Typos and modeled to modelled (UK version)
This commit is contained in:
parent
c2cf870876
commit
5ca89f8955
@ -99,7 +99,7 @@ For large-scale district heating systems the following options are available: co
|
||||
Supply options in individual buildings include gas and oil boilers, air- and ground-sourced heat pumps, resistive heaters, and solar thermal collectors.
|
||||
Ground-source heat pumps are only allowed in rural areas because of space constraints. Thus, only air- source heat pumps are allowed in urban areas. This is a conservative assumption, since there are many possible sources of low-temperature heat that could be tapped in cities (e.g. waste water, ground water, or natural bodies of water). Costs, lifetimes and efficiencies for these technologies are retrieved from the `Technology-data repository <https://github.com/PyPSA/technology-data>`_.
|
||||
|
||||
Below are more detailed explanations for each heating supply component, all of which are modeled as `Links <https://pypsa.readthedocs.io/en/latest/components.html?highlight=distribution#link>`_. in PyPSA-Eue-Sec.
|
||||
Below are more detailed explanations for each heating supply component, all of which are modelled as `links <https://pypsa.readthedocs.io/en/latest/components.html?highlight=distribution#link>`_ in PyPSA-Eur-Sec.
|
||||
|
||||
.. _Large-scale CHP:
|
||||
|
||||
@ -160,7 +160,7 @@ For the myopic transition paths, capacities already existing for technologies su
|
||||
|
||||
Activated in Config from the `tes <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L228>`_ option.
|
||||
|
||||
Thermal energy can be stored in large water pits associated with district heating systems and individual thermal energy storage (TES), i.e., small water tanks. Water tanks are modeled as `stores <https://pypsa.readthedocs.io/en/latest/components.html?highlight=distribution#store, which are connected to heat demand buses through water charger/discharger links>`_.
|
||||
Thermal energy can be stored in large water pits associated with district heating systems and individual thermal energy storage (TES), i.e., small water tanks. Water tanks are modelled as `stores <https://pypsa.readthedocs.io/en/latest/components.html?highlight=distribution#store, which are connected to heat demand buses through water charger/discharger links>`_.
|
||||
A thermal energy density of 46.8 kWhth/m3 is assumed, corresponding to a temperature difference of 40 K. The decay of thermal energy in the stores: 1-exp(-1/24τ) is assumed to have a time constant of t=180 days for central TES and t=3 days for individual TES, both modifiable through `tes_tau <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L229>`_ in Config file. Charging and discharging efficiencies are 90% due to pipe losses.
|
||||
|
||||
*Retrofitting of the thermal envelope of buildings*
|
||||
@ -244,7 +244,7 @@ Methane is used in individual and large-scale gas boilers, in CHP plants with an
|
||||
Methane supply
|
||||
===================================
|
||||
|
||||
In addition to methane from fossil origins, the model also considers biogenic and synthetic sources. `The gas network can either be modeled, or it can be assumed that gas transport is not limited <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L261>`_. If gas infrastructure is regionally resolved, fossil gas can enter the system only at existing and planned LNG terminals, pipeline entry-points, and intra- European gas extraction sites, which are retrieved from the SciGRID Gas IGGIELGN dataset and the GEM Wiki.
|
||||
In addition to methane from fossil origins, the model also considers biogenic and synthetic sources. `The gas network can either be modelled, or it can be assumed that gas transport is not limited <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L261>`_. If gas infrastructure is regionally resolved, fossil gas can enter the system only at existing and planned LNG terminals, pipeline entry-points, and intra- European gas extraction sites, which are retrieved from the SciGRID Gas IGGIELGN dataset and the GEM Wiki.
|
||||
Biogas can be upgraded to methane.
|
||||
Synthetic methane can be produced by processing hydrogen and captures CO$_2$ in the Sabatier reaction
|
||||
|
||||
@ -306,7 +306,7 @@ The transport of solid biomass can either be assumed unlimited between countries
|
||||
|
||||
*Biogas transport and use*
|
||||
|
||||
Biogas will be aggregated into a common European resources if a gas network is not modeled explicitly, i.e., the `gas_network <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L261>`_ option is set to false. If, on the other hand, a gas network is included, the biogas potential will be associated with each node of origin.
|
||||
Biogas will be aggregated into a common European resources if a gas network is not modelled explicitly, i.e., the `gas_network <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/config.default.yaml#L261>`_ option is set to false. If, on the other hand, a gas network is included, the biogas potential will be associated with each node of origin.
|
||||
The model can only use biogas by first upgrading it to natural gas quality [see :ref:`Methane supply`] (bio methane) which is fed into the general gas network.
|
||||
|
||||
.. _Oil-based products demand:
|
||||
@ -559,7 +559,7 @@ All land transport that is not specified to be either BEV or FCEV will be treate
|
||||
|
||||
**Aviation**
|
||||
|
||||
The `demand for aviation <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2193>`_ includes international and domestic use. It is modeled as an oil demand since aviation consumes kerosene. This can be produced synthetically or have fossil-origin (see :ref:`Oil-based products supply`).
|
||||
The `demand for aviation <https://github.com/PyPSA/pypsa-eur-sec/blob/3daff49c9999ba7ca7534df4e587e1d516044fc3/scripts/prepare_sector_network.py#L2193>`_ includes international and domestic use. It is modelled as an oil demand since aviation consumes kerosene. This can be produced synthetically or have fossil-origin (see :ref:`Oil-based products supply`).
|
||||
|
||||
.. _Shipping:
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user