_biomass_potentials_spatial,
marginal_cost=0, # costs.at["municipal solid waste", "fuel"],
e_max_pu=e_max_pu,
e_initial=msw_biomass_potentials_spatial,
)
n.madd( n.madd(
"Bus", "Bus",
spatial.gas.biogas, spatial.gas.biogas,
@ -2729,6 +2815,81 @@ def add_biomass(n, costs):
p_nom_extendable=True, p_nom_extendable=True,
) )
if biomass_potentials.filter(like="unsustainable").sum().sum() > 0:
# Create timeseries to force usage of unsustainable potentials
e_max_pu = pd.DataFrame(1, index=n.snapshots, columns=spatial.gas.biogas)
e_max_pu.iloc[-1] = 0
n.madd(
"Store",
spatial.gas.biogas,
suffix=" unsustainable",
bus=spatial.gas.biogas,
carrier="unsustainable biogas",
e_nom=unsustainable_biogas_potentials_spatial,
marginal_cost=costs.at["biogas", "fuel"],
e_initial=unsustainable_biogas_potentials_spatial,
e_nom_extendable=False,
e_max_pu=e_max_pu,
)
e_max_pu = pd.DataFrame(1, index=n.snapshots, columns=spatial.biomass.nodes)
e_max_pu.iloc[-1] = 0
n.madd(
"Store",
spatial.biomass.nodes,
suffix=" unsustainable",
bus=spatial.biomass.nodes,
carrier="unsustainable solid biomass",
e_nom=unsustainable_solid_biomass_potentials_spatial,
marginal_cost=costs.at["fuelwood", "fuel"],
e_initial=unsustainable_solid_biomass_potentials_spatial,
e_nom_extendable=False,
e_max_pu=e_max_pu,
)
n.madd(
"Bus",
spatial.biomass.bioliquids,
location=spatial.biomass.locations,
carrier="unsustainable bioliquids",
unit="MWh_LHV",
)
e_max_pu = pd.DataFrame(
1, index=n.snapshots, columns=spatial.biomass.bioliquids
)
e_max_pu.iloc[-1] = 0
n.madd(
"Store",
spatial.biomass.bioliquids,
suffix=" unsustainable",
bus=spatial.biomass.bioliquids,
carrier="unsustainable bioliquids",
e_nom=unsustainable_liquid_biofuel_potentials_spatial,
marginal_cost=costs.at["biodiesel crops", "fuel"],
e_initial=unsustainable_liquid_biofuel_potentials_spatial,
e_nom_extendable=False,
e_max_pu=e_max_pu,
)
n.madd(
"Link",
spatial.biomass.bioliquids,
bus0=spatial.biomass.bioliquids,
bus1=spatial.oil.nodes,
bus2="co2 atmosphere",
carrier="unsustainable bioliquids",
efficiency=1,
efficiency2=-costs.at["solid biomass", "CO2 intensity"]
+ costs.at["BtL", "CO2 stored"],
p_nom=unsustainable_liquid_biofuel_potentials_spatial,
marginal_cost=costs.at["BtL", "VOM"],
)
n.madd( n.madd(
"Link", "Link",
spatial.gas.biogas_to_gas, spatial.gas.biogas_to_gas,
@ -2800,6 +2961,19 @@ def add_biomass(n, costs):
carrier="solid biomass transport", carrier="solid biomass transport",
) )
if options["municipal_solid_waste"]:
n.madd(
"Link",
biomass_transport.index,
bus0=biomass_transport.bus0 + " municipal solid waste",
bus1=biomass_transport.bus1 + " municipal solid waste",
p_nom_extendable=False,
p_nom=5e4,
length=biomass_transport.length.values,
marginal_cost=biomass_transport.costs * biomass_transport.length.values,
carrier="municipal solid waste transport",
)
elif options["biomass_spatial"]: elif options["biomass_spatial"]:
# add artificial biomass generators at nodes which include transport costs # add artificial biomass generators at nodes which include transport costs
transport_costs = pd.read_csv( transport_costs = pd.read_csv(
@ -2829,6 +3003,26 @@ def add_biomass(n, costs):
type="operational_limit", type="operational_limit",
) )
if options["municipal_solid_waste"]:
# Add municipal solid waste
n.madd(
"Generator",
spatial.msw.nodes,
bus=spatial.msw.nodes,
carrier="municipal solid waste",
