Replace gas and solid biomass CHP CCS with CHP + DEA CC
Use DEA assumptions for post-combustion carbon capture. Also rename CCS as CC whenever only carbon capture is involved, since sequestration (or CCU) is a separate step.
This commit is contained in:
parent
3ff669b07b
commit
608c9a5ac5
@ -141,7 +141,7 @@ sector:
|
||||
'SMR' : True
|
||||
'co2_sequestration_potential' : 200 #MtCO2/a sequestration potential for Europe
|
||||
'co2_sequestration_cost' : 20 #EUR/tCO2 for transport and sequestration of CO2
|
||||
'ccs_fraction' : 0.9
|
||||
'cc_fraction' : 0.9 # default fraction of CO2 captured with post-combustion capture
|
||||
'hydrogen_underground_storage' : True
|
||||
'use_fischer_tropsch_waste_heat' : True
|
||||
'use_fuel_cell_waste_heat' : True
|
||||
|
@ -22,7 +22,7 @@ def rename_techs(label):
|
||||
"retrofitting" : "building retrofitting",
|
||||
"H2" : "hydrogen storage",
|
||||
"battery" : "battery storage",
|
||||
"CCS" : "CCS"}
|
||||
"CC" : "CC"}
|
||||
|
||||
rename = {"solar" : "solar PV",
|
||||
"Sabatier" : "methanation",
|
||||
|
@ -218,7 +218,7 @@ def add_co2_tracking(n):
|
||||
marginal_cost=75.,
|
||||
efficiency=1.,
|
||||
p_nom_extendable=True,
|
||||
lifetime=costs.at['DAC','lifetime'])
|
||||
lifetime=costs.at['direct air capture','lifetime'])
|
||||
|
||||
|
||||
def add_co2limit(n, Nyears=1.,limit=0.):
|
||||
@ -936,18 +936,18 @@ def add_storage(network):
|
||||
|
||||
if options['SMR']:
|
||||
network.madd("Link",
|
||||
nodes + " SMR CCS",
|
||||
nodes + " SMR CC",
|
||||
bus0=["EU gas"]*len(nodes),
|
||||
bus1=nodes+" H2",
|
||||
bus2="co2 atmosphere",
|
||||
bus3="co2 stored",
|
||||
p_nom_extendable=True,
|
||||
carrier="SMR CCS",
|
||||
efficiency=costs.at["SMR CCS","efficiency"],
|
||||
efficiency2=costs.at['gas','CO2 intensity']*(1-options["ccs_fraction"]),
|
||||
efficiency3=costs.at['gas','CO2 intensity']*options["ccs_fraction"],
|
||||
capital_cost=costs.at["SMR CCS","fixed"],
|
||||
lifetime=costs.at['SMR CCS','lifetime'])
|
||||
carrier="SMR CC",
|
||||
efficiency=costs.at["SMR CC","efficiency"],
|
||||
efficiency2=costs.at['gas','CO2 intensity']*(1-options["cc_fraction"]),
|
||||
efficiency3=costs.at['gas','CO2 intensity']*options["cc_fraction"],
|
||||
capital_cost=costs.at["SMR CC","fixed"],
|
||||
lifetime=costs.at['SMR CC','lifetime'])
|
||||
|
||||
network.madd("Link",
|
||||
nodes + " SMR",
|
||||
@ -1241,21 +1241,21 @@ def add_heat(network):
|
||||
lifetime=costs.at['central gas CHP','lifetime'])
|
||||
|
||||
network.madd("Link",
|
||||
nodes[name] + " urban central gas CHP CCS",
|
||||
nodes[name] + " urban central gas CHP CC",
|
||||
bus0="EU gas",
|
||||
bus1=nodes[name],
|
||||
bus2=nodes[name] + " urban central heat",
|
||||
bus3="co2 atmosphere",
|
||||
bus4="co2 stored",
|
||||
carrier="urban central gas CHP CCS",
|
||||
carrier="urban central gas CHP CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at['central gas CHP CCS','fixed']*costs.at['central gas CHP CCS','efficiency'],
|
||||
marginal_cost=costs.at['central gas CHP CCS','VOM'],
|
||||
efficiency=costs.at['central gas CHP CCS','efficiency'],
|
||||
efficiency2=costs.at['central gas CHP CCS','efficiency']/costs.at['central gas CHP CCS','c_b'],
|
||||
efficiency3=costs.at['gas','CO2 intensity']*(1-options["ccs_fraction"]),
|
||||
efficiency4=costs.at['gas','CO2 intensity']*options["ccs_fraction"],