p_nom=10000,
marginal_cost=0 # costs.at["municipal solid waste", "fuel"]
+ bus_transport_costs * average_distance,
)
n.add(
"GlobalConstraint",
"msw limit",
carrier_attribute="municipal solid waste",
sense="<=",
constant=biomass_potentials["municipal solid waste"].sum(),
type="operational_limit",
)
# AC buses with district heating # AC buses with district heating
urban_central = n.buses.index[n.buses.carrier == "urban central heat"] urban_central = n.buses.index[n.buses.carrier == "urban central heat"]
if not urban_central.empty and options["chp"]: if not urban_central.empty and options["chp"]:
@ -3420,27 +3614,23 @@ def add_industry(n, costs):
if options["oil_boilers"]: if options["oil_boilers"]:
nodes = pop_layout.index nodes = pop_layout.index
for name in [ for heat_system in HeatSystem:
"residential rural", if not heat_system == HeatSystem.URBAN_CENTRAL:
"services rural", n.madd(
"residential urban decentral", "Link",
"services urban decentral", nodes + f" {heat_system} oil boiler",
]: p_nom_extendable=True,
n.madd( bus0=spatial.oil.nodes,
"Link", bus1=nodes + f" {heat_system} heat",
nodes + f" {name} oil boiler", bus2="co2 atmosphere",
p_nom_extendable=True, carrier=f"{heat_system} oil boiler",
bus0=spatial.oil.nodes, efficiency=costs.at["decentral oil boiler", "efficiency"],
bus1=nodes + f" {name} heat", efficiency2=costs.at["oil", "CO2 intensity"],
bus2="co2 atmosphere", capital_cost=costs.at["decentral oil boiler", "efficiency"]
carrier=f"{name} oil boiler", * costs.at["decentral oil boiler", "fixed"]
efficiency=costs.at["decentral oil boiler", "efficiency"], * options["overdimension_individual_heating"],
efficiency2=costs.at["oil", "CO2 intensity"], lifetime=costs.at["decentral oil boiler", "lifetime"],
capital_cost=costs.at["decentral oil boiler", "efficiency"] )
* costs.at["decentral oil boiler", "fixed"]
* options["overdimension_individual_heating"],
lifetime=costs.at["decentral oil boiler", "lifetime"],
)
n.madd( n.madd(
"Link", "Link",
@ -3535,6 +3725,17 @@ def add_industry(n, costs):
efficiency3=process_co2_per_naphtha, efficiency3=process_co2_per_naphtha,
) )
if options.get("biomass", True) and options["municipal_solid_waste"]:
n.madd(
"Link",
spatial.msw.locations,
bus0=spatial.msw.nodes,
bus1=non_sequestered_hvc_locations,
carrier="municipal solid waste",
p_nom_extendable=True,
efficiency=1.0,
)
n.madd( n.madd(
"Link", "Link",
spatial.oil.demand_locations, spatial.oil.demand_locations,
@ -4427,13 +4628,14 @@ def add_enhanced_geothermal(n, egs_potentials, egs_overlap, costs):
# %% # %%
if __name__ == "__main__": if __name__ == "__main__":
if "snakemake" not in globals(): if "snakemake" not in globals():
from _helpers import mock_snakemake from _helpers import mock_snakemake
snakemake = mock_snakemake( snakemake = mock_snakemake(
"prepare_sector_network", "prepare_sector_network",
simpl="", simpl="",
opts="", opts="",
clusters="1", clusters="37",
ll="vopt", ll="vopt",
sector_opts="", sector_opts="",
planning_horizons="2050", planning_horizons="2050",
@ -4492,7 +4694,7 @@ if __name__ == "__main__":
add_land_transport(n, costs) add_land_transport(n, costs)
if options["heating"]: if options["heating"]:
add_heat(n, costs) add_heat(n=n, costs=costs, cop=xr.open_dataarray(snakemake.input.cop_profiles))
if options["biomass"]: if options["biomass"]:
add_biomass(n, costs) add_biomass(n, costs)