|
||||
lifetime=costs.at['central gas CHP CCS','lifetime'])
|
||||
capital_cost=costs.at['central gas CHP','fixed']*costs.at['central gas CHP','efficiency'] + costs.at['biomass CHP capture','fixed']*costs.at['gas','CO2 intensity'],
|
||||
marginal_cost=costs.at['central gas CHP','VOM'],
|
||||
efficiency=costs.at['central gas CHP','efficiency'] - costs.at['gas','CO2 intensity']*(costs.at['biomass CHP capture','electricity-input'] + costs.at['biomass CHP capture','compression-electricity-input']),
|
||||
efficiency2=costs.at['central gas CHP','efficiency']/costs.at['central gas CHP','c_b'] + costs.at['gas','CO2 intensity']*(costs.at['biomass CHP capture','heat-output'] + costs.at['biomass CHP capture','compression-heat-output'] - costs.at['biomass CHP capture','heat-output']),
|
||||
efficiency3=costs.at['gas','CO2 intensity']*(1-options["cc_fraction"]),
|
||||
efficiency4=costs.at['gas','CO2 intensity']*options["cc_fraction"],
|
||||
lifetime=costs.at['central gas CHP','lifetime'])
|
||||
|
||||
else:
|
||||
if options["micro_chp"]:
|
||||
@ -1460,21 +1460,21 @@ def add_biomass(network):
|
||||
lifetime=costs.at['central solid biomass CHP','lifetime'])
|
||||
|
||||
network.madd("Link",
|
||||
urban_central + " urban central solid biomass CHP CCS",
|
||||
urban_central + " urban central solid biomass CHP CC",
|
||||
bus0="EU solid biomass",
|
||||
bus1=urban_central,
|
||||
bus2=urban_central + " urban central heat",
|
||||
bus3="co2 atmosphere",
|
||||
bus4="co2 stored",
|
||||
carrier="urban central solid biomass CHP CCS",
|
||||
carrier="urban central solid biomass CHP CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at['central solid biomass CHP CCS','fixed']*costs.at['central solid biomass CHP CCS','efficiency'],
|
||||
marginal_cost=costs.at['central solid biomass CHP CCS','VOM'],
|
||||
efficiency=costs.at['central solid biomass CHP CCS','efficiency'],
|
||||
efficiency2=costs.at['central solid biomass CHP CCS','efficiency-heat'],
|
||||
efficiency3=-costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
|
||||
efficiency4=costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
|
||||
lifetime=costs.at['central solid biomass CHP CCS','lifetime'])
|
||||
capital_cost=costs.at['central solid biomass CHP','fixed']*costs.at['central solid biomass CHP','efficiency'] + costs.at['biomass CHP capture','fixed']*costs.at['solid biomass','CO2 intensity'],
|
||||
marginal_cost=costs.at['central solid biomass CHP','VOM'],
|
||||
efficiency=costs.at['central solid biomass CHP','efficiency'] - costs.at['solid biomass','CO2 intensity']*(costs.at['biomass CHP capture','electricity-input'] + costs.at['biomass CHP capture','compression-electricity-input']),
|
||||
efficiency2=costs.at['central solid biomass CHP','efficiency-heat'] + costs.at['solid biomass','CO2 intensity']*(costs.at['biomass CHP capture','heat-output'] + costs.at['biomass CHP capture','compression-heat-output'] - costs.at['biomass CHP capture','heat-output']),
|
||||
efficiency3=-costs.at['solid biomass','CO2 intensity']*options["cc_fraction"],
|
||||
efficiency4=costs.at['solid biomass','CO2 intensity']*options["cc_fraction"],
|
||||
lifetime=costs.at['central solid biomass CHP','lifetime'])
|
||||
|
||||
|
||||
|
||||
@ -1511,18 +1511,18 @@ def add_industry(network):
|
||||
efficiency=1.)
|
||||
|
||||
network.madd("Link",
|
||||
["solid biomass for industry CCS"],
|
||||
["solid biomass for industry CC"],
|
||||
bus0="EU solid biomass",
|
||||
bus1="solid biomass for industry",
|
||||
bus2="co2 atmosphere",
|
||||
bus3="co2 stored",
|
||||
carrier="solid biomass for industry CCS",
|
||||
carrier="solid biomass for industry CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["industry CCS","fixed"]*costs.at['solid biomass','CO2 intensity']*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
|
||||
capital_cost=costs.at["industry CC","fixed"]*costs.at['solid biomass','CO2 intensity']*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
|
||||
efficiency=0.9,
|
||||
efficiency2=-costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
|
||||
efficiency3=costs.at['solid biomass','CO2 intensity']*options["ccs_fraction"],
|
||||
lifetime=costs.at['industry CCS','lifetime'])
|
||||
efficiency2=-costs.at['solid biomass','CO2 intensity']*options["cc_fraction"],
|
||||
efficiency3=costs.at['solid biomass','CO2 intensity']*options["cc_fraction"],
|
||||
lifetime=costs.at['industry CC','lifetime'])
|
||||
|
||||
|
||||
network.madd("Bus",
|
||||
@ -1547,18 +1547,18 @@ def add_industry(network):
|
||||
efficiency2=costs.at['gas','CO2 intensity'])
|
||||
|
||||
network.madd("Link",
|
||||
["gas for industry CCS"],
|
||||
["gas for industry CC"],
|
||||
bus0="EU gas",
|
||||
bus1="gas for industry",
|
||||
bus2="co2 atmosphere",
|
||||
bus3="co2 stored",
|
||||
carrier="gas for industry CCS",
|
||||
carrier="gas for industry CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["industry CCS","fixed"]*costs.at['gas','CO2 intensity']*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
|
||||
capital_cost=costs.at["industry CC","fixed"]*costs.at['gas','CO2 intensity']*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
|
||||
efficiency=0.9,
|
||||
efficiency2=costs.at['gas','CO2 intensity']*(1-options["ccs_fraction"]),
|
||||
efficiency3=costs.at['gas','CO2 intensity']*options["ccs_fraction"],
|
||||
lifetime=costs.at['industry CCS','lifetime'])
|
||||
efficiency2=costs.at['gas','CO2 intensity']*(1-options["cc_fraction"]),
|
||||
efficiency3=costs.at['gas','CO2 intensity']*options["cc_fraction"],
|
||||
lifetime=costs.at['industry CC','lifetime'])
|
||||
|
||||
|
||||
network.madd("Load",
|
||||
@ -1692,18 +1692,18 @@ def add_industry(network):
|
||||
p_nom_extendable=True,
|
||||
efficiency=1.)
|
||||
|
||||
#assume enough local waste heat for CCS
|
||||
#assume enough local waste heat for CC
|
||||
network.madd("Link",
|
||||
["process emissions CCS"],
|
||||
["process emissions CC"],
|
||||
bus0="process emissions",
|
||||
bus1="co2 atmosphere",
|
||||
bus2="co2 stored",
|
||||
carrier="process emissions CCS",
|
||||
carrier="process emissions CC",
|
||||
p_nom_extendable=True,
|
||||
capital_cost=costs.at["industry CCS","fixed"]*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
|
||||
efficiency=(1-options["ccs_fraction"]),
|
||||
efficiency2=options["ccs_fraction"],
|
||||
lifetime=costs.at['industry CCS','lifetime'])
|
||||
capital_cost=costs.at["industry CC","fixed"]*8760, #8760 converts EUR/(tCO2/a) to EUR/(tCO2/h)
|
||||
efficiency=(1-options["cc_fraction"]),
|
||||
efficiency2=options["cc_fraction"],
|
||||
lifetime=costs.at['industry CC','lifetime'])
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user